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CHAPTER 4 

THE APPLICATIONS OF METAHEURISTICS IN                          

INTEGRATED INVENTORY ROUTING PROBLEM 

 

4.1 Introduction 

Inventory Routing Problem (IRP) is the coordination of the inventory 

management and transportation, where both are vital components of the Supply Chain 

Management (SCM). The importance of integration and coordination of different 

components in SCM has been widely acknowledged as it can be an advantage for many 

companies in a competitive business approach. The IRP seeks to determine 

simultaneously an optimal inventory and distribution strategy that minimizes the total 

cost. The resulting inventory and transportation policies usually assign suppliers to 

routes and then determine the replenishment intervals and collection sizes for each 

supplier. The implementation of IRP is critical especially in a Vendor Managed 

Inventory (VMI) replenishment system where the supplier or manufacturer observes 

and controls the inventory levels of its customers or retailers. In VMI, the supplier is 

fully responsible in managing the customer‟s inventory level. This is a symbiotic 

relationship. VMI makes it less likely that a business will unintentionally become out of 

stock of a good and reduces inventory in the supply chain. Furthermore this is most 

beneficial if the holding cost at the vendor is far greater than the holding cost at the 

retailers. The availability of data and information systems through the advances in the 

technology and communications system has made it possible for the implementation of 

VMI. One of the most important benefits of the VMI is that it permits a more uniform 

utilization of transportation resources. This leads to a higher level of efficiency and a 

much lower distribution cost which often constitutes the largest part of the overall cost. 

This operation is best illustrated in the following Figure 4.1 (Waters, 2003). 
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There are several variants of IRP, depending on the underlying assumptions 

made in the model. Many models look at an infinite horizon where the transportation 

cost is approximated as the average cost, reflecting the long term nature of the problem. 

Recently, many researchers have started to consider finite horizon in which the 

solutions are valid within certain planning horizons only. This is often true when the 

demand cannot be approximated by certain functions or when the demand varies 

considerably from one period to another. Finite horizons can be further classified as a 

single period or multi periods. Other factors that may influence the model may include 

the number of items considered, the type of product (whether it is a single product or 

multi product), and the demand of the product (whether it is constant, time varying, 

deterministic or stochastic in nature). In this research, the focus was on a finite horizon 

model, of multi periods with multi products and the demand for each product was 

deterministic, time varying and product dependent. 

Another important factor to take into consideration is the type of distribution 

network to be considered. Much of the traditional logistics focuses on the outbound 

distribution of products to centres, retailers or customers. However, inbound logistics 

plays an important role in some industries, especially in automotive industries where 

many manufacturers have chosen to modularize the vehicle design and outsource the 

production of more component parts and modules.  This has created an environment 

where managing the inbound logistics of these modules and parts from a large number 

of different suppliers effectively has become most vital. Inbound logistics is not limited 

to automotive industries but it is also an important problem for any business that has a 

large number of low to medium volume suppliers where shipment consolidation offers 

an opportunity for total cost savings (Stacey et al., 2007). An illustration of the 

movement of goods in both logistics is given in Figure 4.2.  
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Figure 4.1: Cycle of supply and demand. 

 

The focus now will be on inbound logistics where distinct spare parts are 

collected from the suppliers.  

 

Figure 4.2: The role of logistics. 
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4.2 Literature Review 

The coordination of inventory and routing was first considered in Federgruen 

and Zipkin (1984) where the problem was treated as a single day problem with a limited 

amount of inventory and the customers‟ demands were assumed to be a random 

variable.  The problem is modeled as a nonlinear integer program using a generalized 

Benders‟ decomposition approach. This approach has the attributes that for any 

assignment of customers to routes, the problem decomposes into a nonlinear inventory 

allocation problem which determines the inventory and shortage costs and a TSP for 

each vehicle considered which produces the transportation cost. This is an extension of 

the classical vehicle routing problems, in which this model integrates vehicle routing 

and inventory control problems. However, not all customers will be visited every day as 

the inventory and shortage costs as well as the limited amount of inventory are to be 

considered.  Federgruen et al. (1986) expanded the idea for the perishable product 

problem.  The product in the system was divided into two classes.  Old units was a class 

where the product would perish in the present period while fresh units were those with 

at least one period away from their perish date.  The solution was adopted from their 

earlier work (Federgruen and Zipkin, 1984) with a variation that the inventory 

allocation sub-problems accounted for two product classes.   

Chien et al. (1989) were among the first to simulate a multiple period planning 

model based on a single period approach.  This was achieved by passing some 

information from one period to the next through an inter-period inventory flow.  In their 

problem, there was a central depot with all customers assigned to it. The supply 

capacities of the depot and the demand of the customers were fixed.  An integer 

program was modeled using a Lagrangean dual ascent method to handle the allocation 

of the limited inventory available at the plant to the customer, the customer to vehicle 

assignment, and the routing of the vehicle.   
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Fisher et al. (1982) studied a real-time problem of inventory routing at Air 

Products which is an industrial gas producer.  The objective was to maximize the profit 

from product distribution over several days.  The demand was given by the upper and 

lower bounds on the amount to be delivered to each customer for every period in the 

planning horizon.  A similar approach as the one proposed by Chien et al. was adopted.  

Dror and Ball (1987) and Dror et al. (1986) both considered the effects of the 

short-term planning period in the subsequent decisions. They proposed an integer 

program where the consequences of the present decisions on later periods were 

accounted for by using penalty and incentive factors.  In this problem, the single period 

models were used as sub-problems.  Besides using a similar analysis, Dror and Levy 

(1986) yielded a weekly schedule by introducing a post optimization based on node and 

arc exchanges.   

Dror and Trudeau (1990) successfully demonstrated split delivery. Split delivery 

is where the demand of a customer can be supplied by more than one vehicle; this can 

reduce the travel distance and also the number of vehicles needed. On the other hand, 

the complexity of the problem also increased (Dror and Trudeau, 1990). 

Bertazzi et al. (1997) proposed a set of decomposition heuristics for the 

transportation of multi product in a multi period with a constant demand. Starting from 

a link by link solution of the problem (i.e. direct shipping), a local search was 

performed looking for improvement through consolidation. The second phase 

aggregated customers who visited at the same frequency on the same route. The authors 

introduced the concept of split deliveries where the quantity of a product required at a 

destination may be split between different shipments, possibly with different 

frequencies. For simplicity, most multi-product models assumed that each retailer 

required only one type of product. It is noted that the same assumption is adopted in this 
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model where each supplier is assumed to supply a distinct product to the assembly 

plant. 

