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CHAPTER 3 

THE APPLICATIONS OF METAHEURISTICS IN                                        

POINT TO MULTIPOINT ROUTING PROBLEM 

 

3.1 Introduction 

The field of telecommunications is one of the rapidly evolving areas of all 

disciplines as the growth of data flowing in a telecommunications network has 

increased drastically. Data flow through the network can be seen in daily business such 

as sending messages, emails, paying bills, banking services, airline bookings and even 

shopping which all can be done using network services. Designing the network to be 

more efficient is necessary as the activity demand for it is getting higher daily. The 

efficiency of the telecommunications network can be measured by some criteria such as 

blocking, delay (waiting system), congestion and traffic.  

Blocking can occur if all the devices are occupied when the demand of services 

is initiated. A call is said to be delayed if the waiting time is longer than some specified 

length of time. Congestion is said to happen in a situation when the subscriber is unable 

to obtain a connection immediately. It is also known as time congestion or call 

congestion due to the unavailability of a free server. Traffic is measured based on the 

occupancy of server(s) in the network. 

Before the telecommunications network is defined, it is best to define the two 

words of telecommunication and network separately. Telecommunication is a term 

encompassing the transmissions or receptions of signals, images, or information over a 

distance. Tele is a Greek word that means far and network is defined as interconnected 

group of nodes (Held, 1995). In general, a network comprises of transmitters, receivers, 

or other devices that support communications. 
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The telecommunications network can be seen as a collection of terminals, links 

and nodes which connect together to enable telecommunication between the users of the 

terminals. The most important function needed of a telecommunications network is to 

be able to carry audio, visual, and data communications. Understanding the 

telecommunications network would give a picture of how data flow and also how data 

interchange is carried out. 

Data transfer or information transfer must be established and maintained at an 

acceptable level based on some criteria such as speed of connection, speed of 

information transfer, freedom from error and also cost (Horak, 2007). The data 

information can be preserved in the original form, or it can be altered during 

transmission either by compressing for efficiency or encrypting for security reason.  

The simplest example of a telecommunications network can be seen in 

telephone services. It begins with a call at one point and the call‟s signal will be routed 

through a node or multiple nodes until it reaches its destination. The process only takes 

a few seconds to be carried out. Usually, telecommunications network such as telephone 

line service is often referred to as circuit switching, while data routing is known as 

packet switching. In packet switching, the network is able to store messages (data) and 

pass them to the destination(s) when available. Specifically, the data source is divided 

into packets (bit sizes) and sent over the network. The data (for example messages, 

video or audio) are also divided into packets and sent over the network depending on 

the traffic. Each packet (after the divide) does not necessarily use the same route to 

reach the destination; it can also use a different route. Packets are then reconnected 

again after the whole packets arrive.  

A network that transfers a stream of data (data flow) from a source to 

destination(s) will be assigned a route of sequence of links that connects the source and 

destination(s). This network is responsible in assigning a route to a sequence of links 
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that connects the source and destination. The network should be capable in allocating a 

portion of its capacity along the route to be used, where the decision to route is done by 

routers (switches). This process is called switching (Gananasivam, 2006). 

Data are any materials which are represented in a formalized manner so that 

they can be stored, manipulated, and transmitted by the machine, while routing can be 

defined as the assignment of the communications path by which a message or telephone 

call can reach its destination (Held, 1995). Hence, data routing is a process of moving or 

transferring data (packet of data) from source to destination.  

One of the problems in data routing is Message Scheduling Problem (MSP) or 

also known as request scheduling. MSP is defined as a process of scheduling a set of 

requests such that the entire route is optimal. A set of requests may include two or more 

requests. Request here can be pictured as a call or a message. In this problem, each 

request has a single source and multiple destinations. Specifically each request may 

have different sources and destinations. Each request is characterized as one source 

node, one or multiple destinations and a specific request capacity. Request capacity is 

the capacity (sometimes referred to as weight) of the message or call.  

3.2 Literature Review 

The telecommunications network is modeled as a graph that has a capacity and 

cost assigned to its edges, as shown in Figure 3.1. The network consists of 8 nodes and 

11 edges. MSP is often solved by treating the problems as a Point to Point Routing 

Problem (PPRP) and the PPRP is known to be NP-complete. In PPRP there is only one 

single source and one single destination. However, in the telecommunications practice, 

a message is often sent to multiple destinations. In PPRP, if there are several destination 

nodes, the same message will be sent many times depending on the number of 

destinations. This increases the cost since the same message is sent many times and 

frequently it shares the same path/link, which is neither efficient nor capacity effective.  
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Figure 3.1:  An example of Telecommunications Network with the association (cost,  
capacity) for each edge. 

