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CHAPTER 2 

METAHEURISTICS 

 

2.1 Introduction 

Many combinatorial optimization problems have been proven to be NP-hard, 

and sometimes even NP-complete. It is well known that a combinatorial optimization 

can be classified as P, NP-hard and NP-complete, which has been discussed in great 

length in the previous chapter. Metaheuristic has contributed significantly in solving 

many combinatorial optimization problems which were once difficult to solve. The 

growth of applying metaheuristics in solving combinatorial problems is very fast as 

these combinatorial problems are important to the industrial world.  

Examples of some of the very well known classical combinatorial problems 

include, but are not limited to, the china postman problem, travelling salesman problem, 

vehicle routing problem, minimum spanning tree problem, integer programming, supply 

chain problem, inventory routing problem and scheduling problem. Due to the inherent 

complexity of these problems, metaheuristics is often used to find a good or near-

optimal (optimal) solution.  

The term metaheuristics is a combination of two Greek words, heuristic and 

meta where the word heuristic taken from the verb heuriskein means “to find”, whilst 

the word meta means “beyond, in an upper level” (Glover, 1986). Glover and Laguna 

(1997) then extended the definition as metaheuristics which “refers to a master strategy 

that guides and modifies other heuristics to produce solutions beyond those that are 

normally generated in a quest of local optimality”.  

A heuristics is a technique (consisting of a rule or a set of rules) which seeks 

(and hopefully finds) good solutions within a reasonable computational cost. Heuristics 



11 
 

is an approximation method in the sense that it provides a good solution for relatively 

little effort, but does not guarantee optimality (Voss, 2001). However, large problems 

could be difficult to be solved by using the heuristics method until recently when a 

better and more efficient way of solving large scale neighbourhoods have been found 

(Pisinger and Ropke, 2010). The effectiveness of very large scale neighbourhood search 

algorithm depends on a good neighbourhood structure as the structure will determine 

and guide the search.  

An alternative definition for metaheuristic is “an iterative generation process 

which guides a subordinate heuristic by combining intelligently different concepts for 

exploring and exploiting the search space, in which learning strategies are used to 

structure information in order to find efficiently near-optimal solutions” as given in 

(Osman and Laporte, 1996). 

Voss (2001) elaborated further by stating that “a meta-heuristic is an iterative 

master process that guides and modifies the operations of subordinate heuristics to 

efficiently produce high-quality solutions. It may manipulate a complete (or 

incomplete) single solution or a collection of solutions at each iterations. The 

subordinate heuristics may be high (or low) level procedures, or a simple local search, 

or just a construction method”. 

Another definition given by Stutzel (1999) as cited in Blum and Roli (2003) is 

“Metaheuristics is a typically high-level strategy which guides an underlying and more 

problem specific heuristic to increase its performance. The main goal is to avoid the 

disadvantages of iterative improvement and, in particular, multiple descents by allowing 

the local search to escape from local optima”. This is achieved by either worsening 

moves or generating new starting solutions for the local search in a more “intelligent” 

way than just providing random initial solutions. Many of the methods can be 

interpreted as introducing a bias such that high quality solutions are produced quickly. 
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This bias can be of various forms and can be casted as descent bias (based on the 

objective function), memory bias (based on previously made decisions) or experience 

bias (based on prior performance). Many of the metaheuristic approaches rely on the 

probabilistic decisions made during the search. But the main difference to pure random 

search is that in metaheuristic algorithms randomness is not used blindly but in an 

intelligent, biased form. 

Many researchers (Soriano and Gendreau, 1996; Toth and Vigo, 2003) have 

reported the success in finding near-optimal solutions by applying metaheuristics in 

many hard problems. Currently metaheuristics includes (but is not limited to) 

Evolutionary Computation (EC), Tabu Search (TS), Genetic Algorithm (GA), Particle 

Swarm Optimization (PSO), Ant Colony Optimization (ACO), Variable Neighborhood 

Search (VNS), Simulated Annealing (SA), Iterated Local Search (ILS), Scatter Search 

(SS) and Guided Local Search (GLS). Most of the methods that are applied in hard 

problems produce good results; however not all methods can be applied to all kinds of 

problems. The question is how to determine the method that can be used to solve 

combinatorial optimization problems and the method that works best for various 

problems.  

Blum and Roli (2003) did a research on the importance of metaheuristics from 

the conceptual approach. They introduced a framework called Intensification and 

Diversification (I&D) to find the relationship between intensification and diversification 

in metaheuristics. The I & D frame shows and explains the metaheuristics method in a 

conceptual way (emphasizing in the strong point criterion), which helps in 

understanding the strength of the metaheuristics. It is important to know the strength of 

a metaheuristics, which will help in choosing the right method for a specific problem. 

Both I & D are the two very important concepts as they determine the behaviour of a 
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metaheuristic. Diversification refers to the exploitation of the search space whilst 

intensification refers to the exploitation of the accumulated search experience.  

Finding the balance between diversification and intensification is crucial and 

very important, as diversification will search the region of solution space with high 

quality solutions, whilst intensification ensures that not too much time is spent in the 

region of solution space which has been explored or provides poor quality solutions. 

2.2 Classifications of Metaheuristics 

A good metaheuristic will produce near optimal solution in a reasonable 

computational time. There are several similarities and dissimilarities between 

metaheuristics, which allow either grouping them together or separating the algorithms. 

Metaheuristics can be classified or divided in several ways based on similarities or 

dissimilarities. Seeing the metaheuristics method from some selective characteristics or 

properties to differentiate among them can be a way of classifying it.  

Gendreau and Potvin (2005) are adopted in this research as they categorize 

metaheuristics into single solution vs. population based algorithm. The same 

classification has been mentioned in Blum and Roli (2003) where the single solution 

algorithm is referred to as the trajectory method. 

A. Single Solution Based Metaheuristics 

Single Solution based metaheuristics which is also known as the trajectory 

method works on improving a single solution. The trajectory move can be viewed as 

„walking‟, the term coined by Talbi (2009). An iterative improvement is employed to 

move from the current solution to an improved (better) solution in the solution space. 

As described in Blum and Roli (2003), the search process of trajectory can be viewed as 

discrete dynamical system. The algorithm starts from an initial solution and describes a 

trajectory in the state space. The dynamical system depends on the strategy used. One of 
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the common strategies often used in combinatorial optimization is the iterative 

improvement method which includes hill climbing and random restart hill climbing. 

Single solution metaheuristics includes SA, TS, Greedy Randomized Adaptive Search 

Procedures (GRASP) and VNS. These methods will be elaborated in the following 

section. Figure 2.1 shows an example of an improvement when trajectory moves are 

applied to an initial solution in search of space 𝑆. 

 

Figure 2.1: Example of trajectory moves. 

B. Population Based Metaheuristics 

Population based metaheuristics handles a set of solution at every iteration. The 

examples of population based metaheuristics include ACO, Evolutionary Algorithms 

(EAs) and Scatter Search (SS). In population based metaheuristics, several candidates 

are evaluated in each iteration. The main aim is to optimize each candidate globally 

compared to the local search which is to optimize selected candidates locally. 

Apply trajectory moves 

to obtain improvement 

solution 

S 

Initial solution /current solution 

Improvement solution 
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Figure 2.2: Classifications of metaheuristics and its examples. 