Bertazzi et al. (2002) considered a multi-period model with deterministic 

demand in which a set of products was shipped from a supplier to several retailers. They 

adopted the order up to a level management inventory, ( sS, ), where the maximum ( S ) 

and the minimum ( s ) levels of inventory were specified by each retailer and the 

products needed to be replenished before the minimum level was attained. The quantity 

of the product delivered was the amount such that the maximum level was reached at 

the retailer. The authors proposed a two stage heuristic algorithm whereby the first stage 

focused on route construction algorithms whilst the second stage attempted to improve 

the existing solution by performing simple swap operators that aimed in removing or 

inserting customers at different positions of the route used by the vehicle. This solution 

procedure was implemented for only a single product and a single vehicle case though 

the authors suggested that their approach could easily be modified to cater for the multi 

product case.  

Lee et al. (2003) tackled a class of IRP where there were multiple suppliers and 

an assembly plant in an automotive part supply chain.  They addressed the problem as a 

finite horizon, multi-period, multi-supplier, and single assembly plant part-supply 

network. The objective of their study was to minimize the total transportation and 

inventory cost over the planning horizon.  The problem was divided into two sub-

problems that was vehicle routing and inventory control.  To solve these problems, a 

mixed integer programming model was proposed using a heuristics based on simulated 

annealing.  The purpose of using the heuristics was to generate and evaluate alternative 

sets of vehicle routes while a linear program determined the optimum inventory levels 

for a given set of routes.  The authors also claimed that the optimal solution was 

dominated by the transportation cost, regardless of the magnitude of the unit inventory 
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carrying cost.  Here, it was assumed that no backordering was allowed since any 

shortage of parts led to excessively high costs at the assembly plant.   

Ribeiro and Lourenço (2002) investigated an IRP model for two types of 

customers namely the VMI customers and the customer managed inventory (CMI) 

customers. The former customers had a random demand and the distributor managed 

the stock at the customers‟ location.  Meanwhile, the CMI type of customers had a fixed 

demand and there were no inventory costs for the distributor. The results showed that 

the inventory and transportation management in an integration model yielded a better 

performance than its counterpart in the non integrated case.   

Yu et al. (2008) solved a large scale inventory routing problem with split 

delivery (IRPSD) by proposing an approximate model and Lagrangian relaxation. 

Linear programming and a minimum cost flow were used to solve the relaxed problem 

in which the problem was decomposed into an inventory problem and a routing 

problem. It is noted that the demand was deterministic and there was no back ordering 

allowed. 

Huang and Lin (2010) proposed a modified ACO for a multi item inventory 

routing problem where the demand was uncertain. The algorithm was to determine an 

optimal inventory policy and replenishment route. Varying from the traditional ACO, 

their algorithm also calculated neighbours that made use of the pheromone attraction on 

nodes. Their model of IRP was mainly based on the vending machine replenishment 

environment. 

Several IRP with stochastic demands were also studied; for example Campbell 

et al. (1998) and Trudeau and Dror (1992) and together with the literature reviews given 

in Campbell et al. (2002), Campbell and Savelsbergh (2004) and Kleywegt et al. 

(2002a, 2002b, 2004). For a comprehensive review of the IRP the readers are referred to 

Moin and Salhi (2007). 
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4.3 Problem Description 

A distribution network consisting of a depot, an assembly plant and N

geographically dispersed suppliers were considered. Each supplier supplied a distinct 

product to the assembly plant to meet the demand in each period. The problem 

addressed here was based on a finite horizon, multi-period, multi-supplier, and single 

assembly plant, where a fleet of capacitated vehicles housed at a depot transported 

products from the suppliers to meet the demand specified by the assembly plant. At the 

end of each trip, vehicles returned to the depot. No backordering/backlogging was 

allowed. However, if the demand for more than the period‟s demand was collected, the 

inventory was carried forward subjected to the product-specific holding cost incurred at 

the assembly plant, where the demand was assumed to be ready when the vehicle 

arrived. Note that the pick-up quantity should not exceed a vehicle‟s capacity as the 

product was not allowed to be split between different vehicles. The objective was thus 

to minimize the overall transportation and inventory carrying costs over the planning 

horizon. Both the transportation and inventory carrying costs were considered 

concurrently.  

Figure 4.3 illustrates the case of 5 suppliers and 2 periods. In this example, the 

vehicle capacity was considered to be 10. Note that though supplier number 3 required 

2 units in period 1 and 5 units in period 2, a feasible and efficient schedule (depending 

on other cost) was to collect 4 units in period 1and then collect the remainder 3 units in 

period 2, thus saving on the capacity cost for this supplier.  
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Figure 4.3: An example of pick-up routes for the 5 retailer and 2-period problems. 

4.4 Problem Formulation  

 Several assumptions have been made in the model. The assumptions were as  

follows: 

1. No backordering was allowed as the cost would be too excessive.  

2. Split delivery between different vehicles was not allowed. Any supplier could 

only be visited by at most one vehicle. 

3. Quantity collected by each vehicle could not exceed a vehicle‟s capacity. 

4. Product specific holding costs at the assembly plant were given for each part 

type and inventory cost at the suppliers was not considered. The product was 

assumed to be ready when the vehicle arrives. 

5. The number of capacitated vehicles available at the depot was unlimited and 

each vehicle had to return to the depot after the completion of each route. 

6. The positions of the depot, assembly plant, and suppliers were given and fixed.  
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7. The route length for any vehicle was fixed and could not exceed a user specified 

limit.  

8. Transportation costs included a fixed cost for each trip or every time a vehicle 

was initiated plus a variable cost proportional to the travel distance.  

9. Planning horizon was finite and given. 

A mathematical formulation based on Lee et al. (2003) is presented. The following   

notations are introduced first as follows: 

Indices  

},,2,1{ NS   A set of suppliers where supplier i ( )i S supplies product 

i only.  