 

PPRP has been studied comprehensively by Cox et al.(1991) where call requests 

for circuit switching in a telecommunication network arrive randomly at any of the 

nodes in the network. A scheduler is described for the network, where it assigns a single 

dedicated path through the network from the source node to the destination node during 

the entire requested time interval. The scheduler must also consider the capacities of the 

request that might concurrently use the link.  Each call request is specified by six 

attributes: source node, destination node, requested start time, requested duration, 

bandwidth requirement or capacity, and priority class. The schedule is feasible if the 

sum of capacities of the requests assigned to a link at any given time is less than the 

link‟s capacity. If no particular schedule can accommodate a call request, the request is 

said to be blocked and infeasible. 

The cost of using a network is calculated as the sum of the costs of each path 

used. For the infeasible schedule, a penalty is incurred. The scheduler calculates the cost 

of each feasible schedule. The cost is the sum of the net cost of successfully carrying 

scheduled requests through their assigned paths. For an infeasible schedule, one 

includes penalties associated with requests that are blocked. The scheduler's task is to 

choose a set of paths for all call requests that minimizes the total cost while taking into 

account the time varying nature of the call requests. Cox et al. (1991) addressed this 
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problem through the use of a statistical approach that makes rapid initial assignments of 

incoming call requests to paths, based upon statistical information about the current 

network traffic. The authors then used evolutionary programming techniques to find 

alternative routing assignments that were nearly optimal than the previous ones or that 

were able to accommodate additional requests. 

Christensen et al. (1997) proposed solving PPRP by treating the set of requests 

as a whole, instead of treating it as a one to one request. This assumption made the 

problem no longer a PPRP, but as a Point to Multipoint Routing Problem (PMRP). 

PMRP attempts to find an optimal route that routes a set of requests from one source 

node (point) to several destination nodes (multipoint). This is achieved by duplicating 

(copying) the message when it reaches the intermediate node(s); that is a node that 

connects two or more destination nodes. This is determined by finding the minimum 

cost Steiner tree. In Christensen et al., minimum cost Steiner tree is found by using a 

heuristics algorithm. In Christensen et al., the research was undertaken for a 

telecommunication company, LDDS WorldCom which is a locally based internationally 

prominent telecommunications vendor. It is very common for a telecommunications 

company to transmit the same signal to many different destinations.   

Zhu et al. (1998) extended the work of Christensen et al. (1997) in which the 

study considered dealing with subsets of requests, when dealing with the whole requests 

was infeasible. Using the same metaheuristics method, the order based GA is evaluated 

with some modifications in the objective function where only 𝑘,𝑘𝜖𝑁number of 

requests, and𝑁 is the total number of requests. This is done by assuming that all 

requests yield the same profit and the main aim is to maximize the k. PMRP here is 

solved by assuming that the request could be split in at most two; resulting in two new 

features which find paths for sub-problems and capacity (bandwidth) of each 

corresponding path. Consequently, the chromosome representation is divided into two 
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segments known as request segment and percentage segment, where request segment is 

simply permutations of partial requests and percentage segment is determining the 

transmission of the partial requests. Galiasso and Wainwright adopted the Partially 

Mapped Crossover (PMX) and double point crossover as their crossover operators. 

Galiasso and Wainwright (2001) improved the work of Zhu et al. (1998) and they were 

able to solve 19 request problems out of the 20 requests, compared to Zhu et al. with 

only 18 requests. 

Kampstra et al. (2006) provided a comprehensive overview where the authors 

classified telecommunications network design into node locations, topology design, tree 

design, routing, restoration, network dimensioning, admission control problems, and 

frequency assignment and wavelength allocation. PMRP is classified under the routing 

classification along with adaptive routing, shortest path routing, multicast routing and 

intelligent agents.  

3.3 Point to Multipoint Routing Problem (PMRP) 

As described earlier PMRP is similar to PPRP except that instead of routing to a 

single destination node, PMRP determines the route to a multiple destination nodes for 

each of the requests. The problem is to find an optimal routing to send a message from a 

single source to multiple destinations efficiently.  

 As mentioned earlier, a request is characterized by the source node, requested 

start time, requested duration, bandwidth requirement or capacity and priority class. 

Similar assumptions made in (Christensen et al., 1997) are adopted in this research in 

which a special case of PMRP is considered where all requests are assumed to have the 

same start time, duration, and priority.  
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3.4 Solving PMRP 

PMRP is solved by considering the single source and multiple destinations as a 

whole. The first step of the algorithm is to determine the minimum Steiner tree that will 

provide the possible connections of all the nodes available including the source and 

destination nodes. The Kou Markowsky Berman Method (KMB) algorithm is employed 

(Kou et al., 1981) to determine a near optimal minimum spanning tree. Other methods 

to solve the minimum spanning tree are also available, for example ZEL (Zelikovsky, 

1993) and IZEL or Iterated Zelikovsky. However, KMB provides the lowest order of 

computational complexity of 𝑂 𝐸 log𝑉 . Details of the KMB algorithm are given in 

Section 3.4.1. The KMB algorithm requires solving the shortest path problem and 

determining the minimum spanning tree. An established algorithm of Dijkstra (Dijkstra, 

1959) is used to find the shortest path and Kruskal‟s algorithm (Kruskal, 1956) is 

employed to find the minimum spanning tree. It is noted that in Christensen et al., 

(1997) the authors adopted Prim‟s algorithm instead. However, in this research 

Kruskal‟s algorithm is adopted due to better time complexity as Kruskal‟s algorithm has 

a time complexity of   VEO log  as opposed to Prim‟s algorithm of  2VO .The details 

of the Dijkstra‟s and Kruskal‟s algorithms have been described in Sections 2.4 and 2.5. 