 There are also other classifications suggested by Blum and Roli (2003) such as 

Nature-inspired vs. non-nature inspired, Population-based vs. single point search, 

Dynamic vs. static objective function, One vs. various neighbourhood structures and 

Memory usage vs. memory-less methods. The details of the description can be found in 

Blum and Roli (2003).  

 

Figure 2.3: Innovative suggestions on classifying the metaheuristics method. 
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2.2.1 Single Solution Based Metaheuristics 

A. Simulated Annealing (SA) 

Simulated Annealing (SA) was first introduced independently by Cerny (1985) 

and Kirkpatrick (1983) as cited in Blum and Roli (2003) and Gendreau and Potvin 

(2005). The underlying principle was to allow movement that was worse than the 

current solution in order to escape the local optima in the hope of finding the global 

optima. SA is based on the analogy of the physical annealing process where crystalline 

solid is heated by increasing its temperature and then allowed to cool very slowly until 

it achieves its most regular possible crystal lattice configuration, which is when it 

attains low energy states. If the cooling schedule is done very slowly, the resulting 

crystal has an excellent structure and is free of crystal defects. On the contrary, if the 

process is done too fast, the structure will be unsmooth and often contain a lot of 

defects.  

In combinatorial optimization, the search process is done in two phases. The 

first phase is to allow a random search with higher probability, thus giving the 

opportunity for a worse solution to be accepted. The probability (which depends on 

parameter T, the global defined temperature) is gradually decreased and the algorithm 

enters a second phase which employs an iterative improvement method to intensify the 

search area. The algorithm of SA is represented as follows (Blum and Roli, 2003): 

Step 1 Initialization. 

Select an initial solution ω ∈ Ω, temperature change counter k = 0, 

temperature cooling schedule,𝑡𝑘 , initial temperature T = t0 ≥ 0. Select a 

maximum repetition schedule, Mk, that defines the number of iterations 

executed at each temperature, tk.  

Step 2 Repeat below until stopping criterion is met. 

  Set repetition counter m = 0 
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Repeat below until m=Mk 

Generate a solution ω’ ∈ N(ω) 

Calculate Δω,ω’= f (ω’)− f (ω) 

If Δω,ω’≤ 0, then ω ←ω’ 

If Δω,ω’> 0, then ω ←ω’ with probability exp(−Δω,ω’/tk) 

m←m+1 

k←k+1 

 

The SA formulation results in 𝑀0  + 𝑀1  +· · · +𝑀𝑘 ,  𝑀𝑖
𝑛
𝑖=0  total iterations being 

executed, where k corresponds to the value for tk at which some stopping criterion is 

met (for example, a pre-specified total number of iterations has been executed or a 

solution of a certain quality has been found). In addition, if 𝑀𝑘  =  1 for all k, then the 

temperature changes at each iteration. 

B. Tabu Search (TS) 

Tabu Search (TS) is a metaheuristics method proposed by Fred Glover in 1986, 

based on his previous work (Blum and Roli, 2003). The term tabu (or taboo) is from a 

Polynesia‟s language: Tongan of Tonga Island (Glover and Laguna, 1997) which refers 

to things that cannot be touched because it is sacred. TS is a deterministic local strategy 

that escapes local optima by allowing a substitution of current solution with the new 

solution found; even if it is far (worse) from the current solution. This allows non-

improving solution to be kept. 

 Glover and Laguna (1997) argued that for an algorithm to qualify as intelligent, 

it must incorporate an adaptive memory feature. In the context of TS, this adaptive 

memory is implemented in short term and long term memories. In the short term 

memory, all the moves that have been examined are stored in a tabu list to prevent 

revisiting or cycling. 
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In the implementation of TS, four main strategies are of great importance: short-

term memory, long-term memory, diversification and intensification. Many different 

variants of these strategies have been described in detail by Glover and Laguna (1997).  

Gendreau and Potvin (2010) claimed that TS is an extension of a Local Search 

(LS). And Simple TS is just a LS combined with a short term memory. And tabus is the 

distinctive element that actually differentiates TS and LS. As mentioned earlier, the 

tabus or Tabu list is to prevent cycling back when the search process is done through a 

non-improving solution. Preventing the cycling needs the use of memory to track its 

steps and origins and eventually avoiding it from happening again. The listed tabus is 

usually restricted to a certain quantity (usually decided by the user). And usually in TS, 

a partial specified solution is stored rather than a complete solution as the complete 

solution is expensive in terms of memory and running time. 

The use of memory in TS is based on four principal dimensions; quality, 

influence, recency and frequency. Quality is to assure that the recently visited solution 

is leading to a good solution or bad solution. For a bad solution, some mechanism will 

be applied to penalize from pursuing the search space from there. Influence is the 

impact of a quality solution and the structure of search; in other words, the influence of 

searching for a decision that guides to good and bad solutions. This gives TS additional 

information and the ability to learn; which guides throughout the search. Recency is the 

ability to keep track of the preceding recent solution.  

 

Figure 2.4: Memory structure of the Tabu Search. 
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An algorithm of TS taken from Gendreau (2003) is presented here. The notation used in 

the algorithm is defined first followed by the algorithm.  

Notation : 

𝑆 : the current solution, 

𝑆∗ : the best-known solution, 

𝑓∗ : value of 𝑆∗ 
𝑁 𝑆  : the neighbourhood of S, 

𝑁 𝑆   : the “admissible” subset of N(S) (i.e., non-tabu or allowed by aspiration). 

 

Step 1 Initialization. Choose (construct) an initial solution, 𝑆0 

  Set 𝑆 = 𝑆0 , 𝑓∗ = 𝑓 𝑆0  , 𝑆
∗ =  𝑆0 , 𝑇 = ∅ 

Step 2 Search Process 

While termination criterion is not satisfied do 

 Select S in argmin 𝑓 𝑆 ′  ;such that 𝑆 ′ ∈ 𝑁  𝑆  

 If 𝑓 𝑆 < 𝑓∗, then set 𝑓∗ = 𝑓 𝑆 , 𝑆∗ = 𝑆 

 Record tabu for the current move in T (delete oldest entry if  

necessary) 

End of while 

 

 The termination criterion for TS is not specified, but the most commonly used 

criteria are maximum number of iteration, maximum cpu time allowed, and the 

maximum number of iterations without an improvement in the objective function value 

and if the objective value reaches a pre-specified threshold value(Gendreau, 2003). 

C. Variable Neighbourhood Search 

Variable Neighbourhood Search (VNS) was first introduced by Pierre Hansen and 

Nenad Mladenovic in 1997. This metaheuristic method is based on the systematic 

changes of neighbourhood within the local search algorithms (Mladenovic and Hansen, 

1997). Exploration of the search space is carried out by the local search which allows 
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the algorithm to jump from one neighbourhood to another. This allows the algorithm to 

escape from the local optimum. 

Some of the interesting properties of the algorithm are simplicity, coherence, 

efficiency, effectiveness, robustness, user-friendliness, and innovation. The simplicity 

can be found in the basic principle of VNS that is a systematic change of the 

neighbourhood. Another aspect of VNS is the simple algorithm which allows 

embedding any local search that is suitable for specific combinatorial problems or else, 

it can be decided to not have any local search at all. The entire criteria can be found in 

the algorithm itself (Hansen et al., 2008).   