}0{D  Depot 

}1{  NP  Assembly plant 

},,2,1{ T  Period index 

 

Parameters 

 

C Vehicle capacity 

F Fixed vehicle cost per trip (assumed to be the same for all 

periods) 

V Travel cost per unit distance 

M  Size of the vehicle fleet and it is assumed to be 

(unlimited) 

𝐿 Route Length 

𝐽𝑡  An upper bound on the number of vehicles (trip) in period 

t 

itd  Demand for product from supplier i (at the Assembly 

Plant) in period t  

ijc  
Travel distance between supplier i and j where 

jiij cc   

and the triangle inequality, 
ijkjik ccc  , holds for any 

kji ,,  with ikji  , and jk   
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The mathematical formulation for the IRP can be expressed as: 

 

𝑍 = min 𝑉   𝑐𝑖𝑗    𝑥𝑖𝑗𝑘𝑡

𝐽𝑡

𝑘=1

𝑇

𝑡=1

 + ℎ𝑖   𝐼𝑖𝑡

𝑇

𝑡=0

 

𝑚

𝑖=1

𝑚+1

𝑗=0

𝑚+1

𝑖=0

+ 𝐹  𝑦0𝑘𝑡

𝐽𝑡

𝑘=1

𝑇

𝑡=0

 

           (1a) 

Subject to: 

 0 ≤ 𝑎𝑖𝑘𝑡 ≤ 𝐶 ∙ 𝑦𝑖𝑘𝑡 , ∀𝑖 ∈  1, . . . , 𝑚 , ∀𝑘, ∀𝑡   (1b) 

  𝑎𝑖𝑘𝑡 ≤ 𝐶, ∀𝑘, ∀𝑡𝑘
𝑖        (1c) 

  𝑥𝑖𝑗𝑘𝑡 =  𝑥𝑗 ,𝑖,𝑘,𝑡 = 𝑦𝑖,𝑘 ,𝑡∀𝑖 ∈  1,… ,𝑚 ,    ∀𝑘,   ∀𝑡𝑗𝑗   (1d) 

 𝑢𝑖𝑘𝑡 − 𝑢𝑗𝑘𝑡 +𝑚 ∙ 𝑥𝑖𝑗𝑘𝑡 ≤ 𝑚 − 1, ∀𝑖, 𝑗 ∈  1, . . . , 𝑚 , ∀𝑘, ∀𝑡 (1e) 

 𝐼𝑖𝑡+1 = 𝐼𝑖𝑡 + 𝑎𝑖𝑡 − 𝑑𝑖𝑡 ,   ∀𝑖 ∈  1, . . . , 𝑚 , ∀𝑡   (1f)  

  𝑥𝑖0𝑘𝑡 = 0,∀𝑖 ∈  1,… ,𝑚 ,    ∀𝑘,   ∀𝑡     (1g) 

  𝑥𝑚+1𝑗𝑘𝑡 = 0, ∀𝑗 ∈  1,… ,𝑚 ,    ∀𝑘,   ∀𝑡    (1h) 

  𝑥𝑚+10𝑘𝑡 ≥ 𝑥𝑖𝑗𝑘𝑙 , ∀𝑖, 𝑗 ∈  1,… ,𝑚 + 1 ,    ∀𝑘,   ∀𝑡   (1i) 

   𝑐𝑖𝑗 ∙ 𝑥𝑖𝑗𝑘𝑡 ≤ 𝐿, ∀𝑘,   ∀𝑡𝑖𝑗       (1j)  

  𝐼𝑖𝑡 ≥ 0, ∀𝑖 ∈  1, . . . , 𝑚 , ∀𝑡      (1k) 

  𝑦𝑖𝑘𝑡 ,   𝑥𝑖𝑗𝑘𝑡 ∈  0,1 ,   ∀𝑖, ∀𝑗 ∈  1, . . . , 𝑚 ,∀𝑘, ∀𝑡   (1l) 

The objective function (1a) consisted of fixed plus variable travel cost and also 

the inventory carrying cost. Constraint (1b) ensures that the amount picked up at each 

ih  Inventory carrying cost at the Assembly Plant  for product 

from supplier i per unit product per unit time 

0iI  Initial inventory level of product from supplier i (at the 

Assembly Plant) at the beginning of period 1 

Variables  

ita  Total amount to be picked-up at supplier i in period t 

itI  Inventory level of product from supplier i at the assembly 

plant at the end of period t  
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supplier does not exceed the vehicle capacity. Constraint (1c) ensured that the total 

picked up does not violate the truck capacity. Constraint (1e) served as the sub-tour 

elimination constraint for each truck in each period. The inventory balance equation 

was given by constraint (1f). Constraint (1k) is to make sure that the demand at the 

assembly plant is completely fulfilled without backorder. Constraint (1j) limit the length 

of each route to 𝐿. Constraint (1l) is the binary decision variables. 

Note that a straight forward upper bound on the number of vehicles required in 

each period can be approximated by 𝐽𝑡 =  
  𝑑𝑖𝑡

𝑁
𝑖=1

𝑇
𝑡=1

𝐶
 . The actual number of trips or 

vehicles required was often more than 𝐽𝑡  as the product could not be served by more 

than one vehicle. The minimum number of vehicles required was equivalent to the 

optimal solution of the Bin Packing Problem (Campos et al., 2008). For simplicity of 

terminology, trips and vehicles were interchangeable. One truck could only perform one 

trip in each period. Note that the truck could be reused after it returned to the depot. It is 

also noted that the decision variable 𝑥𝑖𝑗𝑘𝑡  equaled to 1 if truck 𝑘 visited supplier 𝑖, 

followed by supplier 𝑗 in period 𝑡and equaled to 0 if otherwise. And also 𝑦𝑖𝑘𝑡  equaled to 

1 if truck 𝑘 visited supplier 𝑖 in period 𝑡and equaled to 0 if otherwise. 

4.5 Implementation of Metaheuristics for IRP 

 A Variable Neighborhood Search (VNS) metaheuristic was proposed for solving 

the IRP. The results were then compared to the Genetic Algorithms that was developed 

by Aziz and Moin (2007). 

4.5.1 Variable Neighbourhood Search (VNS) 

VNS is based on the exploration of a dynamic neighbourhood model. As 

discussed in Chapter 2, VNS works on the principles that different neighbourhoods 

generate different search topologies (Hansen and Mladenovic, 2001; Blum and Roli, 
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2003). Systematic change of the neighbourhood is applied within a local search 

algorithm. This local search may be applied repeatedly in order to move from the 

incumbent solution.  

As mentioned earlier, IRP comprises of two components: the inventory costs 

which may include the set up cost, and the transportation cost. The transportation cost 

may consist of the variable and the fixed travelling cost. Therefore, IRP attempts to find 

a tradeoff between the inventory and the travelling costs. The choice of a suitable 

neighbourhood structure in IRP is not straight forward. The neighbourhood can be 

defined as the symmetric difference between the different clusters within the same 

period or the symmetric difference between the number of customers who visited in 

each period.  