3.4.1 Kou Markowsky Berman Method 

The algorithm of Kou, Markowsky and Berman (KMB) (Kou et al., 1981) which 

is used to determine the minimum Steiner tree is outlined. The algorithm is embedded 

both in the VNS and GA. It is noted that the algorithm requires finding the minimum 

spanning tree using Kruskal‟s algorithm and solving the shortest path problem using 

Djiktra‟s algorithm. The general algorithm of KMB is given as follows: 

INPUT: an undirected distance graph  dEVG ,,  and a set of Steiner points  

VS  . d is equals to the distance of the shortest path.  
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 OUTPUT: a Steiner tree, 
HT  for G and S 

Step 1 Construct the complete undirected distance graph  1111 ,, dEVG   from G and  

 S. 

Step 2 Find the minimal spanning tree, 
1T , of 

1G . (If there are several minimal  

 spanning trees, pick an arbitrary one). 

Step 3 Construct the sub-graph, sG , of G by replacing each edge in 
1T by its  

 corresponding shortest path in G. (If there are several shortest paths, pick an  

 arbitrary one). 

Step 4 Find the minimal spanning tree, sT of sG . (If there are several minimal spanning  

 trees, pick an arbitrary one). 

Step 5 Construct a Steiner tree, 
HT , from sT by deleting edges in sT , if necessary so  

 that all leaves in the 
HT  are Steiner points. 

3.4.2 An illustrative example in solving PMRP 

Consider a network consisting of 6 nodes labeled [A B C D E F] with a 

maximum capacity of 11 units is given in Figure 3.2a. Assume that the network is to 

schedule 2 requests from the source nodes to their respective destinations and the details 

on the source nodes, their destinations and their respective capacities are given in Table 

3.1. 

Table 3.1: Dataset for routing.  

Request Source Destination Capacity 

1 A D,E 5 

2 B A,D,F 6 
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Figure 3.2a: Example of telecommunications network with 6 nodes.  

 

 Figure 3.2a shows the network with the cost of using the edge and the 

maximum capacity of the edge. The nodes include the source node(s), destinations 

node(s), and intermediate node(s). Assuming that the requests are to be routed in the 

following order of [1 2], which means that Request 1 is to be considered first then 

followed by Request 2.    

Request 1 with a capacity of 5 units is to be sent from source node A to 

destination nodes D and E. The shortest path from source node A to destination node D 

is 𝐴 → 𝐶 → 𝐷 with a minimum cost 10 (1 × 5 + 1 × 5). The shortest path from source 

node A to destination node E is 𝐴 → 𝐶 → 𝐹 → 𝐸 with a minimum cost of 25. Figure 

3.2b shows the shortest path between source node A (red) to destination node D 

(orange) represented by the dashed-dotted lines with A→C→D and the cost is 10. The 

calculation is [capacity request×( path(A,C)+path(C,D)) ]=[5 × (1+1) ]. The remaining 

capacities on respective edges are 6 units each. Figure 3.2c gives the shortest path 

(given in dashed-dotted lines) for 𝐴 → 𝐸 is to route the request A→C→F→E and the 

cost of routing is 25.  
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Figure 3.2d shows the final routing for Request 1 with a capacity 5 from source 

node A to destination nodes D and E represented by the dotted line. Steiner tree for 

routing Request 1 is shown by the dotted lines with the routing cost of 30 units. Figure 

3.2e shows the routing of Request 2. Note that the request is duplicated at an 

intermediate node C (green) and sent to destination nodes F and D respectively. The 

cost of the entire Request 2 routing is 84 units only. So the overall total cost of routing 

Table 3.1 with order [1 2] is 114 units.  

 

Figure 3.2b: Shortest path from source node A (red) to destination node  

 D (orange) is represented in dashed dotted lines. 
 

 

 

Figure 3.2c: Shortest path from A to E is represented by the dashed- 

dotted lines. 
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It is noted that Request 1 uses the same edge that is (𝐴, 𝐶)  and the message is 

duplicated at an intermediate node C to be sent to destination nodes D and E 

respectively with a total cost of 30 units (as shown if Figure 3.2d). However, if the 

PPRP case is considered using the same routes (Figures 3.2b and 3.2c) it will traverse 

an additional 5 units cost as the edge (𝐴,𝐶) will be used twice. The remaining capacity 

of edge (𝐴,𝐶) is reduced to 1 while the remaining capacities on other edges are not 

affected and they remain the same.  