There are three phases of the main VNS: Shaking, Local Search, and Move or Not. 

The details regarding the three phases are discussed in the following section. 

Algorithm of VNS 

The algorithm of the VNS as taken from Hansen and Mladenovic (2001) is given as 

follows: 

Step 1 Initialization 

Select the set of neighbourhood structures Nk, k=1,…, 𝑘𝑚𝑎𝑥 , that will be 

used in the search; find an initial solution x; choose a stopping 

condition; 

Step 2 Repeat the following until the stopping condition is met: 

(i) Set k←1; 

(ii) Until k=kmax, repeat the following steps: 

(a) Shaking. Generate a point x’ at random from the 

𝑘𝑡ℎneighbourhood x   ;' xNx k  
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(b) Local Search. Apply some local search method with 'x  as 

initial solution denote with x” the so obtained local 

optimum; 

(c) Move or not. If this local optimum is better than the 

incumbent, move there  "xx  , and continue the search 

with  ;11 kN  otherwise, set 1 kk  

In step 1, the neighbourhood structure 𝑁𝑘  is initialized. The maximum number 

of neighborhood 𝑘𝑚𝑎𝑥  is then defined and the stopping conditions that will be used 

throughout the entire search process are decided upon. After that the initial solution 𝑥 is 

initialized or found. 

In step 2, the neighbourhood of an initial solution must be first defined. There 

are several ways of defining neighbourhood. An illustration of the neighbourhood 

structure is shown in Figure 2.5. 

As mentioned earlier in step 2, the algorithm can be divided into three phases: 

Shaking, Local Search and Move or Not. In the shaking step, a solution 𝑥′ is picked 

randomly from the 𝑘𝑡ℎneighbourhood of the current solution, 𝑥. This will ensure that 

the solution is not far from the current best solution 𝑥. The solution will then be 

perturbed using the local search in the local search phase in the hope of finding a better 

solution. Figure 2.6 shows an example of the shaking step and local search applied 

where the shaded area represents the local search applied. The local optimum produced 

by the local search is represented by x” (triangular shape). 

In the local search step, any local search method can be adopted until an 

improvement has been found or until it is terminated by some predefined stopping 

condition. If there is an improvement when the new solution 𝑥" is compared with the 

initial solution 𝑥, 𝑥" will replace 𝑥 in Move or Not phase. A new neighbourhood of 𝑥" 

will be defined and the algorithm starts again with 𝑁1 the first neighbourhood of the 
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new solution. If no better solution is found, the algorithm will continue with the  

𝑘 + 1𝑡ℎ  neighbourhood. Note that the change in neighbourhood only happens if no new 

improvement is found. Figure 2.7 and 2.8 show an example of the Move or Not step.  

Defining the stopping condition can differ from one program to the other. Most 

algorithms adopt the maximum number of iterations 𝑘𝑚𝑎𝑥  as the stopping condition. 

Other criteria such as maximum running time or cpu time allowed, or maximum number 

of iterations between two improvements can also be defined in the algorithm. Often 

successive neighbourhoods 𝑁𝑘  will be nested (Mladenovic and Hansen, 1997). This 

simply means that a better solution can be found in the neighbourhood of the current 

solution which is relatively far (still in the neighbourhood) from the current solution. So 

it is termed as successive nested neighbourhoods. The new found solution will be used 

as the current solution, allowing for a substantial jump from the current solution. The 

neighbourhood structure is illustrated in Figures 2.5, 2.6 and 2.7.  

 

 

 

 

Figure 2.5: Illustration of neighbourhood structure for 𝑁1 𝑥 → 𝑁𝑘 𝑥 . 
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Figure 2.6: Illustration of the Shaking step. 

 

 

 

 

 

 

 

Figure 2.7: Illustration of the new neighborhood structure 𝑁1. 
 

 

 

 

 

 

 

Figure 2.8: Illustration of the 𝑁𝑘+1 neighbourhood structure. 
 

Note that a local optimum for one neighbourhood is not necessarily a local 

optimum for another neighbourhood. This means that the optimum solution can differ 

from one neighbourhood to another. The local optimums for several neighbourhoods are 

usually close to each other.  
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Neighbourhood Structure 

The neighbourhood structure can be defined in several ways and it is very much 

dependent on the nature of the problem.  The neighbourhood structure can be generated 

using for instance 1-interchange (or vertex substitution), vertex deletion or addition, 

node based or path based, k-edge exchange or comparing the symmetric difference 

between two solutions or Hamming distance. The choice of the neighbourhood should 

exploit different properties and characteristics of the search space, that is, the 

neighbourhood structures should provide different abstractions of the search space 

(Blum and Roli, 2003). 

In this research, the neighbourhood k , 
kN  is defined as a distance function, that 

is the cardinality of the symmetric difference between any two solutions 𝑉1and 𝑉2 

written as 𝜌 𝑉1, 𝑉2 =  𝑉1 , 𝑉2  or 𝜌 =  𝑉1∆𝑉2  where ∆ denotes the symmetric difference 

operator. Note that the change of neighbourhood can be achieved by introducing local 

search heuristics. The choices of the neighbourhood will be described in great detail in 

Chapters 3 and 4.  

Variants of VNS   

  In this section, several variants of VNS are presented, focusing on those related 

to this research. These variants have been widely applied in solving many NP-hard or 

NP-complete problems. The Variable Neighbourhood Descent or VND is an example of 

deterministic changes of neighbourhood. The algorithm of VND is shown as follows: 

Step 1 Initialization 

Select the set of neighbourhood structures Nk, k=1,…, 𝑘𝑚𝑎𝑥 , that will be 

used in the search; find an initial solution x; choose a stopping 

condition; 
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Step 2 Repeat the following until no improvement is obtained: 

(i) Set k←1; 

(ii) Until k=kmax, repeat the following steps: 

(a) Exploration of neighbourhood. Find the best neighbour𝑥′ of 

𝑥   ;' xNx k  

(b) Move or not. If the solution thus obtained 𝑥′is better than 𝑥, 

set 𝑥 ← 𝑥′; otherwise, set 𝑘 ← 𝑘 + 1. 

Another variant of VNS is known as Reduced VNS (RVNS) where the random 

(solution) point is selected from neighbourhood𝑁𝑘 . This algorithm is very useful if the 

local search is very costly. Note that there is no Local Search step applied in the 

algorithm. The improvement depends on the neighbourhood structure itself. This 

algorithm is often adopted to solve large scale problems as applying local search is very 

expensive and often increases the processing time drastically. The algorithm of RVNS 

is shown as follows: (Hansen and Mladenović, 2001) 

Step 1 Initialization 

Select the set of neighbourhood structures Nk, k=1,…, 𝑘𝑚𝑎𝑥 , that will be 

used in the search; find an initial solution x; choose a stopping 

condition; 

Step 2 Repeat the following sequence until the stopping condition is met: 

(i) Set k←1; 

(ii) Repeat the following steps until 𝑘 = 𝑘𝑚𝑎𝑥 : 

(a) Shaking. Generate a point 𝑥′ at random from the 

𝑘𝑡ℎneighbourhood of 𝑥   ;' xNx k  
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(b) Move or not. If this point is better than the incumbent, move 

𝑥 ← 𝑥′, and continue the search with 𝑁1 𝑘 ← 1 ; otherwise, 

set 𝑘 ← 𝑘 + 1. 