Neighborhood Structure 

In this research, the neighbourhood structure k , kN , k=1,2,…,kmax is defined as a 

distance function, that is the cardinality of the symmetric difference between any two 

solutions 
1V and 

2V  written as   2121 \, VVVV  . The symmetric difference of two 

solutions is defined as the number of different suppliers that are visited in a period. 

Neighbourhood structure is determined by comparing the number of different suppliers 

that are visited in each period in the planning horizon. In the implementation this is 

achieved, for 𝑁𝑘 ,by selecting randomly k number of suppliers to be removed. Assuming 

that the problem is expressed as a binary matrix (as in the GA) where one 1  indicates 

that the particular supplier will be visited in that particular period and zero 0  

otherwise. Without loss of generality, it is assumed that the initial solution is 

represented by all ones, where collections are made according to the demand in each 

period. Examples of a neighbourhood structure are illustrated in Figures 4.4a and 4.4b. 
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Note that the difference between the examples and the initial solution is one in Figure 

4.4a. 

 

Figure 4.4a: Examples of members in a neighbourhood structure 𝑁1.  
 
 

 

Figure 4.4b: Examples of members in a neighbourhood structure 𝑁2.  

 

Prior to implementing the VNS, the Double Sweep Algorithm (DSA) is applied 

for the clustering and routing of suppliers. The DSA sweeps horizontally emphasizing 

the x-coordinates for the clustering of the suppliers, while the y-coordinates are used to 

carry out the routing. A limited experiment carried out shows that the DSA often 

produces superior results compared to the sweep algorithm of Clarke and Wright 

(1964). The intensification of the search within each period is achieved through the 

implementation of the Generalized Insertion (GENI) method proposed by Gendreau et 

al. (1992). GENI is embedded in the local search.  
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GENI (Generalized Insertion Method) 

The GENI procedure has been introduced by Gendreau et al. (1992) for the TSP. 

The TSP usually requires an insertion of a vertex which can be classified as tour 

construction procedures. Implemented as the tour improvement procedure, the 

algorithm has to be modified when changing positions of the vertices to produce a 

feasible tour.  

Vertex v is introduced first. Note that the insertion of the vertex v into the tour 

not needed to take place between two adjacent vertices is the distinct characteristic of 

GENI. As proposed by Gendreau et al. (1992) there are two types of GENI insertions: 

Type I Insertion and Type II Insertion. Some explanation on Type I and Type II 

Insertions are given and illustrated. For a more detailed explanation on the GENI Type I 

and Type II Insertions can be found in Gendreau et al. (1992). 

Type I Insertion 

There are several assumptions made in Type I Insertion. Those are 𝑣𝑘 ≠ 𝑣𝑖  and 

𝑣𝑘 ≠ 𝑣𝑗 . Assume that the insertion vertex is 𝑣. Inserting vertex𝑣 in the tour 

needs the deletion of arcs  𝑣𝑖 , 𝑣𝑖+1 ,  𝑣𝑗 , 𝑣𝑗+1  and  𝑣𝑘 , 𝑣𝑘+1 . They are then 

replaced by  𝑣𝑖 , 𝑣 ,  𝑣, 𝑣𝑗  ,  𝑣𝑖+1 , 𝑣𝑘  and  𝑣𝑗+1, 𝑣𝑘+1 . And also this implies 

that the two paths  𝑣𝑖+1 , … , 𝑣𝑗   and  𝑣𝑗 +1, … , 𝑣𝑘  are reversed. The insertion 

can be pictured as follows: (Figure 4.5a). 

 

Figure 4.5a: Type I insertion of vertex v between vi and vj. 
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Type II Insertion 

Similar to Type I, several assumptions are made in Type II Insertion. Those are 

𝑣𝑘 ≠ 𝑣𝑗 ,𝑣𝑘 ≠ 𝑣𝑗+1  , 𝑣𝑙 ≠ 𝑣𝑖and 𝑣𝑙 ≠ 𝑣𝑖+1 . Assume that the insertion vertex is 𝑣. 

Inserting vertex𝑣 in the tour needs the deletion of arcs 𝑣𝑖 , 𝑣𝑖+1 ,  𝑣𝑙 , 𝑣𝑙−1 , 

 𝑣𝑗 , 𝑣𝑗+1  and  𝑣𝑘−1 , 𝑣𝑘 . They are then replaced by 𝑣𝑖 , 𝑣 ,  𝑣, 𝑣𝑗  ,  𝑣𝑙 , 𝑣𝑗 +1 , 

 𝑣𝑘−1 , 𝑣𝑙−1  and  𝑣𝑖+1 , 𝑣𝑘 . And also this implies that the two paths  𝑣𝑖+1, … ,

𝑣𝑙−1  and  𝑣𝑙 , … , 𝑣𝑗   are reversed. The insertion can be pictured as follows: 

(Figure 4.5b). 

 

 

 

 

 

 

Figure 4.5b: Type II insertion of vertex v between vi and vj. 
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 GENI algorithms consider every possible insertion in the two possible 

orientations of the tour, which are clockwise and counterclockwise. In Gendreau et al. 

(1992), it was argued that because of the potential number of choices for 𝑣𝑖 , 𝑣𝑗 , 𝑣𝑘 , and 

𝑣𝑙  (only introduced in Type II insertion) on the order of 𝑛4, the search was limited as 

described in the following section. 

 For any vertex 𝑣 ∈  𝑉, define its p-neighbourhood𝑁𝑝(𝑣) as the set of the p 

vertices on the tour closest to v (with respect to the 𝑐𝑖𝑗 ′s). 𝑐𝑖𝑗  can be terms of cost or 

distance.  And if 𝑣 has fewer than pneighbours on the tour, all of them belong to 𝑁𝑝(𝑣). 

Given parameter p, initially vertex𝑣𝑖 , 𝑣𝑗  follows𝑣𝑘  and then𝑣𝑙 , with 𝑣𝑖 , 𝑣𝑗  ∈

 𝑁𝑝(𝑣) ,𝑣𝑘  ∈  𝑁𝑝(𝑣𝑖+1)  , and 𝑣𝑙 ∈  𝑁𝑝(𝑣𝑗 +1). With 𝑣𝑖 ∈  𝑁𝑝(𝑣), all insertions of v will 

be between two consecutive vertices 𝑣𝑖  and 𝑣𝑖+1 . In practice, p is a relatively small 

number. 𝑐𝑖𝑗  is the cost for travelling from city i to city j. 