 

Figure 3.2d: The final route for routing request 1.  

 
 

 
 

Figure 3.2e: Dotted line represents Steiner tree of Request 2 with a total cost of  
84 units. 
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3.5 Implementation of Metaheuristics for PMRP 

Two metaheuristics methods are proposed based on GA and VNS to solve 

PMRP. Both of these methods embed the algorithm of KMB algorithm (Kou et.al, 

1981) which will be used to find the minimum spanning tree for each request.  

3.5.1 Genetic Algorithm for PMRP 

 The same approach as in Christensen et al.’s (1997) paper is adopted, where the 

solution is represented as an order where a chromosome consists of a permutation of 

integers and each integer represents a request number. The requests are routed 

according to the order they appear in the chromosome. To route a given request, GA 

will first inspect the edges with a capacity of less than the capacity of the request; for 

edges that do not have enough capacity, the cost for that particular edge is made 

sufficiently high (artificial cost) temporarily so that it will not be considered in the 

route. Then, the (near) optimal Steiner tree is determined for each request. The 

capacities of all the paths are then updated. The steps are repeated until all requests have 

been routed in the order found in the chromosome. It is noted that the minimum cost 

Steiner tree is determined by the heuristics method of Kou, Markowsky and Berman‟s 

algorithm (KMB) (Kou et al., 1981). The KMB determines the minimum cost tree that 

spans all the destination nodes including the source node. Dijkstra‟s algorithm is 

adopted (Dijkstra, 1959) to find the shortest path in the KMB algorithm. It should be 

noted that Kruskal‟s algorithm is chosen instead of Prim‟s algorithm as adopted by 

Christensen et al. (1997) due to better time complexity where Kruskal‟s algorithm has a 

time complexity of   VEO log  as opposed to Prim‟s algorithm of  2VO .  
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Representation  

 The representation used for GA is the real representation using integer numbers. 

Each number represents the request‟s number. For example in Figure 3.3 , there is 

chromosome [1 2 3 4]; thus here request number 1 is routed first, followed by request 

numbers 2 and 3, and then request number 4. 

 

Figure 3.3: Example of coded chromosomes. 

Another example is[4 1 3 2], where in the example request number 4 will be 

routed first, followed by request numbers 1 and 3 and finally request number 2. Note 

that each request has its own message capacity.  

Crossover Operator 

Enhanced Edge Recombination Operators (EERO) 

 Enhanced Edge Recombination Operators (EERO) basically emphasizes the 

edges. This was an improvement of the Edge Recombination Operator (ERO) 

introduced by Grefenstette (1987). It was then enhanced by Starkweather et al. (1991). 

Basically the inspiration has fastened the next selection by marking the common 

subsequence.  

The basic ER crossover has been discussed in Chapter 2. However, it is also 

summarized here for better understanding in the later examples. The steps of the ERO 

are given as follows: 

Step 1 Randomly select a city to be the current city of the offspring. 

Step 2 Select four edges (two from each parent) incident to the current city c. 

Chromosome : [ 1 2 3 4] 
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Step 3 Define a probability distribution over selected edges based on their cost.  

The probability for the edge associated with a previously visited city is 0. 

Step 4 Select an edge. If at least one edge has non-zero probability, selection  

is based on the above distribution; otherwise, selection is random (from  

unvisited cities). 

Step 5 The city on 'the other end' of the selected edge becomes the current city.  

Step 6 If the tour is complete, stop; otherwise, go to step 2. 

Example of EERO 

An example of the EERO is given as follows, where a set of 5 request orders are used to 

describe it. 

Parent 1=[1 2 3 4 5] 

Parent 2=[3 2 4 1 5] 

The edge request list is listed as: 

Request 1: edge to other requests: 2, -5, 3 

Request 2: edge to other requests: 1, -3, 4 

Request 3: edge to other requests: -2, 4, 5 

Request 4: edge to other requests: 3, 5, 1, 2 

Request 5: edge to other requests: 4, -1, 3 

 The edge request list is listed based on the edge that connects both parents. For 

example in the Request 1 list, there is 2, -5 and 3 where it can be seen that request 1 is 

connected to request 2 and 5 in parent1, then connected to 4 and 5 in parent 2. Here it is 

noted that as request 5 is connected to request 1 for both parents, it is emphasized by 
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marking 5 with the symbol „-‟. The same goes to edge list for request 2. As seen in 

parent 1, request 2 is also connected to requests 1 and 3, and in parent 2, request 2 is 

connected to requests 3 and 4. As 3 appear twice, so 3 is indicated as „-3‟. 

