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CHAPTER 1 

INTRODUCTION 

 

Metaheuristic methods are known to give good results when solving 

combinatorial problems and research on these are growing rapidly. Basically 

metaheuristic is a local search algorithm that has been extended or broadens so that high 

quality solutions can be found in a lower possible running time. A straightforward 

extension is to run a simple local search a number of times by using a different start 

with the best solution kept. This is also known as a multi-start approach. Another 

different approach applies a multiple run of a local search algorithm by combining 

several neighbourhoods. This is also known as multi-level, for example the iterated 

local search (Aarts and Lenstra, 1997).  

Examples of combinatorial problems are the Traveling Salesman Problem 

(TSP), Uniform Graph Partitioning Problem, Job Scheduling Problem, Vehicle Routing 

Problem (VRP) and Inventory Routing Problem (IRP). Even though some 

metaheuristics are known to be very powerful in solving combinatorial problems, the 

efficiency of the method is also related to how hard the problem is. This leads to the 

theory of NP-hard and NP-complete. Classes P, NP-hard and NP-complete are 

introduced. 

A combinatorial problem is defined. Several definitions of combinatorial 

problem are defined in Aarts and Lenstra (1997) as follows: 

 

Definition 1.1: A combinatorial optimization problem is specified by a set of problem 

instances and is either a minimization problem or a maximization problem. 
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Definition 1.2: An instance of a combinatorial optimization problem is a pair of 

 𝒮, 𝑓 where the solution set 𝒮 is the set of feasible solutions and the cost function 𝑓 is a 

mapping 𝑓: 𝒮 → ℝ. The problem is to find a globally optimal solution. i.e., an 

𝑖∗ 𝜖 𝒮 such that 𝑓 𝑖∗ ≤ 𝑓 𝑖  for all 𝑖 ∈ 𝒮. Furthermore, 𝑓∗ = 𝑓 𝑖∗  denotes the 

optimal cost, and 𝒮∗ =   𝑖 𝜖 𝒮 | 𝑓 𝑖 = 𝑓∗  denotes the set of optimal solutions. 

 

 The instance  𝒮, 𝑓  from Definition 1.2 is generally not given explicitly; for 

example via a listing of all solutions and their costs. Often, there are different data 

representations of the instances. The solution set is usually represented by decision 

variables with a certain range.  

 Measuring the difficulty of the problem is related to the order of complexity. 

The time complexity of an algorithm is the order of growth of an algorithm. A more 

formal definition of a time complexity is given in Definition 1.3. 

 

Definition 1.3 (Korte and Vygen, 2008): Let A be an algorithm which can accept input 

from a set X, and let 𝑓:𝑁 → ℝ+. If there exists a constant 𝛼 > 0 such that A terminates 

its computation after at most 𝛼 𝑓 𝑠𝑖𝑧𝑒 𝑥   elementary steps (including arithmetic 

operations) for each input 𝑥 ∈ 𝑋, then it is said that A runs in O(f) time. It can also be 

said that the running time (or time complexity) of A is O(f).  

 

 As mentioned earlier, most of the combinatorial problems are known to be NP-

hard problems. Combinatorial problems will first be transformed into decision 

problems. A decision problem means that the answer or output of the problem is simply 

given by zero “0” or one “1” bit (in which 1 represents “yes” and 0 represents “no”).  

Definition 1.4: A decision problem is a pair P=(X,Y), where X is a language decidable 

in polynomial time and 𝑌 ⊆ 𝑋. The elements of X are called instances of P; elements of 
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Y are yes-instances, those of X\Y are no-instances. An algorithm for a decision problem 

(X,Y) is an algorithm computing the function 𝑓: 𝑋 →  0,1 , and defining b 𝑓 𝑥 = 1y 

for 𝑥 ∈ 𝑌 and 𝑓 𝑥 = 0 for 𝑥 ∈ 𝑋\𝑌. 

 Class P problems have algorithms that are bounded within polynomial time 

complexity. P represents the “polynomial time complexity”. Problems that can be 

categorized in class P are those problems that can be solved deterministically using an 

algorithm, deterministic Turing machine with time complexity 𝑂 𝑛𝑘  where k is a 

constant (Yu and Gen, 2010). The class P is the class of decision problems that are 

efficiently solvable.  

