EVALUATION OF CHEMOPROTECTIVE EFFECTS OF
PHYLLANTHUS NIRURI AGAINST AZOXYMETHANE-
INDUCED FOCI OF ABERRANT CRYPTS IN RATS

HALABI, MOHAMMED FAROUQ O

UNIVERSITY OF MALAYA
FACULTY OF SCIENCE
KUALA LAMPUR

2012
EVALUATION OF CHEMOPROTECTIVE EFFECTS OF *PHYLLANTHUS NIRURI* AGAINST AZOXYMETHANE-INDUCED FOCI OF ABERRANT CRYPTS IN RATS

HALABI, MOHAMMED FAROUQ O

DISSERTATION SUBMITTED IN FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF BIOTECHNOLOGY

INSTITUTE OF BIOLOGICAL SCIENCES
FACULTY OF SCIENCE
UNIVERSITY OF MALAYA
KUALA LUMPUR

2012
UNIVERSITI MALAYA

ORIGINAL LITERARY WORK DECLARATION

Name of Candidate: Halabi, Mohammed Farouq (I.C/Passport No: 1898057)
Registration/Matric No: SGE 090020
Name of Degree: Master of Biotechnology
Title of Project Paper/Research Report/Dissertation/Thesis ("this Work"): EVALUATION OF CHEMOPROTECTIVE EFFECTS OF PHYLLANTHUS NIRURI AGAINST AZOXYMETHANE-INDUCED FOCI OF ABERRANT CRYPTS IN RATS
Field of Study: Biomedical Science

I do solemnly and sincerely declare that:

(1) I am the sole author/writer of this Work;
(2) This Work is original;
(3) Any use of any work in which copyright exists was done by way of fair dealing and for permitted purposes and any excerpt or extract from, or reference to or reproduction of any copyright work has been disclosed expressly and sufficiently and the title of the Work and its authorship have been acknowledged in this Work;
(4) I do not have any actual knowledge nor do I ought reasonably to know that the making of this work constitutes an infringement of any copyright work;
(5) I hereby assign all and every rights in the copyright to this Work to the University of Malaya ("UM"), who henceforth shall be owner of the copyright in this Work and that any reproduction or use in any form or by any means whatsoever is prohibited without the written consent of UM having been first had and obtained;
(6) I am fully aware that if in the course of making this Work I have infringed any copyright whether intentionally or otherwise, I may be subject to legal action or any other action as may be determined by UM.

Candidate’s Signature

Date

Subscribed and solemnly declared before,

Witness’s Signature

Date

Name:
Designation:
ABSTRACT

Phyllanthus niruri (P. niruri) is an important Malaysian medicinal plant commonly used traditionally for the treatment of many ailments. The present investigation was designed to elucidate the chemoprotective effects of ethanolic extract of this plant against azoxymethane-induced (AOM) foci of aberrant crypts in rats. Sprague Dawley rats received injections of AOM (15mg/kg, once weekly) for two weeks. Daily treatments with P. niruri extracted, 250mg/kg and 500 mg/kg of body weight as low and high dose, respectively, were orally administered for eight weeks. At the end of the study, aberrant crypt foci (ACF) were evaluated and examined under a light. The numbers of crypts per focus and liver functions tests were also done in serum (biochemical parameters). P. niruri was found to be effectively chemoprotective, as evidenced microscopily and biochemically. Pre-treatment with P. niruri ethanolic extract, significantly reduced the impact of AOM toxicity on plasma protein and urea levels as well as on plasma aspartate aminotransferase (AST), alanine aminotransferase (ALT), lactate dehydrogenase (LDH) and gamma-glutamyl transpeptidase (GGT) activities. Grossly, colorectal specimens revealed that ethanol extract of P. niruri treatments decreased the mean score of number of crypts in AOM-treated rats. Acute toxicity test did not show any signs of toxicity and mortality up to 5 g/kg. In conclusion, the current study demonstrated that ethanolic extract of this plant slowed reduction of ACF. According to these data, P. niruri might be a promising chemoprotective activity, suggesting the need to isolate the chemical principles responsible for this activity and to study this activity in a model of AOM-induced in ACF.
ABSTRACT