From there, now the new request (offspring) can be found. It is randomly started with 

request 1. So,  

  New Request: [1 □ □ □ □] 

To find the next request number, it will be chosen from the list. The edge list for request 

1 is 2, -5, and 3. As request 5 is marked with the symbol „-‟, it will be chosen as the 

next request in the new offspring. The new offspring is indicated as follows: 

  New Request: [1 5 □ □ □] 

Then the next offspring has to be chosen, so the edge list of request 5 is seen. It can be 

seen that request 5 is connected to request 4, -1 and 3. By right 1 as the next request 

should be chosen, but it can be seen that 1 is already in the new offspring, so there are 

the alternatives of 3 and 4. To choose between 3 and 4, their edge lists have to be 

checked. It can be seen that the list for request 4 is longer than that of request 3; thus 

request 3 is chosen as the next request in the new offspring. The new offspring is shown 

as follows: 

  New Request: [1 5 2 □ □] 

Following the same steps discussed above, it can finally be shown that the new request 

(offspring) is as follows: 

  New Request: [1 5 2 3 4 ] 
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Mutation Operator 

The mutation operator used in this research is inversion. This is simply finding 

two random positions to be inversed. An example and illustration of this inversion 

operator is discussed in Chapter 2. It is noted that Christensen et al. (1997) employed 

the Roulette Wheel Selection (RWS) in the selection process and the Partially Mapped 

Crossover (PMX) as a crossover operator.  

The GA algorithm can be summarized as follows: 

Step1 Generate an initial population, where chromosomes are represented as 

permutations of integers.  

Step 2 Evaluate all the chromosomes in the initial population (generation 0), by 

finding the near optimal Steiner tree.  

Step 3 Record the best chromosome from generation 0. 

Step 4 Until the maximum number of generations or the stopping condition is 

attained: 

4.1 Rank all the chromosomes according to their objective values. 

4.2 Selection: The resulting chromosomes after ranking will go through 

the selection operator, Stochastic Universal Sampling (SUS). SUS 

will select chromosomes for reproduction (crossover) according to 

their fitness value in the current generation. 

4.3 Crossover: The resulting chromosomes from Selection will go 

through this step. Enhanced Edge Recombination Operators 

(EERO) is used as the crossover operator, where EERO 

emphasizes on the order of requests.  

4.4 Mutation: The resulting chromosomes (offspring) from Crossover 

then will go through this process. Inversion is used as a mutation  
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operator, where it is simply invert the part of the chromosome 

between two randomly selected positions. 

4.5 Reinsertion: Reinsert the offspring into the new population, 

selecting the fittest individual to replace the old population.  

Step 5 Repeat Step 4. 

3.5.2 Variable Neighborhood Search for PMRP 

Similarly to GA, a solution set in VNS is also represented as permutation of 

integers. As in GA, requests are routed according to the order of the number represented 

in the solution. As mentioned earlier the important factor is in defining the 

neighbourhood to be explored. In this study, the neighbourhood k , 𝑁𝑘 is defined as a 

distance function, that is the cardinality of the symmetric difference between any two 

solutions 𝑉1and 𝑉2written as   2121 \, VVVV   or 21 VV   where denotes the 

symmetric difference operator. 

Four different local search methods that emphasize the order which are swap, 

inversion, or-opt and restricted or-opt are introduced. Swap, Insertion and or-opt 

algorithm had been explained and illustrated in Chapter 2. Restricted or-opt algorithm is 

explained here. 

Restricted or-opt 

 Basically restricted or-opt was introduced to limit the number of removing and 

reinserting vertices in Step 2 of or-opt. This is done by introducing a block. Instead of 

searching all the insertion, we limit the number of search allowed. In this thesis the 

number of block is set at 10.The algorithm of the restricted or-opt can be described as 

follows: 

Step 1 Consider an initial tour and set 𝑡 = 1,𝑠 = 3 and Block=10. Set 

counter=1; 
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Step 2 Remove from the tour a chain of 𝑠 consecutive vertices, starting with the 

vertex in position𝑡, and tentatively insert it between all the remaining 

pairs of consecutive vertices on the tour. 

(i) If the tentative insertion decreases the cost of tour, implement it 

immediately, thus defining a new tour. Set 𝑡 = 1, and repeat Step 

2. 

(ii) In no tentative insertion decreases the cost of tour, set 𝑡 = 𝑡 + 1. 

If 𝑡 = 𝑛 + 1 then proceed to Step 3, otherwise repeat Step 2. 

Evaluate counter=counter+1; If counter=Block; set 𝑡 = 𝑛 + 1. Proceed 

to Step3. 

Step 3 Set 𝑡 = 1 and 𝑠 = 𝑠 − 1. If 𝑠 > 0 go to Step 2, or else Stop. 

The algorithm of VNSPMRP can formally be represented as follows: 

Step 1 Define 𝑘𝑚𝑎𝑥 , the maximum number of neighbourhood structures to be  

explored. 

Step 2 Randomly generate a solution x where the solution is represented as  

permutation of integers, where each integer represents a request. Each 

request is characterized by its source node and multiple destination 

nodes, along with its capacity (request capacity or weight of the 

message). 