 If the problem cannot be solved using polynomial time complexity, the problem 

belongs to class NP where an abbreviation NP refers to “nondeterministic polynomial 

time complexity”. It has been proven that 𝑃 ⊆ 𝑁𝑃. Understanding polynomial 

transformation will help in understanding what NP-hard and NP-complete are. If an 

algorithm with a polynomial time complexity can be designed to transform any solution 

of the decision problem 𝐷1  of one problem to one solution of the decision problem 𝐷2  

of another problem, denoting that 𝐷1  ∝  𝐷2, it can be understood that problem 𝐷2  is at 

least as difficult as problem 𝐷1 .  

Let‟s say C is a decision problem. If C belongs to NP and there exists 

polynomial algorithms to transform every problem in NP into C, then C is NP-complete 

or C is an NP-complete problem. If problem H does not belong to NP but there exists an 

NP-complete problem C that can be polynomially transformed into H, then it is said that 

H belongs to the class of NP-hard or H is a NP-hard problem, which can be understood 

that H is at least as hard as problem C. Figure 1.1 illustrates the relationship of P, NP, 

NP-complete and NP-hard problem. Class P is a subset of NP. Intersection between NP 

and NP-hard is NP-complete. 
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Figure 1.1: The relationship of P, NP, NP-hard and NP-complete.  

 

 

 

 

Figure 1.2: Complete problems. 

 

Figure 1.2 gives the list of problems that can be classified as NP-complete 

problems. Note that the problem considered in this thesis are Message Scheduling 

Problem specifically Point to Multipoint Routing Problems (PMRP) and Inventory 
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Routing Problems (IRP); where PMRP employs the Steiner Tree Problems and IRP are  

combinations of Sequencing and Partitioning Problems which are all NP-complete 

problems. 

1.1 Network Routing Problem 

Network routing problems can be look as a system that route products or items; 

for example goods, foods, messages and even people from one place to another. 

Examples of network routing problems among others include distribution network 

which involves inventory routing problem and vehicle routing problem or transportation 

problem, telecommunication network (e.g. message routing problem) and scheduling 

problem. The problems under network routing are conceptually simple, but yet are 

mathematically complex and challenging. Many problems of network routing can be 

classified as NP-hard and NP-complete problem as they usually have an underlying 

combinatorial structure and in addition to an underlying network structure (e.g. 

communication or transportation network). 

Problems considered in this research are Message Scheduling Problem (MSP) 

specifically Point to Multipoint Routing problem (PMRP) which involves routing a set 

data or messages from one source nodes to several destination nodes whilst the 

Inventory Routing Problem (IRP) involves the transportation of goods or products from 

a set of suppliers to an Assembly Plant.  

 

A. Message Scheduling Problem (MSP) 

MSP is defined as process of scheduling a set of requests such that the entire 

route is optimal. The requests (or messages) are to be sent from one source node 

to multiple destination nodes for a telecommunications network. The 

telecommunications network is modeled as a weighted graph with specific cost 

assigned for each edges. The MSP is to determine an optimal route or routes 
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such that the total costs involved is minimized. The MSP is explained in details 

in Chapter 3.  

 

B. Inventory Routing Problem (IRP) 

Inventory Routing Problem (IRP) is the coordination of the inventory 

management and transportation, and seeks to determine simultaneously an 

optimal inventory and distribution strategy that minimizes the total cost. The 

resulting inventory and transportation policies usually assign suppliers to routes 

and then determine the replenishment intervals and collection sizes for each 

supplier. The distribution network considered includes a depot, suppliers and 

assembly plant where solving IRP involves finding the minimum total costs of 

transportation routing (or vehicle routing) and also inventory routing problem. 

The IRP is discussed in great length in Chapter 4. 

 

1.2 Research Objective and Contribution 

The main objective of the research is to evaluate the performance of the 

Variable Neighbourhood Search (VNS) on different problems: network routing 

problems, specifically, Point to Multipoint Problem and also Inventory Routing 

Problems. In addition, the performance of Genetic Algorithm (GA) is also evaluated in 

the Point to Multipoint Problem. This research concentrates on the metaheuristic 

methods, VNS and GA. Both methods are known to be very powerful methods as they 

consist of a mechanism to avoid getting trapped in local optimum. The thesis is 

presented in five chapters. 