Kesan chemoprotective Phyllanthus niruri (P. niruri) telah dikaji terhadap tikus ‘azoxymethane-induced (AOM) foci aberrant crypts’. Tikus Sprague Dawley menerima suntikan AOM (15mg/kg, b.w. seminggu sekali) selama dua minggu. Rawatan harian dengan ekstrak daun P. niruri diberi sebanyak 250mg/kg b.w. Sebanyak 500 mg/kg dimasukkan selama lapan minggu. Pada akhir kajian ini, ‘aberrant crypt foci’ (ACF) telah dinilai dan diperiksa di bawah mikroskop cahaya untuk penskoran jumlah ACF serta bilangan ‘crypts’ per focus. Ujian fungsi hati juga telah dilakukan dalam (parameter biokimia) serum dan kajian histopatologi. P. niruri didapati berkesan sebagai chemoprotective, seperti yang telah dibuktikan oleh kajian menggunakan mikroskop cahaya, parameter biokimia dan kajian histopatologi. Pra-rawatan dengan ekstrak etanol P. niruri, telah mengurangkan kesan ketoksikan AOM dengan ketara pada protein plasma dan paras urea serta plasma aspartate aminotransferase (AST), alanine aminotransferase (ALT) dehydrogenase laktat (LDH) dan aktiviti transpeptidase glutamil gamma(GGT). Keputusan organ histopatologi menunjukkan bahawa rawatan menggunakan ekstrak etanol daun P. niruri mengurangkan min skor bilangan crypts dalam tikus AOM. Kesimpulannya, kita telah menunjukkan bahawa ekstrak etanol P. niruri telah menghadkan perkembangan ACF. Berdasarkan data ini, P. niruri mungkin mempunyai potensi aktiviti chemoprotective, yang seterusnya mencadangkan keperluan dan kepentingan untuk mengasingkan sifat-sifat kimia yang bertanggungjawab bagi aktiviti ini dan mengkajinya dalam model AOM-induced dalam ACF.
ACKNOWLEDGEMENT

In the name of Allah the most gracious and the most merciful. All praise goes to Allah S.W.T., a very deep gratitude and thankful for helping me to finish this project satisfactorily and I owe my deepest gratitude to King Abdullah Scholarships Program that financially supports my Masters Degree and University of Malaya for PPP research fund number P0093/2010B.

I would like to extend my sincere appreciation to my supervisor, Prof. Dr. Mahmood Ameen Abdulla (Department of Molecular Medicine) for his ideas, guidance, support and supervision in the conduct of this study. In addition, in my daily work I have been blessed with a friendly and cheerful group in immunology lab especially Mr. Pouya Darvish.

My heartfelt gratitude also goes to my family, to the memory of my father Farouq Halabi, and my mother, Entessar Jameel who have endured many challenging days, and for Abdulaziz Bardi and Omalfadul, Allah’s mercy upon them all, to my sister, Bahreen and my brothers Bassim, Ahmed, Abdulwahab and Abdulhadi who has inspired me to survive, to my beloved wife Daleya Bardi, for her love, happiness and support, to my children Faris and Lamar, whom smile and joy bring consonance and share me the busy time to complete my study. Lastly, I offer my regards and blessings to all of those who supported me in any respect during the completion of the project.
TABLE OF CONTENT

ABSTRACT .. II

TABLE OF CONTENT ... V

LIST OF TABLES .. IX

LIST OF FIGURES ... X

LIST OF SYMBOLS & ABBREVIATION ... XIV

CHAPTER ONE .. 2

1.1. INTRODUCTION .. 2

1.1.1. The Colorectal Cancer ... 2

1.1.2. Aberrant Crypt Foci (ACF) ... 2

1.1.3. Colon Cancer Chemopreventive Effect of *Phyllanthus niruri* 5

1.1.4. Antioxidant Activity of Plant Extracts .. 6

1.2. Objectives of the Study ... 7

1.2.1. General Objective .. 7

1.2.2. Specific Objectives ... 7

CHAPTER TWO ... 8

2.1. LITERATURE REVIEW ... 8
2.1.1 Colorectal Cancer ... 8

2.1.2. Aberrant Crypt foci (ACF)... 11

2.1.3. Azoxymethane (AOM) .. 15
 2.1.3.1. Azoxymethane (AOM) metabolism 17
 2.1.3.2. Mechanisms for AOM Causing Colon Cancer..................... 17