Step 3 Repeat the following until the stopping condition is met. 

3.1 Set 𝑘 = 1. 

3.2   Until 𝑘 = 𝑘𝑚𝑎𝑥  

3.2.1 Shaking. Select randomly an individual, 𝑥 ′  from the 𝑘𝑡ℎ  

neighbourhood of 𝑥  𝑥 ′ ∈ 𝑁𝑘 𝑥  . Evaluate its corresponding 
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minimum Steiner Tree by using the Kou Markowsky Berman 

(KMB) method for each of the requests. 

3.2.2 Local Search. For 𝑖 = 1 until 

𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠.  Apply swap, inversion, or-

opt or restricted or-opt separately as the local search. Note that 

these methods emphasize the request order as these local search 

used targets the order. Evaluate the corresponding Steiner tree 

and the total cost. Denote that the best individual found as 𝑥 ′′ . 

3.2.3 Move Or Not.  

If𝑐𝑜𝑠𝑡  𝑥 ′′   is better than 𝑐𝑜𝑠𝑡  𝑥 .  

                             Denote 𝑥 ′′  as the new 𝑥, (𝑥 ← 𝑥 ′′ ). And set 𝑘 = 1. 

                                      Else Increase k by 1,  𝑘 = 𝑘 + 1 .  

Output is the best order with its corresponding minimum Steiner tree. 

3.6 Results and Discussion  

Both programmes, GA and VNS were written in MATLAB 7.5 and were run on 

the computer using the Windows platform with Intel Core 2 Duo processor with 4Ghz 

speed. Applying GA for PMRP is very straight forward. The population size is 20 for 

small and medium case; and 50 for a large case. The Probability for the crossover and 

mutation is 0.7 and 0.1 respectively. The maximum numbers of generations are 20, 30 

and 50 for small, medium and large respectively. 

Both GA and VNS were run on the data set given as an example in Christensen 

et al. (1997). This data set contained four messages and Table 3.2 tabulates the source 

node, destination nodes and the capacity of each request. The graphical representation 

of the network is presented in Figure 3.4. All paths (edges) have the same capacity, 

which is 8  and the cost assigned to each edge is the same as in the main example in 

Christensen et al. (1997). 
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The results obtained are given in Table 3.3. The results clearly show that these 

algorithms produced superior results as compared to those reported in Christensen et al. 

(1997). It is noted that VNS1 and VNS2 embedded swap and invert local search, 

respectively. Also GA1 and GA2 represented the results from Christensen et al. (1997) 

and of this research, respectively. It is noted that these algorithms also found alternative 

solutions: 4] 3 2 [1 , 2] 3 4 [1 , 2] 4 3 [1 , 4]  3  1  [2 , 3] 4 1 [2  and 2] 3 1 [4 . The results 

reported in Christensen et al. (1997) and Zhu et al. (1998) were not able to be compared 

due to the unavailability of the detailed data. 

 

 

   

 

 

 

Figure 3.4: A Communications network with (cost, capacity) associated with each 

edge (Christensen et al., 1997). 

 

Table 3.2: Data for the first test case. 
 

 

 

 

Table 3.3 illustrates the results for the example taken from Christensen et al. 

(1997). It is observed that the results from the GA and the two VNS of this research 

produced slightly superior results. This may be due to the underlying algorithm for the 

Steiner Tree problem. Better methods were used by embedding in the KMB method that 

was the Kruskal‟s algorithm instead of Prim‟s algorithm as reported in Christensen et 

al. VNS converged in a superior time as compared to GA. Alternative solutions have 

Request Source Destination(s) Capacity 

R1 B C, H 5 

R2 D B, H 3 

R3 G E, F, B 4 

R4 A G 2 

(3,8) 
(6,8) 

(1,8) 

 

(7,8) 
(4,8) 

(7,8) 

(9,8) 

(8,8) 

(5,8) 

(3,8) 
(3,8) 

A 

H 

G 

F 

E 

D 

C 

B 
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also been determined using these algorithms: [1 2 3 4], [1 4 3 2], [1 3 4 2], [2 1 3 4], [2 

1 4 3] and [4 1 3 2]. 

Table 3.3: Results for the first test case. 

 
GA1 

(Christensen et al., 1997) 
GA2 VNS1 VNS2 

Best Order [2 4 1 3] [2 4 1 3] [4 2 1 3] [1 3 2 4] 

Time 
(in seconds) 

- 1.356253 0.303125 0.257813 

Cost 253 249 249 249 
* GA2: GA with EERO; VNS1: VNS embeds Swap; VNS2: VNS embeds Invert. 

The algorithms are extended to look at a second data set consisting of medium 

sized problems (scheduling 4 to 8 requests). A network consisting of 50 nodes and 83 

edges was selected taken from the OR-Library (steinb1 and the last 20 data from steinb2 

that did not conflict with steinb1) (Beasley, 1990). The capacity of all the edges/links 

were fixed at 12.  The characteristics of the requests are given in Table 3.4, whilst the 

results are tabulated in Table 3.5.  