 However, in this research, only GENI Type I insertion was applied. GENI Type 

II insertion was not suitable as from observation usually after the clustering process of 

using DSA, the number of customers in a vehicle was not more than 6 and Type IIGENI 

required at least 8 customers in general. However, sometimes (but very rare) it was 

observed that there existed more than 6 customers in a vehicle.  

 

The algorithm can be formally stated as follows (VNSIRP):  

Step1 Define 𝑘𝑚𝑎𝑥, the maximum number of neighbourhood structure to be  

explored. 

Step2 Construct an initial solution by finding a set of initial routes with pick-up 

quantities that exactly match the demand in every period. Let this solution 

be represented by x. The initial routes are formed as follows: 

2.1 For each period j, Tj ,,2,1  , arrange the suppliers },,,{ 21 Nsss  and 

the assembly plant }{ 1Ns around the depot )( 0s  such that the y 
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coordinate of the assembly plant is the same as the coordinate of the 

depot. Sort the suppliers  Nsss ,,, 21   in ascending order according to 

their new y coordinate values. Let 
)(is  be the i-th supplier after the sort.  

Set 1i and 1k .  Open a route  kR  and set 0kQ , where kQ  is the 

total pick-up quantity assigned to cluster k.   

2.2 If CdQ ijk  , assign )(is  to route kR , set ijkk dQQ   and ijik da  . 

Otherwise, set 1 kk  and open a new route  kR , assign )(is to kR .  Set 

ijik da   and ikk aQ  .  If mi  , set 1k  and go to Step 2.3.  Otherwise, set 

1 ii  and repeat Step 2.2.   

2.3 {Routing} Sort the suppliers within route kR  according to their x-

coordinate values in ascending order. Let k

is )( be the i
th

 supplier in route

kR after the sort. If the x-coordinate of supplier N+1 is greater than or 

equals to the x-coordinate of supplier 0, form a route that starts at the 

depot 0s , visits suppliers 1|)(|)2()1( ,,,, N

k

R

kk ssss
k

 , and returns to 0s .  

Otherwise, form a route that starts at supplier 𝑠0 , visits suppliers

1)1()1|(||)(| ,,,,  N
kk

R
k
R ssss

kk
   and returns to 𝑠0 . Note that  𝑅𝑘  is the number of 

suppliers on route 𝑅𝑘 . 

Step3 Repeat the following until the stopping condition is met. 

 3.1 Set k=1 

 3.2 Until k=kmax 

3.2.1Shaking: Generate a random solution, x' in the kth neighborhood of 

𝑥 𝑥′ ∈ 𝑁𝑘(𝑥) . This is done in the following manner: 

i. Select randomly k number of suppliers from x. Note that 

the suppliers can be chosen from the same or different 
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periods. 

ii. Identify the period where the supplier is to be moved. If 

the current period is t, then the selected period (to be 

moved) must be between 1and t−1. If suppliers I in period 

t, 𝑡 ∈  2,3,…… , 𝑇  is chosen, then the amount 𝑎𝑖𝑙𝑡  where 

𝑠𝑖 ∈ 𝑅𝑙   is aggregated with 𝑎𝑖𝑘𝑢  where 𝑠𝑖 ∈ 𝑅𝑘 ,𝑢 ∈

{1,2,… , 𝑡 − 1}. If the total amount is greater than the 

vehicle capacity, (𝑎𝑖𝑙𝑡 + 𝑎𝑖𝑘𝑢 > 𝐶), then select a new 

supplier. Otherwise, remove 𝑠𝑖  from 𝑅𝑙   in period t and do 

the following: 

a. If 𝑎𝑖𝑙𝑡 + 𝑎𝑖𝑘𝑢 < 𝐶 and  𝑎𝑝𝑘𝑢 + 𝑎𝑖𝑙𝑡
|𝑅𝑘 |
𝑝=1 ≤ 𝐶, 

update the pick-up amount for 𝑠𝑖  in period 𝑢. 

b. If 𝑎𝑖𝑙𝑡 + 𝑎𝑖𝑘𝑢 < 𝐶 and  𝑎𝑝𝑘𝑢 + 𝑎𝑖𝑙𝑡
|𝑅𝑘 |
𝑝=1 > 𝐶, 

perform GENI to insert 𝑠𝑖  in other routes in period 𝑢. If 

this fails, create a new route for 𝑠𝑖  and remove 𝑠𝑖  from 

route 𝑅𝑘 . 

c. If 𝑎𝑖𝑙𝑡 + 𝑎𝑖𝑘𝑢 = 𝐶 then remove supplier 𝑠𝑖  from 

route 𝑅𝑘 in period 𝑢and create its own route, 

𝑠0 , 𝑠𝑖 , 𝑠𝑁+1, 𝑠0 .  

3.2.2 Local Search: Perform GENI as local search. 

3.2.3 Move or Not: If the local optimum is better than the incumbent, let 

𝑥 = 𝑥"and 𝑘 ← 1: Otherwise set 𝑘 = 𝑘 + 1. 

The number of periods to be transferred was limited to at most two to ensure 

that the tradeoff between the savings in travelling distance and the increase in inventory 

cost was not too high. Note that the reassignment of the pick-up quantity could only be 
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done if the same supplier was visited in the period to be transferred. It was observed 

that if the periods to be transferred differed by more than two from the original period 

then the inventory costs were relatively higher and often produced inferior solutions. 

GENI was used to find local optima within a particular period. This ensured that the 

increase in inventory was offset by the savings in the travelling distance.  

4.5.2 Illustration of Neighbourhood Structure 

 In this section, illustrations are given of the neighbourhood generated by the 

algorithm using a network consisting of 5 suppliers and 5 periods. Let the problem be 

represented as a binary matrix given in Figure 4.6a. The demand and collection matrices 

are given in Figures 4.6 (b and c) whilst the x and y-coordinate and the resultant 

distance matrix are given in Figures 4.6 (d and e). 

 

 

 

 

 

 

 

 

Assuming that the number of vehicles required and the route for each vehicle are 

given in Figure 4.6f, where the vehicle‟s capacity is fixed at 10 units.  