 Other variants of VNS include Skewed VNS (SVNS), Variable Neighbourhood 

Decomposition Search and Parallel VNS. Refer to Hansen and Mladenovic (1997, 2001, 

2003) for a comprehensive explanation of these methods. 

2.2.2 Population Based Metaheuristics 

A. Evolutionary Computation (EC) 

 Evolutionary Computation (EC) is the algorithm that is inspired by nature. 

Nature has the capabilities to evolve and adapt to its environment. The EC mimics the 

evolutionary process in a computational way where instead of using „iteration‟, the term 

„generation‟ is used as it mimics the real process of evolutionary. Borrowing the term 

from nature, a population of chromosomes is created where each chromosome 

represents a potential solution to the problem on hand. The population will then undergo 

several processes such as recombination and mutation to produce a new population. The 

recombination operator is a process where two individuals (or more) are combined to 

produce new individuals, whilst the mutation operator modifies an individual and acts 

as a safety net to recover information that has been lost through the process of 

recombination. 

 The key to the recombination process is the process of selection. The selection 

process selects individuals based on the fitness value where it gives a measure of the 

objective value with respect to the problem on hand. The process of selection is biased 

on fit individuals where they are allocated more copies to contribute to the next 

generation. This is inspired by the principle of survival of the fittest in natural evolution, 

where the fitness is measured as the ability to adapt to the environment. 
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 Many new variants of EC have evolved over the years and they can be grouped 

in three different categories: Evolutionary Programming (Fogel, 1962; Fogelet al., 

1966; cited in Blum and Roli, 2003), Evolutionary Strategies (Rechenberg, 1973; cited 

in Blum and Roli, 2003), and Genetic Algorithm (GA) (Holland, 1975; cited in Blum 

and Roli, 2003). EC introduces a small perturbation into the algorithm through 

mutation. However, recently, many researchers introduced the concept of crossover 

while the demarcation line that separated between the EC and GA has become very 

blurred. The algorithm of EC can be expressed as follows (Blum and Roli, 2003): 

Step 1 Generate an initial population, P 

Step 2 Evaluate the fitness value (objective function) of P 

Step 3 While termination condition is not met does: 

Apply Recombination operator  𝑃′ ← 𝑃  

Apply Mutation operator  𝑃′′ ← 𝑃  

Evaluate fitness value of P” 

Apply Selection Process with 𝑃" ∪ 𝑃 to obtain the new P 

 

B. Genetic Algorithm (GA) 

 GA was first proposed by John Holland in 1975 and his book entitled 

“Adaptation in Natural and Artificial Systems” outlines the general principals of GA 

(Reeves, 2003). This algorithm is based on Darwin‟s principal of “survival of the 

fittest” where the best individuals will survive and reproduce. His book describes how 

to adapt the principals in the optimization method and since then GA has been a 

powerful technique in solving many problems of optimization (Reeves, 2003; 

Michalewicz, 1996). 
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  Holland‟s student Ken DeJong details GA in his doctorial thesis entitled “An 

Analysis of the Behavior of a Class of Genetic Adaptive Systems” (Reeves, 2003). In 

1989, Holland‟s former student, David Goldberg produced a book with a complete 

guidance to GA and his book entitled “Genetic Algorithms in Search, Optimization and 

Machine Learning” has become one of the basic references in many researches in GA. 

GA is motivated by the biological mechanism, so the solution or string is 

represented as chromosomes. In biological evolution, chromosomes are made up of 

genes, and a gene encodes specific properties, for example the specific characteristics 

can be an individual‟s eye and hair colour (Sivanandam and Deepa, 2008). Other 

concepts of natural evolution such as selection, crossover and mutation are also adopted 

in the artificial algorithm. 

Encoding  

Encoding or representation of an individual or solution plays an important role 

in any GA. It has such a strong impact on the alteration process (crossover and mutation 

operator). The chromosomes should contain information about the solution it represents 

(Sivanandam and Deepa, 2008). This will determine how close the solutions are to the 

real solutions. The genotype and phenotype mapping are two important terms in GA. 

Genotype is gene setting or genetic constitution of a cell while phenotype is the physical 

expression of the genotype.  

Chromosomes or solution representation can be encoded in several ways such as 

gray coding, binary representation, octal representation, and integer representation 

which are among the most forms reported in the literature. Binary and integer 

representations can usually be categorized as vector representation. The simplest 

representation is binary. Figure 2.9 shows an example of the binary representation. Each 

bit in the binary represents some characteristics of the solution. 
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Figure 2.9: Binary representation. 

 

An example of the integer representation is represented in Figure 2.10. 

Permutation representation is usually used in problem with ordering or sequencing. For 

example, this representation is used in classical China Postman Problem or Travelling 

Salesman Problem (TSP). The chromosome is represented as permutations of integer 

where these integers represent the order in which the cities are visited. 

 

Figure 2.10: Permutation representation. 
 

Operators in GA  

Selection 

Selection is the process of determining the number of copies that will be 

allocated to a chromosome for the next operation. The number of copies is often 

determined by the fitness value of the chromosome. Each chromosome has its 

corresponding fitness value where higher values signify better chromosomes in a 

maximization case and vice versa. The relative fitness value is considered so that only 

the best chromosomes are given a higher chance of being selected to go to the next 

process (Goldberg, 1989). 

Chromosome 1:  010001111

Chromosome 2: 110110110

Chromosome 3: 111000010

Chromosome 1:  123456789

Chromosome 2: 124376958

Chromosome 3: 231457689



30 
 

The simplest form of selection is the Roulette Wheel Selection (RWS). RWS 

selects parents by spinning a biased weighted roulette wheel. The weighted roulette is 

divided according to the chromosome‟s fitness value, where a fitter chromosome 

represents more area in the wheel. Hence, this represents higher probability for a 

particular chromosome to be chosen as the wheel spins. However, RWS is biased as the 

same chromosomes may be selected each time and it is not guaranteed that the best 

chromosome will be selected during the process. The area constructed is proportional to 

𝑓𝑖

 𝑓𝑗
𝑛
𝑗=1

  where 𝑓𝑖  is the fitness value of chromosome i and n is the number of 

chromosomes in the population. 

Figure 2.11 shows an example of the RWS. Consider a population consisting of 

5 chromosomes, with the probabilities of selection proportional to the area of the sector 

of the roulette wheel. Numbers 0.00, 0.25, 0.40, 0.60 and 0.85 shown are the cumulative 

probabilities. A single pointer (arrow) has to be spun 5 times for selection. 

 

 

 

 

 

 

 

Figure 2.11: Roulette Wheel selection. 

 

Stochastic Universal Sampling (SUS) is introduced to overcome the weakness of 

the RWS. As in the RWS, SUS constructs the wheel based on the fitness value of each 

of the chromosome in the population. Instead of using a one pointer that has to be spun 

𝑛 times to get 𝑛 chromosomes, SUS employs 𝑛 equidistant pointers that is spun once to 

1 

2 

3 

4 

5 

0.25 

0.00 

0.85 

0.60 
0.40 



31 
 

obtain 𝑛 chromosomes. SUS is known to provide zero bias and minimum spread. An 

example of SUS is shown in Figure 2.12. Instead of having one pointer, SUS has 5 

equally spaced pointers that are to be spun once for all the 5 selections. 