2.1.4 Phyllanthus niruri (gale of the wind) 21

2.1.5. Antioxidants and lipid peroxidation assay 24

CHAPTER THREE .. 27

3.1. MATERIALS AND METHODS ... 27

 3.1.1. Experimental Design ... 27
 3.1.2. P. niruri Extract Preparation .. 29
 3.1.3. Preparation of the Treatment Mixture 29
 3.1.4. Acute Toxicity Studies .. 30
 3.1.5. Antioxidant Activity .. 31
 3.1.5.1. Ferric-reducing Antioxidant Power (FRAP) Assay 31
 3.1.5.2. DPPH Free Radical Scavenging Activity Test 32
3.1.6. Experimental Animals ... 32

3.1.7. Chemoprevention of Plant Extract ... 33

3.1.7.1. Experiment Animals ... 33

3.1.7.2. Counting the ACF ... 33

CHAPTER FOUR ... 35

4.1. RESULTS ... 35

4.1.1. Acute toxicity study ... 35

4.1.1.1. Behavioral Observation and Mortality 35

4.1.1.2. Analysis of Body Weight of Acute Toxicity 36

4.1.1.3 Hematology .. 38

4.1.1.4 Serum Biochemistry of Acute Toxicity Test 39

4.1.1.5 Laboratory (Hematology and Chemistry) Results of Acute toxicity ... 40

4.1.2. Antioxidant Activity Results .. 44

4.1.2.1. Ferric-reducing antioxidant power (FRAP) assay results 44

4.1.2.2. DPPH Free Radical Scavenging Activity Test results 45

4.1.3. Experimental Animals Results .. 47
4.1.3.1 Analysis of body weight ... 47
4.1.3.2 Serum biochemistry of colon cancer ... 48
4.1.3.3 Counting the ACF ... 52

CHAPTER FIVE .. 63
5.1. DISCUSSION ... 63
5.2. CONCLUSION ... 67

CHAPTER SIX ... 69
7.1. REFERENCES ... 69

CHAPTER SEVEN .. 78
7. APPENDIX ... 78

7.1. Antioxidant study .. 78

7.1.1 Data of FRAP assay .. 78

7.1.2 Data of DPPH assay ... 79

7.2 Experimental analysis .. 81

7.2.1 Counting the ACF .. 81

7.4. Preparation of Reagents: ... 82
LIST OF TABLES

Table 3.1 Acute toxicity study details...31
Table 3.2. Animals experimental for Chemoprevention of plant extract..................33
Table 4.1: The observation data for toxicology study of P. niruri..........................36
Table 4.2: Mean body weights of male rats pre-treated with P. niruri in acute toxicity test...36
Table 4.3: Mean body weights of female rats pre-treated with P. niruri in acute toxicity test...37
Table 4.4: Total white blood cell (WBC count (109/L))..38
Table 4.5. Renal function test of rats in acute toxicity study of P. niruri extract.......40
Table 4.6. Liver function test of rats in acute toxicity study of P. niruri extract.......40
Table 4.7 body weight of rats..47
Table 4.8. Renal function test of rats in acute toxicity study of P. niruri extract.......48
Table 4.9. Liver function test of rats in acute toxicity study of extract................48
Table 4.10: average of ACF number in colon tissue ...52
Table 7.1: Data of standard curve of Frap assay ...78
Table 7.2: Antioxidant activity of P. niruri extract by FRAP assay79
Table 7.3: Data of DPPH assay standard curve...79
Table 7.4: Antioxidant activity of p. niruri extract of DPPH assay80
Table 7.5: Counting of ACF in tissues of rat’s colon ..81
LIST OF FIGURES

Figure 1.1. Aberrant crypt foci lesions (Corpet and Tache, 2002) ..4

Figure 2.1. Sequential pathological stages and molecular events in colon cancer (Corpet, 2002) ..9

Figure 2.2. Stages of ACF formation in colon cancer (Corpet and Tache, 2002)13

Figure 2.3. Chemical structure of Azoxy methane (methylmethyl liminoxidoaznium) ..15