As mentioned earlier, there are three types of neighbourhood that need to be 

considered. For easier understanding the neighbourhood is illustrated with an example. 

 

 

 

 Period 

1 2 3 4 5 

S
u

p
p

li
er

 

1 1 1 0 1 1 

2 1 1 0 1 1 

3 1 0 1 1 1 

4 1 1 1 0 0 

5 1 1 1 0 0 

 
 

Figure 4.6a: Binary matrix         
      representation.  

 Period 

1 2 3 4 5 

S
u

p
p
li

er
 

1 2 4 3 1 2 

2 2 3 3 1 2 

3 2 2 2 2 2 

4 3 1 2 4 3 

5 2 2 2 2 2 

 

Figure 4.6b: Demand  
  matrix. 

 Period 

1 2 3 4 5 

S
u

p
p
li

er
 

1 2 7 0 1 2 

2 2 6 0 1 2 

3 4 0 2 2 2 

4 3 1 9 0 0 

5 2 2 6 0 0 

 

Figure 4.6c: Collection  
 Matrix. 
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 Num. of 

Vehicles 

Routes 

{Suppliers} 

Pick-up 

amount (s) 

P
er

io
d

 

1 2  1,2,5,4  ,  3   9 ,  4  

2 2  1,5,4  ,  2   10 ,  6  

3 3  2  ,  5  ,  4   6 ,  9 ,  2  

4 1  1,2,3   4  

5 1  1,2,3   6  

 

Figure 4.6f: The number of vehicles, routes and the total pick-up amounts for each  

  vehicle. 

 

Figure 4.7 (a), (b) and (c) illustrates the resultant networks that are formed based 

on the conditions considered in generating the respective neighborhood structure. 

Figure 4.7 depict the routes shown in Figure 4.6f.   

 Coordinate 

1 2 

Depot 0 0 
S

u
p
p
li

er
 

1 1 4 

2 3 5 

3 6 5 

4 7 3 

5 4 0 

A.Plant 5 2 

 

Figure 4.6d: Coordinate of  
Depot, Assembly 

Plant, and 
Suppliers. 

 

D
ep

o
t 

Period 

A
.P

la
n
t 

1 2 3 4 5 

Depot 0       

S
u
p
p
li

er
 

1 4.12 0      

2 5.83 2.24 0     

3 7.81 5.10 3.00 0    

4 7.62 6.08 4.47 2.24 0   

5 4.00 5.00 5.10 5.39 4.24 0  

A.Plant 5.39 4.47 3.61 3.16 2.24 2.24 0 

 

Figure 4.6e: Distance matrix. 
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Figure 4.7: Network distribution for the matrix in Figure 4.6. 

 

CASE 1:𝑎𝑖𝑙𝑡 + 𝑎𝑖𝑘𝑢 < 𝐶 and  𝑎𝑝𝑘𝑢 + 𝑎𝑖𝑙𝑡
|𝑅𝑘 |
𝑝=1 ≤ 𝐶 

 

Figure 4.7a: An example of Case 1 where the supplier exists and the affected vehicle is 

not fully occupied. 

 

In Case 1, both the aggregated amount and the total collection do not exceed the 

vehicle‟s capacity. Assume that Supplier 3 from Period 5 is selected and the amount to 

be transferred is 2 units. Since Supplier 3 is visited in Period 4, the total aggregated 

amount is 6 units and this does not exceed the vehicle‟s capacity. The new information 
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D Depot 
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new pick up amount 

in Period 4 and 5 are 

4 and 0 
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is updated and the total capacity in Period 5 is reduced to 4 units. This results in a 

reduced travelled distance at the expense of an increased in the holding cost.  

 

CASE 2: 𝑎𝑖𝑙𝑡 + 𝑎𝑖𝑘𝑢 < 𝐶 and  𝑎𝑝𝑘𝑢 + 𝑎𝑖𝑙𝑡
|𝑅𝑘 |
𝑝=1 > 𝐶 

 

Figure 4.7b: An example of Case 2 where the transfer is merged but the total amount of  

the vehicle exceeds its capacity. 
 

In Case 2, the aggregated amount is less than a vehicle‟s capacity but the total 

amount exceeds the capacity constraint. Assume that Supplier 2 from Period 2 which 

has a pick up amount of 6 units is selected to be removed. The aggregated amount in 

Period 1 is 8 units; however, the total amount on vehicle 1 is 15 units which exceed the 

vehicle‟s capacity. Supplier 2 will be removed and inserted in the other vehicles within 

the same period. Since vehicle 2 cannot accommodate anymore units (it had reached a 

maximum capacity), then a new vehicle is initiated with a new route 0 − 2 − 𝐴𝑃 − 0. 

 

CASE 3:  𝑎𝑖𝑙𝑡 + 𝑎𝑖𝑘𝑢 = 𝐶 

In Case 3, the amount in Period 4 is transferred to Period 3 for Supplier 1. 

Insertion in the existing vehicles in Period 3 is done by using GENI (or Least Insertion 

1 

2 
3 

4 

5 

D 

AP 

new pick up amount 

in Period 1 and 2 are 

8 and 0 
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Method).  Note that in this example, the least possible insertion method is used as the 

GENI method needs at least 3 nodes to apply. Let‟s say the least insertion is in vehicle 1 

with new route [D → 1→5→AP→D] and new pick-up amounts of 7 units. 

 

Figure 4.7c: An example of Case 3 where the amount collected matches the vehicle‟s  

capacity 

4.5.3 Genetic Algorithm (GA) 

The same types of representations that have been used as a comparison to the 

algorithm, VNS are presented. This work has been carried out by Aziz and Moin 

(2007).  

Binary Matrix Representation 

The representation represents a chromosome as a binary matrix of size where N 

is the number of suppliers while T defines the number of periods. Let 






otherwise0

 periodin   visitedSupplier  has  Chromosome if1
),(

jil
jiCh l

 

It is noted that the amount to be collected depends on whether there will be a 

collection in the subsequent period or not.  Since backordering is not allowed, the total 
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2 
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4 

5 

D 

AP 



104 
 

collection from supplier i  in period j  is the sum of all the demands in period 

1,,1,  kjj   where the next collection will be made in period k .  As the initial 

inventory, 0iI  for Ni ,,2,1   is assumed to be zero, the values in the first column 

consist of all ones.  However, the algorithm can be adjusted accordingly if the initial 

inventory for part i is given or known in advance. If all the initial inventories exceed the 

first period demands for all the suppliers, then the first column in the chromosome can 

be generated randomly. 