 

 

 

 

 

 

 
 

 
Figure 2.12: Stochastic Universal Sampling selection. 

 

Crossover 

Crossover is one of the most important operators. This operator allows 

information exchange between two chromosomes. Two good chromosomes will 

exchange information which allows good qualities from both parents to be inherited in 

the new offspring (child). By doing this, the child will (it is hoped) surpass the parents 

or in other words a better chromosome will be born. There are many types of crossovers 

for example, One Point Crossover, Partially Mapped Exchange (PMX), Order Based 

Crossover (OX), Path Based Crossover, Edge Recombination Operator (ERO) and 

Enhanced Edge Recombination Operator (EERO). EERO is an operator that emphasizes 

adjacency information instead of the order or position in the sequences. EERO is 

adapted in one of the applications in this research and a detailed description of it will be 

given in the next chapter.  
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One Point Crossover 

Figure 2.13 illustrates an example of the One Point Crossover. Here, a binary 

representation is used. The parents will be cut at randomly selected points (cutting 

points are represented as a dashed line) and two new offspring are born. The first 

offspring will be from Parent 1 until the cutting point and then it will continue with 

Parent 2.  

 

Figure 2.13: One point crossover. 

 

Two Point Crossover 

Figure 2.14 illustrates an example of a two point crossover. The dashed line 

represents the crossover point.  

 

Figure 2.14: Two point crossover. 

 

 

 

 

 

Parent 1:   0 1 0 0 1 1 1 0 0 1

Parent 2:   1 1 0 0 1 0 1 0 1 1

Offspring 1:  0 1 0 0 1 0 1 0 1 1 

Offspring 2:  1 1 0 0 1 1 1 0 0 1

Parent 1:   0 1 0 0 1 1 1 0 0 1

Parent 2:   1 1 0 0 1 0 1 0 1 1

Offspring 1:  0 1 0 0 1 0 1 0 0 1 

Offspring 2:  1 1 0 0 1 1 1 0 1 1
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Edge Recombination Operator (ERO) 

 
ERO is a heuristics operator that emphasizes on the edges of parents instead of 

the vertex. This is the method proposed by Grefenstette (1987) and is sometimes known 

as Edge Recombination Crossover (ERX).  Basically an offspring is made up 

exclusively from the edges of a pair of parent. This is done by listing all the edges of 

both parents and then reconnecting them (using certain conditions) again in the 

offspring. The algorithm of ERO is stated as follows: 

Step 1 Randomly select a city to be the current city of the offspring. 

Step 2 Select four edges (two from each parent) incident to the current city.  

Step 3 Define a probability distribution over selected edges based on their cost.  

The probability for the edge associated with a previously visited city is 0,  

Step 4 Select an edge. If at least one edge has non-zero probability, selection is 

based on the above distribution; otherwise, selection is random (from 

unvisited cities),  

Step 5 The city on 'the other end' of the selected edge becomes the current city. 

Step 6 If the tour is complete, stop; otherwise, go to step 2. 

Mutation 

Mutation is the process of applying a small perturbation to the solutions encoded 

in the chromosomes that may result in a huge effect. Applying mutation can introduce 

diversity in the search space and it acts as a safety net to the information that might 

have been lost during the process of selection and crossover. An example of a mutation 

by changing one bit of a binary string is shown in Figure 2.15 where the representation 

used is a vector representation of a binary number. 
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Figure 2.15: Mutation. 

In this research, the inversion and swap have been applied as the mutation 

operator where the chromosomes are represented as permutation of integers. These 

operators will be described in detail in the next chapter. 

Hybrid GA 

It is widely acknowledged that the main weakness of GA is that it often fails to 

compete successfully with approaches that are specifically designed for a particular 

problem. Suh and Van Gucht (1987) have recognized the need to incorporate some local 

search heuristics or problem specific knowledge into the GA framework known as the 

hybrid GA if a more competitive technique is desired. One of the interesting features of 

the GA paradigm is its domain independence; the fact that it operates on a coding of a 

problem and needs to know nothing more about the problem itself, creating a hybrid 

algorithm which almost inevitably means losing this characteristic because of the 

introduction of some problem specific knowledge in the algorithm. 

Due to the robust nature of the GA framework, local search heuristics or 

problem specific knowledge can be introduced in several ways. Many researchers (for 

example: Braysy, Berger and Barkaoui, 2000) modified either the crossover operators 

or the mutation operators to include problem specific knowledge. Local search 

techniques have also been adopted to act as mutation operators in some of the problems 

(Land,1998; Preux and Talbi, 1999; Mühlenbein, 1992). Alternatively, the local search 

can also be used to generate a set of initial solutions (seeded population) rather than 

Chromosome:  0 1 0 0 0 1 1 1 1

after mutation

Chromosome: 0 1 0 1 0 1 1 1 1

Changing one bit of 

the chromosomes 



35 
 

starting randomly (Sivanandam and Deepa, 2008).  Many examples of the hybrid GA 

have been shown to give better solutions and improve efficiency (Gendreau and Potvin, 

2005).  

Several attempts have been made to hybridize GA with other metaheuristics 

such as the Ant Colony Optimization (ACO) method, Artificial Neural Network (ANN), 

Tabu Search (TS) and Simulated Annealing (SA). For example, in the hybridization 

with ACO, GA is employed to find the solutions globally and ACO is used as a local 

search in order to improve the quality of the solutions found (Bilchev and Parmee, 

1995). Another example with ACO is done by Chen and Lu (2005). In their paper, GA 

and ACO were combined by using the characteristics in both algorithms, where the 

convergence and diversity in ACO were exploited using the multiplicity of population 

in GA, known as HGACO.  

2.3 Local Search  

Local search is generally an approach that is used to estimate solutions for hard 

problems. Most of the metaheuristics embed local search in the algorithm in order to 

improve the incumbent solution and increase efficiency. With the inclusion of a good 

local search method, the algorithm is able to find almost near optimal (or optimal 

solution) in a shorter time.  

A local search algorithm is an iterative improvement method that can be applied 

generally to any problem that has a well defined solution space Ω, an evaluation 

function 𝑓(𝑆), where 𝑆 ∈ Ω, and a neighbourhood generation mechanism, 𝑁(𝑆). 

Starting from an initial configuration, which is often randomly generated, the algorithm 

generates a series of solutions by repeatedly searching the neighbourhoods of the 

current solution for a better configuration to replace the existing solution. Without loss 

of generality, assuming that the problem is one of minimization, the aim is to find an 

optimal solution 𝑆∗ ∈ Ω such that 𝑓(𝑆∗) ≤ 𝑓(𝑆), ∀𝑆 ∈ Ω. A solution 𝑆′ is accepted if it 
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produces a better objective value, i.e. 𝑓 𝑆 ′ < 𝑓(𝑆). The new solution can be selected in 

several ways such as accepting the first improved solution or choosing solutions with 

the greatest improvement in the neighbourhood, known as steepest descent in a 

minimization problem (steepest ascent in the context of maximization).  