Figure 2.4 Azoxy methane (AOM) mechanism of colon cancer (Chen and Huang, 2009) ..18

Figure 2.5 Phyllanthus niruri L. (Wikipedia, 2010) ...22

Figure 2.6 Lipid peroxidation mechanism (Wikipedia, 2010). ..25

Figure 3.1: Flow charts demonstrating the step-by-step procedures of the experiment. ...28

Figure 4.1: Mean body weights of male rats pre-treated with P. niruri.37

Figure 4.2: Mean body weights of female rats pre-treated with P. niruri.38

Figure 4.3: Total white blood cell (WBC count (10^9/L). ..39

Figure 4.4: Level of (sodium, potassium, chloride, CO2 and anion gap) in rats treated with ethanolic extracts of P.niruri ...41

Figure 4.5: Level of urea in rats treated with ethanolic extracts of P.niruri41

Figure 4.6: Level of creatinine in rats treated with ethanolic extracts of P.niruri42

Figure 4.7: Level of Total protein, albumin, and globulin in rats treated with ethanolic extracts of P.niruri ..42

Figure 4.8: Level of Total bilirubin and conjugated bilirubin in rats treated with ethanolic extracts of P.niruri ...43

Figure 4.9: Level of (AP, ALT, and AST) in rats treated with ethanolic extracts of P. niruri ..43
Figure 4.10: Level of G-Glutamyl Transferase in rats treated with ethanolic extracts of *P. niruri* ...44

Figure 4.11: Frap assay standard curve ..45

Figure 4.12: Data of FRAP assay of *P. niruri* extract45

Figure 4.13: DPPH assay Standard Curve ..46

Figure 4.14: Antioxidant Activity of *P. niruri* Extract46

Figure 4.15: Average of Rat’s Body Weight ..47

Figure 4.16: Level Of Urea In Rats Treated With Ethanolic Extracts of *P. Niruri*49

Figure 4.17: Level of creatinine in rats treated with ethanolic extracts of *P. niruri*49

Figure 4.18: Level of Total protein, albumin, and globulin in rats treated with ethanolic extracts of *P. niruri* ..50

Figure 4.19: Level of Total bilirubin and conjugated bilirubin in rats treated with ethanolic extracts of *P. niruri* ..50

Figure 4.20: Level of AP, ALT, and AST in rats treated with ethanolic extracts of *P. niruri* ..51

Figure 4.21: Level of G-Glutamyl Transferase in rats treated with ethanolic extracts of *P. niruri* ..51

Figure 4.22: Level of Total cholesterol in rats treated with ethanolic extracts of *P. niruri* ..52

Figure 4.23: average of ACF number in colon tissue ..53

Figure 4.24: Light microscopy of methylene blue staining of rat colonic tissue (gross) showing the normal crypts from rats treated with vehicle (2x)53

Figure 4.25: Light microscopy of methylene blue staining of rat colonic tissue (gross) showing the normal crypts from rats treated with vehicle (10x)54

Figure 4.26: Light microscopy of methylene blue staining of rat colonic tissue (gross) treated with colon carcinogen azoxymethane and administered plant extract at low dose. ACF were distinguished from normal crypts by their increase size, increase distance from lamina to basal surface of cells, and easy discernible pericryptal zone (2x) ..54
Figure 4.27: Light microscopy of methylene blue staining of rat colonic tissue (gross) treated with colon carcinogen azoxymethane and administered plant extract at low dose. ACF were distinguished from normal crypts by their increase size, increase distance from lamina to basal surface of cells, and easy discernible pericryptal zone (4x)...

Figure 4.28: Light microscopy of methylene blue staining of rat colonic tissue (gross) treated with colon carcinogen azoxymethane and administered plant extract at low dose. ACF were distinguished from normal crypts by their increase size, increase distance from lamina to basal surface of cells, and easy discernible pericryptal zone (10x)...

Figure 4.29: Light microscopy of methylene blue staining of rat colonic tissue (gross) treated with colon carcinogen azoxymethane and administered plant extract at high dose. ACF were distinguished from normal crypts by their increase size, increase distance from lamina to basal surface of cells, and easy discernible pericryptal zone (2x)...