Table 3.4: Data for the second test. 

Request Source Destination(s) Capacity 

1 36 7, 23, 25, 40 8 

2 17 15, 30, 31, 40, 41, 46 5 

3 48 3, 9 9 

4 41 13, 22, 27, 35, 50 6 

5 2 6, 14, 18, 23, 27, 33, 47, 49 5 

6 13 28 6 

7 50 5, 12, 28,31, 44, 45 7 

8 20 17, 25, 41 8 
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Table 3.5: Results for the second test case. 

No  of 

Requests 

Criteria GA VNS1 VNS2 

4R Best Order [3 1 2 4] [3 1 2 4] [3 1 2 4] 

 Time (in seconds) 14.21877 6.085938 6.434378 

 Cost 1208 1208 1208 

 

5R Best Order [5 1 3 4 2] [5 1 3 4 2] [5 1 3 4 2] 

 Time  19.30315 10.26875 9.723444 

 Cost 1703 1703 1703 

 

6R Best Order [5 1 3 2 4 6] [5 1 3 4 2 6] [5 1 3 4 2 6] 

 Time  21.65938 13.53594 11.99063 

 Cost 1841 1841 1841 

 

7R Best Order [5 1 3 2 4 6 7] [5 1 2 3 4 6 7] [5 1 3 4 2 6 7] 

 Time  26.02657 14.36407 17.21718 

 Cost 2450 2450 2450 

 

8R Best Order * * * 

 Time     

 Cost    

* The algorithm fails to converge 

There are also alternative solutions for 4 requests: [3 1 4 2]; 5 requests: [5 1 3 2 

4] and [5 1 2 3 4]; 6 requests: [5 1 2 3 6 4];  and 7 requests problems: [5 1 2 3 4 6 7]. All 

the algorithms failed to converge to a feasible solution for the 8 requests problems. It 

was observed that the capacity constraint on any of the path could not accommodate the 

8 requests.  

Encouraged by the results, the algorithms were tested on larger problems of up 

to 20 requests. The network comprised of 61 nodes and 133 edges. The data are shown 

in Table 5. The capacity for the network was maintained at 12, and the edges and costs 

were taken by modifying data steinb from the OR-Library (Beasley, 1990). The results 

obtained are given in Table 6. It was observed that the two VNS (VNS1 and VNS2) 
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failed to converge to feasible solutions for the 19 and 20 requests problems. It is noted 

that the population size for the GA algorithm were increased to 50 individuals and the 

algorithms were run for 100 generations. The local search for the VNS was improved to 

include the or-opt which proved to perform better for the Travelling Salesman and 

routing problems. This was at the expense of the larger CPU time. The algorithm was 

denoted as VNS3. 

Then encouraged by the results obtained in VNS3, we then tested the algorithm 

for restricted or-opt as local search, VNS4 in hope of better computational running 

time. However it is noted that VNS3 converge in lower time for Requests 4 to 9 because 

it fails to improve the results as it may gets stuck in local minimum compared to VNS4, 

where better results were found at the expense of higher computational time. The results 

improved in term of cpu time until 8R, then continue with a slightly higher cpu time for 

the other requests. However in terms of quality solution, it is proven that restricted or-

opt perform better, except for 16R where results obtained using GA is slightly better. 

Table 3.6: Data for the third test. 

Request Source Destination(s) Capacity 

1 36 7, 23, 25, 40 8 

2 17 15, 30, 31, 40, 41, 46 5 

3 48 3, 9 9 

4 41 13, 22, 27, 35, 50 6 

5 2 6, 14, 18, 23, 27, 33, 47, 49 5 

6 13 28 6 

7 50 5, 12, 28,31, 44, 45 7 

8 24 30, 29, 20 5 

9 52 13, 55, 22, 9 4 
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Table 3.6: Continued. 

Request Source Destination(s) Capacity 

10 53 28, 52, 13, 55, 41, 14 6 

11 10 31, 20, 5, 40 5 

12 15 30, 20, 23, 22, 18 4 

13 14 9, 35, 16 4 

14 61 15, 33, 38, 20, 3 

15 55 4, 41, 21 5 

16 14 16, 43, 44, 31, 9 7 

17 60 28, 14 2 

18 9 6, 35, 30, 7, 4, 31 4 

19 51 54, 40, 10 6 

20 51 23, 10 5 

 

Table 3.7: Results for the third test case. 