 
Figure 4.8 illustrates an example of the chromosome representation for a 

problem with 5 suppliers and 5 periods with the demand matrix given in Figure 4.8(a). 

For instance in period 2, only suppliers 4 and 5 are visited as shown in Figure 4.8 (b). 

Note that in column 1, all suppliers are visited as expected (due to the assumption that 

no backlogging is allowed and the initial starting inventory is zero for all suppliers), i.e. 

5,,1,11  ichi . It can be seen that supplier 1 is visited in period 1 and period 3 

where a collection of 4 and 8 units is performed respectively (see Figure 4.8 (c)) with a 

resulting inventory as shown in Figure 4.8 (d). 

Crossover Operator 

The authors employ a two dimensional uniform crossover (modified to suit the 

matrix representation) where a binary mask of size )( TN   is generated randomly for 

each pair of parents.  The position of the ones in the binary mask determines the values 

in the first parent that are transferred to the first offspring and the elements in position 

zeros are obtained from the second parent. A complimentary mask is used to deduce the 

second offspring. The modified uniform crossover is presented in Figure 4.9. Note that 

in both children, period 1 is not affected as all suppliers need to be visited. 



105 
 

For instance, as a value of zero is assigned to crossover mask for supplier 1 in 

period 2, this Child 1 will inherit the gene from Parent 2, which is 1. It is noted that the 

numbers in italic are inherited from Parent 2. 

 

Mutation Operator 

Mutation is a genetic operator, analogous to the biological mutation, which is 

used to maintain genetic diversity from one generation of a population of chromosomes 

to the next. The classic example of a mutation operator involves a probability that an 

arbitrary bit in a genetic sequence will be changed from its original state. The purpose 

of mutation in GAs is to allow the algorithm to avoid local minima by preventing the 

 
Period 

1 2 3 4 5 

S
u
p
p
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1 4 0 8 0 0 

2 8 0 0 4 0 

3 5 0 4 0 2 

4 1 1 2 0 1 

5 4 4 0 0 4 

Figure 4.8c: Collection matrix.  

 
Period 

1 2 3 4 5 
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1 2 2 4 2 2 

2 2 2 4 2 2 

3 2 3 1 3 2 

4 1 1 1 1 1 

5 4 1 2 1 4 

Figure 4.8a: Demand matrix.  

 
Period 

1 2 3 4 5 

S
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1 2 0 4 2 0 

2 6 4 0 2 0 

3 3 0 3 0 2 

4 0 0 1 0 0 

5 0 3 1 0 0 

Figure 4.8d: Inventory matrix. 

 
Period 

1 2 3 4 5 
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1 1 0 1 0 0 

2 1 0 0 1 0 

3 1 0 1 0 1 

4 1 1 1 0 1 

5 1 1 0 0 1 

Figure 4.8b: Binary matrix representation. 

http://en.wikipedia.org/wiki/Genetic_operator
http://en.wikipedia.org/wiki/Biology
http://en.wikipedia.org/wiki/Mutation
http://en.wikipedia.org/wiki/Genetic_diversity
http://en.wikipedia.org/wiki/Chromosome_(genetic_algorithm)
http://en.wikipedia.org/wiki/Bit
http://en.wikipedia.org/wiki/Genome_(genetic_algorithm)
http://en.wikipedia.org/wiki/Local_minimum
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population of chromosomes from becoming too similar to each other, thus slowing or 

even stopping the evolution. This reasoning also explains the fact that most GA systems 

tend to avoid taking the fittest of the population only when generating the next 

chromosome but use rather a random selection (or pseudo-random with a weighting 

towards those that are fitter). 

Figure 4.9: Crossover Operator. 

The classical mutation operator is applied in this research where a random 

variable is generated for each bit in a sequence. If this random number is found to be 

less than the specified mutation rate, then the value of that particular bit will be mutated 

(in this case the value of one will be changed to a zero and vice versa). 

The genetic algorithm for the IRP can generally be divided into four steps which 

include: (i) the generation of the initial population, (ii) the evaluation of the objective 

function that comprises the decoding of the chromosome and applying the double sweep 

algorithm (Lee et al., 2003) to cluster and route the suppliers, (iii) the application of the 
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1 1 0 0 1 0 

2 1 1 1 0 0 

3 1 1 0 0 1 

4 1 0 1 1 0 

5 1 0 0 0 0 

Parent 1 

 Period 

1 2 3 4 5 
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1 1 1 1 1 1 

2 1 1 0 1 0 

3 1 0 1 0 1 

4 1 0 0 0 1 

5 1 1 1 1 1 

Parent 2 

 Period 

1 2 3 4 5 
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1 1 0 1 0 1 

2 0 1 0 1 0 

3 1 0 0 0 1 

4 0 1 0 1 0 

5 0 0 0 1 1 

Crossover Mask 
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1 1 1 0 1 0 

2 1 1 0 0 0 

3 1 0 1 0 1 

4 1 0 0 1 1 

5 1 1 1 0 0 

Child 1 

 Period 

1 2 3 4 5 
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1 1 0 1 1 1 

2 1 1 1 1 0 

3 1 1 0 0 1 

4 1 0 1 0 0 

5 1 0 0 1 1 

Child 2 

http://en.wikipedia.org/wiki/Fitness_(genetic_algorithm)
http://en.wikipedia.org/wiki/Random_variable
http://en.wikipedia.org/wiki/Random_variable
http://en.wikipedia.org/wiki/Random_variable
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genetic operators, and finally (iv) the formation of a new population. This process 

iterates until a suitable stopping criterion is met. 

4.6 Computational Results 

4.6.1 Data 

The data sets taken from Lee et al. (2003) are adapted and modified. The 

original four data sets were S12T14, S20T21, S50T21 and S98T14 that comprised of 

(12 suppliers, 14 periods), (20 suppliers, 21 periods), (50 suppliers, 21 periods) and (98 

suppliers, 14 periods), respectively.  From these data sets, other ten data sets were 

created by varying the number of periods in each planning horizon to represent small, 

medium and large size problems. The 10 datasets are S12T5, S12T10, S20T5, S20T10, 

S20T14, S50T5, S50T10, S50T14, S98T5 and S98T10.  The locations of the suppliers 

for S12T14, S20T21 and S50T21 were generated randomly in a square of 100 × 100. 