Local search works by starting with an initial solution that may be generated 

randomly. Small changes may be applied until it reaches optimum or until no further 

changes can be made. The algorithm often keeps track of one state at a time and it is a 

deterministic improvement.  

Many of the combinatorial optimization problems are NP-hard (Garey and 

Johnson, 1979), which means that the optimal solution for an NP-hard problem cannot 

be found within the polynomial bounded computation times (Aarts and Lenstra, 2003). 

Many local search techniques have been developed to address this problem. 

The local search is problem dependent and is selected based on the 

characteristics of the problems. The quality of the solution is very much dependent on 

the choice of the initial solution. Therefore, in many cases the algorithm is repeatedly 

applied with different initial configurations, a method which will asymptotically result 

in optimal solutions if all the solutions are used as starting solutions, which is almost 

impossible in many real world problems. 

Local search heuristics can be divided into two main categories: Constructive 

Heuristics and Improvement Heuristics. Constructive heuristics constructs a solution by 

adding the element one at a time while improvement heuristics tries to improve the 

current solution.      

A.  Constructive Heuristics 

Constructive heuristics in general are the fastest approximate methods. These 

heuristics start with an empty solution, then extend or collect information until the 

solution is completely constructed. The extending process is repeated until the solution 
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is complete or some stopping criteria are met. The algorithm of the constructive 

heuristics is given as follows: 

Step 1 Set an empty variable, S=[]. 

Step 2 Determine all the possible extension for S, N(S).  

Step 3 While 𝑁 𝑆 ≠ 0 

  Find S’ from N(S) 

  Extend S by appending solution component S’ in it.  

  Determine N(S) that is all possible extension of new S. 

Step 4 Complete constructed solution.  

An example of Constructive Heuristics is the Nearest Neighbour Method that is 

a greedy heuristics, Insertion Heuristics and Christofieds method. Generalized Insertion 

Method (GENI) is also included in the Constructive Heuristics. 

B. Improvement Heuristics 

Improvement heuristics basically helps improve the solution. Improvement 

heuristics is usually applied to trap a local optimal solution by allowing deterioration 

span. Improvement heuristics starts with a complete solution (a complete tour can be 

constructed using construction heuristics) and then tries to improve by using (any) 

heuristic algorithms. 

In this research, a few improvement heuristics are used, for example 2-opt, 3-opt 

and or-opt to improve the solution. These heuristics are embedded as a local search in 

the hope of finding a better solution. By using improvement heuristics, the structure of 

the complete solution is manipulated. The algorithm of Improvement Heuristics is given 

as follows: 

Step 1 Initialization. Generate an initial solution 𝑥0. Set the current solution 

𝑥 = 𝑥0 and objective value 𝑍 = 𝑍0. 
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Step 2 Set 𝑥′ = 𝑥 and 𝑍′ = 𝑍 

Step 3 Repeat until  𝑍 < 𝑍′ 

Find candidate solution 𝑥" ∈ 𝑁 𝑥′  with objective value 𝑍" where 𝑁 𝑥′ is 

the neighbourhood of solution 𝑥′. 

If 𝑍" < 𝑍. Set 𝑥 = 𝑥" and  𝑍 = 𝑍". 

2.3.1 Local Search for Travelling Salesman Problems and Related Problems 

Traveling Salesman Problem (TSP) is a classical problem which represents 

many real life applications. It has been one of the most intensive areas that have been 

investigated with many local search algorithms developed. TSP can easily be adapted to 

many routing problems which is the subject of this research. 

Given a list of cities, N and the distance from each city, solving TSP is to find 

the shortest possible tour that visits each city exactly once. With a little modification, 

changing the idea city to others, for example customers, suppliers or trucks, and the idea 

distance to cost or travelling time, TSP can be viewed as other problems or appear to be 

a sub-problem in other combinatorial optimization problems such as, Inventory Routing 

Problem and Vehicle Routing Problem. 

Many local searches have been developed for TSP, for example swap, insertion, 

2-opt, 3-opt and k-opt. Usually, for large combinatorial optimization problems, the 

running time is too long, so a simple local search will be applied to reduce the running 

time. Some of the local searches in TSP which include the simplest to apply like swap 

and insertion and the more innovative like GENI are described in the following section.  

Swap 

 The swap method is included in the improvement heuristics. This method will 

randomly swap between any two cities in a tour. The swap is not limited to only two 
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cities; the swapping can also be done on several more cities. Example of swap heuristics 

is shown in Figure 2.16 where Figure 2.16 (a) shows two cities selected to go through 

the swap, while (b) represents the resulting tour after the swap by deleting the old edges 

(represented by the red line) and substituting them with the new edges (represented by 

the dotted lines). 

 

Figure 2.16: A swap heuristics. 

 

Insertion 

 Insertion heuristic involves selecting a city randomly to form a tour. Insertion 

heuristic can belong to both the categories of constructive and improvement heuristics 

depending on its application. The constructive heuristics starts off with a city (it can 

sometimes be a sub-tour) and then the insertion heuristics is applied until all the listed 

cities are in the tour (forms a complete tour). While the improvement heuristics starts 

from a complete solution (complete tour), selects a city randomly to leave the tour (by 

some heuristics) and then inserts randomly in the other places in the tour.  There are 

many variants of insertion heuristics which can easily be adapted to others (other 

combinatorial problems). An example of the Nearest Insertion is outlined as follows: 

 Step 1 Select a sub-tour with minimum cost possible. 

 Step 2 Select a city that is not in the sub-tour that connects to any cities in the  

(a) (b) 
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sub-tour with minimum distance. 

 Step 3 Insert the selected city in the sub-tour so that the insertion is minimum. 

 Step 4 Repeat Steps 2and 3 until a complete tour is obtained. 

Nearest Neighbour Method (NNM) 

NNM is a method adopted from Skellam (1952) which is applied to determine if 

the data are clustered by using the ratio and mean value of the nearest neighbour 

distances. NNM is categorized in constructive heuristics. It starts with a node then 

continues to insert the nearest neighbour to the current node (city) to form a tour. This 

will form a tour, but it will not necessarily be an optimal tour. Here, the term nearest 

can be in many scale forms (example: cost and distance), and the most common scale 

used is the Hamiltonian distance. 

2-opt 

 2-opt algorithm is basically deleting two edges of a tour, causing the tour to 

break off into two paths and then reconnecting both those paths back. The resulting tour 

must be a valid tour. The processes of deleting and reconnecting the tour are done until 

no further 2-opt improvements can be found. It is said that the tour is now optimal. 2-

opt also falls into both categories with a little modification. In Figure 2.17, the original 

tour is shown on the left. The dotted lines are the two edges to be deleted. The one on 

the right shows a valid tour after reconnection. 

     

 

 

 

Figure 2.17: An example of 2-opt algorithm. 

 



41 
 

3-opt  

 3-opt algorithm is similar to the 2-opt algorithm; but instead of deleting two 

edges, 3-opt will delete three edges. The tour is then broken into three paths and the 

paths are then reconnected such that the resulting tour is valid. Figure 2.18 is an 

example of the 3-opt. The original tour is on the left where the dash dotted lines are the 

three edges to be deleted. The right shows two ways of reconnecting (dotted dash lines) 

to produce valid tour. 

