ACKNOWLEDGEMENT

I would like to express my gratitude to all those who gave me the possibility to complete this thesis. I want to thank my supervisor, Dr Zazali Alias whose help, stimulating suggestions and encouragement helped me in all the time of research for and writing of this thesis.

I am also want to thank my colleagues Nora Asyikin Ramli, Rabiatul Adawiyah Mohd Hairuni and Kamarul Huda Kamaruddin for their supports and helps throughout the completion of my project.

Lastly, I would like to give my special thanks to my family and all of those who patient love enabled me to complete this work.

ABSTRACT

This study was done to determine the inhibitory activity that were exhibited by different parts of the local plants in Malaysia selected from the 4 families which are Leguminosae, Rubiaceae, Apocynaceae and Euphorbiaceae. The screening method used in this study are Bradford Assay and Trypsin Inhibitory Assay. Both these assays revealed that Senna surattensis leaves showed the highest inhibitory activity of 83 % compared to other 41 plant samples studied in this study. SDS-PAGE and Tricine SDS on this sample extract showed the presence of this protease inhibitor through the formation of band. From these band also, the molecular weight for Senna surattensis leaves was determined to be 27.93 kDa. From the mode of inhibition study carried on Senna surattensis leaves, it was found out that this plant belongs to the competetive inhibitor group with K_i value of 8.89 $x10^{\text{-5}}$ mM. Thermostability test reavealed that Senna surattensis leaves extract can only work best at temperature below 60°C and achieve its optimum inhibitory temperature at 45°C with 87.35 % of inhibitory activity. Senna surattensis leaves extract also showed the ability to inhibit the protein extracted from *Chrysomva megacephala* through the study performed on the crude Chrysomya megacephala protein extract. The IC_{50} value of Senna surattensis leaves extract was determined to be 0.0174 $\mu g/\mu l$. Although with all of these promising result, further test need to be done to confirm it.

ABSTRAK

Kajian ini dijalankan untuk menentukan aktiviti-aktiviti perencatan yang ditunjukkan oleh beberapa jenis bahagian tumbuh-tumbuhan tempatan di Malaysia yang terdiri daripada 4 famili iaitu Leguminosae, Rubiaceae, Apocynaceae and Euphorbiaceae. Kaedah penyaringan ujian Bradford dan ujian perencatan tripsin menunjukkan bahawa daun Senna surattensis mempunyai kebolehan perencatan yang paling tinggi berbanding 41 sampel tmbuh-tumbuhan yang lain di dalam kajian ini iaitu sebanyak 83 %. Ujian SDS-PAGE dan Ujian Tricine SDS terhadap sampel ini menunjukkan kehadiran protin perencat melalui jalur yang terhasil. Melalui jalur ini juga, berat molekular bagi daun Senna surattensis dianggarkan sebanyak 27.93 kDa. Daripada penentuan Mod perencatan ke atas ekstrak daun Senna surattensis, didapati ianya tergolong dalam kumpulan perencatan kompetetif dengan nilai K_i sebanyak of 8.89 x10⁻⁵ mM. Ujian kestabilan suhu yang dijalankan menunjukkan bahawa ekstrak daun Senna surattensis hanya mampu berfungsi di bawah suhu 60°C dan mencapai suhu perencatan optimum pada 45°C dengan 87.35 % aktiviti perencatan. Ekstrak daun Senna surattensis juga mampu merencat protein yang diekstrak daripada Chrysomva megacephala melalui ujian yang dijalankan ke atas ekstrak protin mentah Chrysomya megacephala. Nilai IC₅₀ yang diperolehi untuk ekstrak daun Senna surattensis adalah 0.0174 µg/µl.

TABLE OF CONTENT	PAGE
ACKNOWLEDGEMENT	i
ABSTRACT	ii
ABSTRAK	iii
TABLE OF CONTENT	iv
LIST OF FIGURES	vii
LIST OF TABLES	viii
LIST OF SYMBOLS AND ABBREVIATIONS	ix

CHAPTER 2: INTRODUCTION

Introduction	1
	Introduction

CHAPTER 2: LITERATURE REVIEW AND OBJECTIVES

2.0	Bioact	Bioactive peptides and its classification	
	2.0.1	Lectins	4
	2.0.2	Ribosome-inactivating proteins (RIPs)	5
	2.0.3	Alpha-Amylase inhibitors	6
	2.0.4	Arcelins	7
	2.0.5	Protease inhibitors	9
2.1	Classi	fication of protease inhibitors	11
	2.1.1	Cysteine protease inhibitors	11
	2.1.2	Aspartic protease inhibitors	12
	2.1.3	Metalloproteinases inhibitors	13
	2.1.4	Serine protease inhibitors	13
		2.1.4.1 Bowman-Birk Inhibitor (BBI)	16

			2.1.4.2 Kunitz-type inhibitors	18
	2.2	Applic	cation of serine protease inhibitors	20
CHAF	PTER 3:	MATE	ERIALS AND METHODS	
	3.1	Mater	ials	25
	3.2	Equip	ments	26
	3.3	Metho	ods	
		3.3.1	Preparation of Plant Extract	26
	3.3.2	Protein	n content determination	27
		3.3.3	Trypsin Inhibitory Assay	27
		3.3.4	Trypsin inhibitory Activity detection	
			in SDS-polyacrylamide gel electrophoresis	
			and Tricine SDS	28
		3.3.5	Preparation of Chrysomya megacephala	
			crude protease extracts	29
		3.3.6	Mode of inhibition and K_i value determination	30
		3.3.7	Thermostability determination	30
		3.3.8	IC ₅₀ estimation	31