Figure 4.30: Light microscopy of methylene blue staining of rat colonic tissue (gross) treated with colon carcinogen azoxymethane and administered plant extract at high dose. ACF were distinguished from normal crypts by their increase size, increase distance from lamina to basal surface of cells, and easy discernible pericryptal zone (4x)...

Figure 4.31: Light microscopy of methylene blue staining of rat colonic tissue (gross) treated with colon carcinogen azoxymethane and administered plant extract at high dose. ACF were distinguished from normal crypts by their increase size, increase distance from lamina to basal surface of cells, and easy discernible pericryptal zone (10x)...

Figure 4.32: Light microscopy of methylene blue staining of rat colonic tissue (gross) treated with colon carcinogen azoxymethane (cancer control group). ACF were distinguished from normal crypts by their increase size, increase distance from lamina to basal surface of cells, and easy discernible pericryptal zone (2x)...

Figure 4.33: Light microscopy of methylene blue staining of rat colonic tissue (gross) treated with colon carcinogen azoxymethane (cancer control group). ACF were distinguished from normal crypts by their increase size, increase distance from lamina to basal surface of cells, and easy discernible pericryptal zone (4x)...

Figure 4.34: Light microscopy of methylene blue staining of rat colonic tissue (gross) treated with colon carcinogen azoxymethane (cancer control group). ACF were distinguished from normal crypts by their increase size, increase distance from lamina to basal surface of cells, and easy discernible pericryptal zone (10x)...

XII
Figure 4.35: Light microscopy of methylene blue staining of rat colonic tissue (gross) treated with colon carcinogen azoxymethane and administered plant extract. Aberrant crypt foci lesions (One crypt per focus) in colon tissue (4x)59

Figure 4.36: Light microscopy of methylene blue staining of rat colonic tissue (gross) treated with colon carcinogen azoxymethane and administered plant extract. Aberrant crypt foci lesions (Two crypt per focus) in colon tissue (4x)60

Figure 4.37: Light microscopy of methylene blue staining of rat colonic tissue (gross) treated with colon carcinogen azoxymethane and administered plant extract. Aberrant crypt foci lesions (Three crypts per focus) in colon tissue (4x)60

Figure 4.38: Light microscopy of methylene blue staining of rat colonic tissue (gross) treated with colon carcinogen azoxymethane and administered with vehicle Aberrant crypt foci lesions (four crypts per focus) in colon tissue (4x).61

Figure 4.39: Light microscopy of methylene blue staining of rat colonic tissue (gross) treated with colon carcinogen azoxymethane and administered with vehicle Aberrant crypt foci lesions (four crypts per focus) in colon tissue (4x). Aberrant crypt foci lesions (more than five crypts per focus) in colon tissue (4x). ..61
LIST OF SYMBOLS & ABBREVIATION

ACF Aberrant crypt foci
AOM Azoxymethane

P. niruri Phyllanthus niruri

MDF Mucin Developed Foci
BCAC Beta-Catenin-Accumulated Crypts
MAPK Mitogen-activated protein kinase

MDA Malondialdehyde

b.w body weight
%
percentage
± Plus minus
< Less than
/
Divide by
°C Degree Celsius

Mm Millimeter
mM Micromole
μm Micrometer
μl Microliter
mg Milligram
ml Milliliter
mmol Millimole
Kg Kilogram
Min Minute/s
nm Nanometer
SD Standard deviation
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>EtOH</td>
<td>Ethanol</td>
</tr>
<tr>
<td>et al.</td>
<td>and other people</td>
</tr>
<tr>
<td>ROS</td>
<td>Reactive oxygen species</td>
</tr>
<tr>
<td>RNS</td>
<td>Reactive nitrogen species</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic acid</td>
</tr>
<tr>
<td>SEM</td>
<td>Standard Error of the Mean</td>
</tr>
<tr>
<td>SOD</td>
<td>Superoxide dismutase</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethyl sulfoxide</td>
</tr>
<tr>
<td>FRAP</td>
<td>Ferric Reducing Antioxidant Power</td>
</tr>
</tbody>
</table>