No  of 
Requests 

Criteria GA VNS1 VNS2 VNS3 VNS4 

4R 

Cost 813 813 813 813 813 

Time (in 
seconds) 

393.5125 38.2125 30.98282 51.42346 15.20937 

5R 

Cost 1028 1028 1028 1028 1028 

Time  549.7438 60.74844 51.67971 117.9142 49.53752 

6R 

Cost 1135 1135 1135 1135 1135 

Time  599.7266 61.21408 65.7047 166.7283 117.6078 

7R 

Cost 1600 1600 1600 1600 1600 

Time  719.1938 78.63288 88.00941 279.6203 267.5781 

8R 

Cost 1768 1768 1768 1768 1768 

Time  799.7219 106.4251 87.81569 529.4485 359.8924 
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Table 3.7: Continued 1. 

No  of 

Requests 

Criteria GA  VNS1 VNS2 VNS3 VNS4 

9R 

Cost 1955 1975 1969 1951 1951 

Time  897.5828 102.0751 121.9547 544.1922 692.625 

10R 

Cost 2272 2272 2293 2272 2272 

Time  1024.33 132.7064 119.2828 774.9266 972.1284 

11R 

Cost 2568 2611 2646 2572 2568 

Time  1147.95 145.2829 112.3704 708.6957 1720.97 

12R 

Cost 2808 2897 2879 2768 2752 

Time  1252.26 188.3596 118.183 1029.794 1770.81 

13R 

Cost 2970 3058 3060 2959 2941 

Time  1330.3800 158.9971 168.8579 980.7216 3541.7 

14R 

Cost 3190 3252 3285 3192 3113 

Time  1427.73 187.5609 146.1902 1312.548 7043.61 

15R 

Cost 3412 3422 3479 3316 3294 

Time  1491.8889 206.558 167.0469 1674.065 4720.351 

16R 

Cost 3673 3889 4184 3900 3844 

Time  1620.04 203.2931 219.6407 2050.567 4424.944 

17R 

Cost 3902 4131 4042 4036 3834 

Time  1700.60 252.7404 221.2611 1770.141 3891.36 

18R 

Cost 4053 4479 4386 4201 3969 

Time  1826.00 238.3081 222.8828 2442.993 9385.284 

19R 

Cost 4974 * * 4601 4476 

Time  1906.65 * * 2739.76 9511.067 
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Table 3.7: Continued 2. 

No  of 

Requests 

Criteria GA  VNS1 VNS2 VNS3 VNS4 

20R 

Cost 4744 * * 5019 4534 

Time  1958.175 * * 2230.875 14301.43 

* The algorithm fails to converge 

Table 3.7 presents the results for the larger problems and the best solutions 

found are highlighted. It is noted that GA (achieving 8 out of 20 best solutions), VNS 

with or-opt (achieving 7 best solutions out of 20 problems) and VNS with or-opt 

(achieving 19 best solutions out of 20 problems), where VNS with or-opt (VNS3) were 

almost comparable with GA performing slightly better in larger problems in terms of 

solution quality and CPU time. However it is shown that VNS4, that is VNS with 

restricted or-opt perform better compared to GA and VNS3. The algorithm for VNS1 

and VNS2 fails to converge for larger request because of the underlying local search, 

swap and invert, are not powerful enough. 

It is noted that out of the ten runs, GA produced smaller numbers of feasible 

solutions compared to VNS with or-opt and VNS with restricted or-opt 

3.7 Conclusion 

In this study, a slightly better GA (GA2) was designed as compared to GA1 

proposed by Christensen et al. (1997) when tested on the examples given in Christensen 

et al. The developed GA2 produced better results in terms of minimum cost. Besides 

that, alternative solutions for several cases were also presented. These differences may 

have been due to the different operators for selection and crossover that were used. The 

VNS method was successfully developed and it is noted that VNS had the potential to 

perform better if the underlying local search was good. For the first test case it was 
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proven that VNS with a simple local search produced the same results as GA2 in a 

slightly better running time. 

Encouraged by the results in the first test case, the problems were tested for up 

to 8 requests by successfully applying the GA and VNS methods for the case. It was 

shown that the final results were comparable with the GA method in terms of cost. 

However, VNS produced better cpu time. 

The study was extended by testing the algorithms for up to 20 requests test 

problem. The results showed that VNS produced similar results to GA at a significant 

time. All the algorithms, GA, VNS1 and VNS2 failed to route the 19 requests and 20 

requests problems. 

 Many researchers had successfully reported that or-opt produced better results in 

the TSP. Encouraged by that, the VNS3 which embedded the or-opt as a local search 

was developed. However, the results obtained did not surpass GA as VNS3 produced a 

higher percentage of feasible solutions even for larger problems. VNS3 successfully 

routed all 20 requests, with a trade off to the running time. 

We then apply restricted or-opt as local search in VNS, named VNS4. It is 

observed that VNS4 surpass GA and VNS3 with a good solution, however the running 

time is higher compared to VNS3 for bigger case. VNS4 successfully find best solution 

for all 20R except for 16R where GA produces better results. 

 It is concluded that the VNS performed better compared to the GA with a good 

underlying method as a local search. However, as the complexity of the local search 

algorithm increased, the time taken to obtain the solutions also increased.  

  