In Chapter 2, the metaheuristic method is discussed in detail. Several definitions 

of the metaheuristic methods are given. The classification of the metaheuristic is 

presented based on two categories: single solution based and population based. Several 
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well known metaheuristics such as Simulated Annealing (SA), Tabu Search (TS), 

evolutionary algorithms (EC) especially GA and VNS are presented according to its 

classification emphasizing on VNS and GA which are the focus of this study.   

The definition of the VNS is given and the underlying concept of VNS is 

presented. The basic general algorithm is described and a more specific algorithm 

pertaining to the work in the thesis is given in later chapters (Chapter 3 and Chapter 4). 

In addition, some variations of VNS, such as Reduced VNS (RVNS) and Variable 

Neighbourhood Decomposition Search (VNDS) is given and discussed. An explanation 

of GA, the terminology and how it works are also discussed.  The fundamental concepts 

and the basic operators used in GA are described using the simple GA. Some 

illustration is used in explaining simple GA which includes three operators that are 

Selection, Recombination and Mutation. The concept of hybridization of GA by 

embedding local search algorithms is briefly described. At the end of the chapter, some 

explanation of the Local Search, focusing on the local search that is applied in this 

thesis is explained in great length. The Shortest Path Algorithm; Dijkstra and Bellman 

Ford, and Minimum Spanning Tree heuristics; and Kruskal and Prim Algorithm which 

are used in the point to multi point routing are discussed in Chapter 3. In the second part 

of the Local Search algorithms the focus is on the routing based algorithm specifically 

built for the traveling salesman problem (TSP). Inventory Routing Problem embeds 

inventory and routing of vehicles which is closely related to TSP. Here, the Local 

Search is divided into constructive heuristics and improvement heuristics. The well 

known techniques such as Insertion, Nearest Neighbour, 2-opt, 3-opt and k-opt are 

described in great detail. Savings and Sweep algorithms which are used in the clustering 

process of the routing of the Vehicle Routing Problem are also given.  

In the third and fourth chapters, two cases of combinatorial problems that are 

studied in this thesis; the network design specifically the Point to Multipoint Routing 
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Problem and the Inventory Routing Problem are presented. Chapter 3 focuses on the 

Point to Multipoint Routing Problem (PMRP) which is to determine an optimal route to 

send a single message from a single source to multiple destinations. Two algorithms are 

proposed which are VNS and GA.  Both algorithms embed the Kou, Markowsky and 

Berman (KMB) algorithm to solve the Steiner Tree problem which is used to find an 

optimal routing to send a message. It is noted that the KMB comprises of two related 

algorithms, Djikstra‟s algorithm to find the shortest route and Kruskal‟s algorithm to 

determine the minimum spanning tree. In addition, VNS also embeds swap, invert, or-

opt and restricted or-opt as part of its local search. Both algorithms are tested on three 

problems representing small, medium and large test cases.    

In Chapter 4 the Integrated Inventory Routing Problem (IRP) which considers 

inventory control and vehicle routing concurrently in order for the overall cost to be 

optimized is discussed. VNS is proposed to solve the problem and the neighbourhood 

structure is defined as a distance function, that is the cardinality of the symmetric 

difference between any two solutions 
1V  and 

2V , that is the number of different 

suppliers that are visited in a period. The algorithm embeds Generalized Insertion 

(GENI) algorithm in the local search. The results obtained from VNS are compared to 

the results obtained by Aziz and Moin (2007) that used GA as the main algorithm. 

There are 14 cases considered: S12T14, S20T21, S50T21 and S98T14 which are 

reported in the paper, and S12T5, S12T10, S20T5, S20T10, S20T14, S50T5, S50T10, 

S50T14, S98T5 and S98T10, which are rerun to obtain extended results. The algorithm 

is modified to Enhanced VNS (EVNS) in which GENI is part of the neighbourhood 

structure instead of the local search. Nearest neighbor heuristics is employed in the local 

search. Two different EVNS developed that are EVNS1, in which VNS with 2-opt as 

preoptimization, while EVNS2, which is VNS with 3-opt, with the same application as 
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EVNS1.The results obtained are compared with the Lower Bound and Best Integer 

found using CPLEX. 

In Chapter 5 which is the last part of the thesis, all the work done is concluded 

and further extensions are outlined. 

  