 

 

 

 

 

Figure 2.18: An example of 3-opt algorithm. 

 

Or-opt 

 Or-opt was first introduced by Or (1976). Or–opt is actually a node exchange 

heuristics. Usually, Or-opt is considered as a special case of 3-opt, where three arcs are 

moved and substituted by other 3 arcs. Or-opt will delete 2 arcs when removing a chain 

of consecutive nodes, while the third is deleted when reinserting the chain back into the 

tour.  Compared to 3-opt, Or-opt has a lesser number of changes which results in less 

computational time. The algorithm of the Or-opt can be described as follows: 

Step 1 Consider an initial tour and set 𝑡 = 1 and 𝑠 = 3. 

Step 2 Remove from the tour a chain of 𝑠 consecutive vertices, starting with the    

vertex in position 𝑡, and tentatively insert it between all the remaining  

pairs of consecutive vertices on the tour. 
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(i) If the tentative insertion decreases the cost of tour, implement it 

immediately, thus defining a new tour. Set 𝑡 = 1, and repeat Step 2. 

(ii) In no tentative insertion decreases the cost of tour, set 𝑡 = 𝑡 + 1. If 

𝑡 = 𝑛 + 1 then proceed to Step 3, otherwise repeat Step 2. 

Step 3 Set 𝑡 = 1 and 𝑠 = 𝑠 − 1. If 𝑠 > 0 go to Step 2, or else Stop. 

 

k-opt algorithm 

 2-optand 3-opt are actually k-opt algorithm with k=2 and k=3.There is also a 4-

opt move which was once called the crossing bridges (Johnson, McGeoch and 

Rothberg, 1996).  Another well known version of the k-opt is a special case of 3-opt 

where the edges are not disjointed (two of the edges are adjacent to one another). 

Savings Algorithm  

Another example of the constructive heuristics is the Clarke and Wright (CW) 

savings algorithm (Clarke and Wright, 1964). The algorithm is based on the notion of 

savings, and it is a very simple and easy to apply algorithm. It simply merges two 

routes 0, … , 𝑖, 0  and  0,… , 𝑖, 0  into a single route  0,… , 𝑖, 𝑗, … ,0 with a distance 

saving of𝑠𝑖𝑗 = 𝑐𝑖0 + 𝑐0𝑗 − 𝑐𝑖𝑗 . The algorithm is stated as follows (Laporte and Semet, 

2002) : 

Step 1 Savings Computation. Compute the savings 𝑠𝑖𝑗 = 𝑐𝑖0 + 𝑐0𝑗 − 𝑐𝑖𝑗  for 

𝑖, 𝑗 = 1,… , 𝑛 and 𝑖 ≠ 𝑗. Creates 𝑛 vehicles route  0, 𝑖, 0  for  𝑖 =

1,… , 𝑛. Order the savings in a nonincreasing fashion.  

 Step 2 Route Extension. Consider in turn each route  0, 𝑖, … , 𝑗, 0 . Determine  

the first saving 𝑠𝑘𝑖  or 𝑠𝑗𝑙 that can feasibly be used to merge the current  

route with another route containing an arc or edge (𝑘, 0) or an arc or  
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edge (0, 𝑙).Implement the merge and repeat this operation to the current  

route. If no feasible merge exists, consider the next route and reapply the  

same operations. Stop when no route merge is feasible. 

 

Figure 2.19: An illustration of savings algorithm. 

 

Figure 2.19 shows an illustration of the savings algorithm; where the basic 

savings is by joining two routes into a route (if and only if the connection produces 

smaller distance). Another version of the savings algorithm is also available where the 

merging yielding the largest saving is implemented. This saving is called parallel saving 

algorithm. In this algorithm, multiple routes are considered at one particular time. The 

algorithm is given as follows:  

Step 1 Same as Step 1 in original CW savings algorithm. 

Step 2 Best Feasible Merge. Starting from the top of the savings list,  

execute the following. Given a saving 𝑠𝑖𝑗 , determine whether  

there exist two routes, one containing arc or edge (0, 𝑗) and the  

other containing arc or edge (𝑖, 0), that can feasibly be merged.  

If so, combine these two routes by deleting (0, 𝑗) and (𝑖, 0) and  

introducing (𝑖, 𝑗). 
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Sweep Algorithm 

The sweep algorithm is introduced by Gillett and Miller (1974). A simple 

implementation of this method is as follows. Assume each vertex 𝑖is represented by its 

polar coordinates (𝜃𝑖 , 𝜌𝑖), where 𝜃𝑖   is the angle and 𝜌𝑖 , is the ray length. Assign a value 

𝜃𝑖
∗ =  0 to an arbitrary vertex 𝑖∗and compute the remaining angles from  0, 𝑖∗ . Rank 

the vertices in increasing order of their 𝜃𝑖 . 

Step 1 Route Initialization. Choose an unused vehicle𝑘. 

Step 2 Route Construction. Starting from the unrouted vertex having the  

smallest angle, assign vertices to vehicle 𝑘as long as its capacity or the  

maximal route length is not exceeded. If unrouted vertices remain, go to  

Step 1. 

Step 3 Route Optimization. Optimize each vehicle route separately by solving  

the corresponding TSP (exactly or approximately). 

2.4 Shortest Path Heuristics 

A shortest path problem is one of the common problems when solving network 

flow. The problem applications arise in many combinatorial and network optimization 

problems.  The applications include data packet, phone call, vehicle routing problem 

and supply chain problem where there is usually the need to send or deliver products 

(material) from one destination to another. An efficient heuristics for the shortest path 

problem must be able to send data (product) through the network as fast as possible 

with the lowest costs possible (Ahuja et al., 1993). 

 The shortest path problem is first defined. Then this continues with algorithm 

that can be used or solve it. The definition of the Shortest Path Problem here is taken 

from Ahuja et.al (1993). It is defined as: Consider a directed network 𝐺 =  𝑁, 𝐴 , with 

an arc length (or arc cost) 𝑐𝑖𝑗  associated with each arc  𝑖, 𝑗 ∈ 𝐴. The network has a 
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distinguished node s, called the source node. Let A(i) represent the arc adjacency list of 

node i and let 𝐶 = 𝑚𝑎𝑥 𝑐𝑖𝑗 :  𝑖, 𝑗 ∈ 𝐴 . The shortest path problem is to determine every 

non-source node 𝑖 ∈ 𝑁 as the shortest length directed path from node s to node i.  

There are several shortest path heuristics that have been proposed in the 

literature including but not limited to Dijkstra Algorithm, Bellman Ford Algorithm and 

Floyd Algorithm (also known as Floyd-Warshall algorithm).  

A. Dijkstra Algorithm 

Dijkstra algorithm is proposed by Dijkstra (1959). The problem is to construct 

the tree of minimum total length between the 𝑛 nodes. (A tree is a graph with one and 

only one path between every two nodes). The use of the term branches and nodes are in 

the algorithm for easy understanding. The branches for this algorithm are subdivided 

into three sets. The sets are as follows: 

I. the branches are definitely assigned to the tree under construction (they 

will form a sub-tree) ; 

II. the branches from which the next branch to be added to set I, will be 

selected; 

III. the remaining branches will be rejected or not considered yet. 

The nodes used in the algorithm are subdivided into two sets. The sets are as follows: 

A. the nodes connected by the branches of set I, 

B. the remaining nodes (one or only one branch of set II will lead to each of 

these nodes). 