CHAPTER 4: RESULTS

4.1	Screening of trypsin inhibitors	32
4.2	Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophore	sis
	result of sample extracts	35
4.3.	Determination of Senna surattensis's leaves mode of	
	inhibition and K _i value	38

4.4	Deter	mination of Senna surattensis's leaves	
	therm	ostability	40
4.5	Estim	ation of Senna surattensis's leaves IC50 value	41
CHAPTER 5	: DISC	USSION	43
CHAPTER 6	: CON	CLUSION	53
REFERENC	ES		55
APPENDIX	ES		
APPENDIX	1	Determination of protein standard curve	68
APPENDIX	2	Preparation of Bradford reagents	
		(Bradford et al., 1976)	69
APPENDIX	3	Determination of plants sample content	69
APPENDIX	4	Preparation of trypsin inhibitor assay buffer	71
APPENDIX	5	Preparation of HI-TRAP G-25 chromatography	
		buffer	71
APPENDIX	6	HI-TRAP G-25 chromatography	72
APPENDIX	7	Reagents for SDS-PAGE	72
APPENDIX	8	Buffer for Tricine-SDS gel	73
APPENDIX	9	Standard curve of log MW againts	
		relative mobility determination	73
APPENDIX	10	Trypsin inhibitory assay using Chrysomya	
		megacephala extracted protease.	76

LIST OF FIGURES

FIGURE	TITLE	PAGE
Figure 1	Shows SDS-Page gel result of lyophilized sample	
	extracts of Senna surattensis leaves (A) and	
	Mimosa diplotricha fruit (B) on 17% acrylamide gel	
	under two different condition which is with trypsin	
	incubation and with out trypsin incubation.	35
Figure 2	Shows the bands of lyophilized sample extracts of	
	Senna surattensis leaves (A) and Mimosa diplotricha	
	fruit (B) on Pre-cast (invitrogen) Tricine SDS gel	
	at 4-20% acrylamide concentration.	36
Figure 3	Separation of G-25 chromatography eluent of Senna	
	surattensis leaves (A) and Mimosa diplotricha	
	fruit (B) on Tricine SDS gel	37
Figure 4	The dixon plot of concentration versus 1/v sample	
	extract of Senna surattensis's leaves in the presence	
	of 1mM and 5mM BapNA in DMSO.	39
Figure 5	The bar chart plotted of Senna surattensis's leaves	
	extract temperature versus its reduction of activity	
	percentage.	40
Figure 6	Shows the Senna surattensis's leaves percentage of	
	inhibition and activity of trypsin concentration.	42
Figure 7	Bovine serum albumin standard curve (µg/ml)	68
Figure 8	Standard curve of Log MW against Relative mobility (R	(f) 75

LIST OF TABLES

TABLE	TITLE	PAGE
Table 1	Shows various plants sample percentage inhibitory	
	of trypsin activity	32
Table 2	The reduction of trypsin activity percentage at	
	two different concentration of substrate	38
Table 3	Percentage of reduction in trypsin inhibitory	
	activity Senna surattensis's leaves extract in	
	various incubation temperature.	40
Table 4	Percentage of reduction in activity of crude insect's	
	trypsin when subjected to different concentration of	
	Senna surattentensis's leaves proteinaceous extract	41
Table 5	Protein content in 20g of freeze dried ethanolic plants	
	extract	69
Table 6	The logarithm molecular weight and its corresponding	
	relative mobility (Rf)	74
Table 7	The molecular weight Senna surattensis leaves and	
	Mimosa diplotricha flower determination	75
Table 8	Comparison of inhibitory activity percentage obtained	
	between commercial trypsin and Chrysomya	
	megacephala extracted protease.	76

viii

LIST OF SYMBOLS AND ABBREVIATIONS:

BapNA	N-alpha-benzoyl-dl-arg-p-nitroanilide
BBI	Bowman-Birk inhibitor
BSA	Bovine Serum Albumin
Bt	Bacillus thuringiensis
BTI	Barley trypsin inhibitor
cm	centimetre
СрТі	Cowpea trypsin inhibitor
DMSO	Dimethy Sulfoxide
DPPH	1,1-Diphenyl-2-picrylhydrazyl
g	Gram
HC1	Hydrochloric Acid
HMW	High Molecular Weight
KDa	Kilo Dalton
Ki	Inhibition constant
LMW	Low Molecular Weight
М	Molar
mA	mili Ampere
MAP	Mitogen-Activated protein
MCF7	Michigan Cancer Foundation-7
mg	miligram
ml	Mililiter
NaOH	Sodium Hydroxide
nm	nanometer
PIs	Protease inhibitors

PVY	Potato Virus Y
rpm/min	Revolution per minute
SDS	Sodium dodecyl Sulfate
SDS PAGE	Sodium dodecyl Sulfate-Polyacrylamide
	Gel Electrophoresis
SPIs	Serine Protease inhibitors
TEMED	N,N,N'N' -tetramethylenediamine
TEV	Tobacco Etch Virus
ТРСК	L-1-tosylamido-2-phenylethyl chloromethyl ketone
UV	ultra violet
v/v	volume per volume
w/v	weight per volume
xg	Gravity
α	Alpha
β	Beta
γ	Gamma
°C	Degree Celcius
%	Percent