The construction algorithm starts by choosing any arbitrary node as the only member of 

set A, and by placing all branches that end in this node in set II. Start with set I which is 

empty. Then, perform these steps repeatedly.  
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Step 1 The shortest branch of set II is removed from this set and added to set I. As a 

result, one node is transferred from set B to set A. 

Step 2 Consider the branches leading from the node that has just been transferred to 

set A, to the nodes that are still in set B. If the branch under consideration is 

longer than the corresponding branch in set II, it is rejected; if it is shorter, it 

replaces the corresponding branch in set II, and the latter is rejected.  

Then return to Step 1 and repeat the process until sets II and B are empty. The 

tree required is to be formed by the branches in set I. 

 

An illustration of the Dijkstra Algorithm 

Considered graph of 6 nodes, A, B, C, D and E with weighted cost for the 

corresponding edge, as given in Figure 2.20. The objective is to find the shortest path 

from source node A to destination node F. 

 

Figure 2.20: A graph with weighted costs. 
 

Shown in Figure 2.21 Considered node A, then find the minimum distance 

from the unconsidered node that connects to A. From the figure we can see it is B. 

Now B will be in the considered nodes. In Figure 2.22 finds the next node that 

connects to considered node A and B. Here are C and D, but D is minimum compared 

to C, so D is now in the considered node list. 
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Figure 2.21: Consider node A, and the next considered node found is node B.  
 

 

Figure 2.22: Find the next unconsidered node that connects to node A and B.  

 

Figure 2.23: Find the next unconsidered node that connects to node A, B and D.  
 

We then consider the next unconsidered node that connects to A, B and D. From 

Figure 2.23, the next unconsidered node that connects to A, B and D are C, E and F; 

with C and E are of the same distance. In addition, from A to E through B and D is 4, 

and through C is 5, and A to F through B and D is 7, hence E will be considered next in 

the node list. 
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Figure 2.24: Node E is chosen among the unconsidered nodes. 

 

Figure 2.25: Shortest path for the given graph. 

 

Figure 2.24 illustrates the next connection to be considered. The shortest 

distance to connect F is through nodes D and E with distance 5 and 2, respectively. The 

minimum distance is from node E, hence node E will be connected to F. Figure 2.25 

shows the shortest path found using Dijkstra algorithm.  

B. Bellman Ford’s Algorithms 

Bellman Ford‟s Algorithm finds the shortest path from a graph not only for 

positive weighted graphs but also for negative weighted ones. If negative weighted 

graphs are not dealt with then the Dijkstra algorithm is a more efficient choice as 

Dijkstra runs at a faster time. The structure of Bellman Ford is similar to Dijkstra‟s, 
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except instead of greedily selecting the next minimum weight node to relax, Bellman 

Ford will relax the entire nodes (except the source node) for  𝑉 − 1 times where 𝑉 is 

the number of vertex (node). Relax here means checking the edge of the considered 

nodes (check for the shortest one). 

2.5 Minimum Spanning Tree (MST) 

Minimum spanning tree (MST) is finding the minimum cost that spans all nodes 

from a weighted graph. Consider a graph, G. A weighted graph is a graph where each 

edge has a weight (usually represented by a real number). Commonly, the weight is cost 

or distance.  

 

Figure 2.26: Example of a weighted graph. 

Spanning tree T of G is a connected acyclic sub-graph that spans all the nodes. 

The problems of MST are: Given an undirected graph 𝐺 =  𝑁, 𝐴  with 𝑛 =  𝑁  nodes 

and 𝑚 =   𝐴  arcs and the length or cost 𝑐𝑖𝑗  associated with each arc  𝑖, 𝑗 ∈ 𝐴 (Ahuja et 

al., 1993). Shown in Figure 2.27, the leftmost figure represents a graph and the middle 

and the rightmost represent a spanning tree respectively. 
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Figure 2.27: Example of a graph and its spanning tree. 
 

Ahuja et al. (1993) stated that MST is different with the shortest path problem in 

two different ways. First, the arc of MST is undirected which can be represented 

by𝑎𝑟𝑐  𝑖, 𝑗 =  𝑎𝑟𝑐  𝑗, 𝑖 . Second, is in the calculation of the minimum cost; in MST the 

arc is calculated exactly once while in the Shortest path algorithm, the cost is calculated 

according to the number of paths from the root node that pass through that arc. 

A. Kruskal’s Algorithm 

Kruskal‟s Algorithm is stated as follows. Let V be an arbitrary but fixed 

(nonempty) subset of the vertices of𝐺. Then, perform the following step as many times 

as possible: among the edges of 𝐺 which are not yet chosen but which are connected 

either to a vertex of V or to an edge already chosen pick the shortest edge which does 

not form any loops with the edges already chosen. The set of edges eventually chosen 

forms a spanning tree of 𝐺, and in fact it forms a shortest spanning tree.  

B. Prim’s Algorithm 

 Prim‟s algorithm is similar to Kruskal‟s algorithm, where it starts with a vertex 

V, then finds the node with the shortest path (edge) that connects to 𝑉. The basic idea is 

to expand the tree by adding the shortest edge (path) to the tree (one at a time). 
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2.6 Concluding Remarks 

In this chapter, the introduction of metaheuristics methods was presented. It was 

first introduced by several definitions from various authors, focusing on some well 

known metaheuristics that were commonly developed for combinatorial optimization 

problems. 

The method of classifying metaheuristics proposed by Gendreau and Potvin 

(2005) and Blum and Roli (2003) was also presented which was classified by solution 

based; Single solution based metaheuristics (including trajectory search) or populations 

based metaheuristics. There were also some other classifications proposed by Blum and 

Roli (2003). 

This was then continued with some explanations on some other well known 

metaheuristics, such as TS, SA, EC, GA and VNS. Each of this metaheuristic method 

was explained with the basic idea and the algorithm given. However, GA and VNS 

were explained in great detail with illustrations of the algorithm as used in this research. 

Then, the local search heuristics which was commonly used in TSP was 

discussed. Basically the local search heuristics could be categorized into two: 

Constructive heuristics and Improvement heuristics. The definitions of both the 

constructive and improvement heuristics were given, along with the algorithms. 

Construction heuristics occurred by adding one node at a time to a single node to form a 

tour, while improvement heuristics worked with a complete tour, and then continued 

with an improvement heuristics to amend the tour. Local search heuristics reviewed in 

Section 2.3.1 included but not limited to insertion, swap, 2-opt, 3-opt, k-opt, or-opt and 

savings algorithm. 

The topics of the shortest path heuristics and minimum spanning tree were 

discussed in Sections 2.4 and 2.5 respectively. Two examples on shortest path algorithm 

were reviewed, which were: Dijkstra algorithm and Bellman Ford‟s algorithm. The 
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same was done to minimum spanning tree, in which the Kruskal‟s algorithm and Prim‟s 

algorithm were reviewed. These two subtopics consisting of the shortest path algorithm 

and minimum spanning tree were important as both of them were used in this research. 

  