The locations of the suppliers for the S20T14 were extended from the S12T14 data sets 

by adding 10 new suppliers. Similarly, the S50T21 suppliers were extended from the 

S20T21 locations and randomly generating the locations of an additional 30 suppliers. 

The S98T14 was based on a real life data and the suppliers were closely located. 

All the data sets, with the exception of S50T21, had demands in every period. 

Some suppliers in the S50T21 data set may not received the demand for their products 

until the later periods. As some of the data sets were extracted from S50T21, it was 

possible that the demand for some of the products was zero. Data sets S50T5 and 

S50T10 consisted of products with zero demand. The suppliers of these products could 

be effectively eliminated from the representation as they would never be visited in the 

planning horizon. 

It is noted that the demands for S98T14 were given in real values and the 

amount varied significantly between each product. The cost per unit distance, fixed cost 



108 
 

and the vehicles‟ capacity were increased to 50, 200 and 400 respectively. It is also 

noted that the demand for each product from one period to the other for this data set was 

constant as this was a common feature in the automotive industry.  

Table 4.1 tabulates the characteristics of the data sets. Note that the depot is 

located at )0,0( for all the data sets and there is no restriction on the number of stops for 

each trip. The scatter plots of the locations of suppliers for each data set are shown in 

Figure 4.10a, Figure 4.10b, Figure 4.10c, and Figure 4.10d respectively. We noted that 

for all cases S12, S20, S50 and S98; the data given is used for all periods: T5 (5 

periods), T10, T14 and T21 (if exist). We also noted that the coordinate of the assembly 

plant for caseS98 was different compared to the Lee et al.(2003) as the coordinate given 

fails to route and violated the route length. The data set is given in Appendix B. 

Table 4.1: Characteristics of the data sets. 

Case S12 S20 S50 S98 

Fixed Cost (F) 20 20 20 200 

Cost per Unit Travelling Distance 1 1 1 50 

Data Set( Lee et al. (2003)) S12T14 S20T21 S50T21 S98T14 

Vehicle Capacity 10 10 10 400 

Maximum Route Length 140 140 140 150 

Range of Holding Costs ]27,3[  ]27,3[  ]9,1[  [1,44] 

Range of Demand for Each Product
* ]4,1[  ]4,1[  ]9,0[  [0.0400, 

393.3300]  

Coordinate of Assembly Plant )20,10(  )20,10(  )20,10(  (42.31, -83.17) 

* See Appendix B. 
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4.6.2 Results and Discussion 

The algorithms for VNS were written in MATLAB whilst the GA was written in 

Microsoft Visual C++ using Genetic Algorithms Library (GAlib) to run the program.   

For GA, the number of generations, crossover rate and mutation rate were fixed 

at 300, 0.9 and 0.01 respectively for all the problems.  The population size was fixed at 

200 individuals (extended to 500 for S98). Each data set was executed ten times for 

each algorithm.  

For VNS, VNSIRP algorithm embedded GENI as a local search. The maximum 

number of neighbourhood or 𝑘𝑚𝑎𝑥 was set at 30. Based on the limited experiments, it 

was observed that if it were too low (eg: 10 or 20) one tended to get trapped in the local 

Figure 4.10a: Scatter plot for S12T14. Figure 4.10b: Scatter plot for S20T21.   

Figure 4.10c: Scatter plot for S50T21.   Figure 4.10d: Scatter plot for S98T14. 
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search, and if it were too high (e.g.: 50 until 120), the final results generated were 

comparable to 𝑘𝑚𝑎𝑥 = 30. The number of changes that can be applied cannot exceed 

𝑚𝑎𝑥_𝑃𝑒𝑟𝑖𝑜𝑑−1 ×  𝑚𝑎𝑥⁡_𝑆𝑢𝑝𝑝𝑙𝑖𝑒𝑟, where 𝑚𝑎𝑥_𝑃𝑒𝑟𝑖𝑜𝑑 was the maximum number 

of periods, and 𝑚𝑎𝑥_𝑆𝑢𝑝𝑝𝑙𝑖𝑒𝑟 was the maximum number of suppliers respectively. 

Note that all suppliers will receive delivery in the first period. The local search, GENI 

method was applied by considering insertion in both orientations. The number of 

neighbours in each 𝑁𝑘  was limited to 10.  

 Table 4.2 presents the best results based on the total cost for each data set.  The 

mean, standard deviation and the percentage difference between the best solutions for 

each data set is presented in Table 4.3.  In Table 4.2 it is observed that VNS produced 

better results for all cases except for case S98T10. For small cases S12, VNS were able 

to give results in good cpu time. However, for bigger cases we observed that longer 

time is needed to obtain the results.  

 
Table 4.2: Characteristics of the best results for 14 data set. 

DATA SET Total Cost 
Total 

Distance 
Inventory 

Cost 
# Vehicles CPU time 

 

S12T5      

GA 2813.6 1748.6 765 15 1033 

VNS 2116.69772 1575.69772 261 14 184.59598 

 

S12T10      

GA 5138.7 3852.7 666 31 1422 

VNS 4400.44429 3411.444293 369 31 437.66081 

 

S12T14      

GA 6463.9 4843.9 780 42 1253 

VNS 6301.09489 4903.094894 498 45 533.86662 

 

S20T5      

GA 4019.9 2543.9 996 24 977 

VNS 3214.66361 2389.663606 345 24 1200.7709 

 

S20T10      

GA 9530.5 6181.5 2289 53 1960 

VNS 6689.00211 5019.002108 690 49 2384.88089 
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Table 4.2: Continued. 

DATA SET Total Cost 
Total 

Distance 

Inventory 

Cost 
# Vehicles CPU time 

 

S20T14      

GA 10921 7733.4 1788 70 3050 

VNS 9575.98166 7210.981663 1005 68 6901.06304 

 

S20T21      

GA 15254 11239 1935 104 3651 

VNS 14498.3236 10953.32362 1425 106 6029.84425 

 

S50T5      

GA 5729.6 4336.6 453 47 2559 

VNS 5448.79888 4258.798879 270 46 15920.9785 

 

S50T10      

GA 12081.1 8868.1 1213 100 3630 

VNS 11493.5814 8908.581376 545 102 57054.6513 

 

S50T14      

GA 17521 12727 1934 143 7405 

VNS 16699.2071 13089.20708 650 148 70968.0685 

 

S50T21      

GA 27189 19508 3281 220 8708 

VNS 25520.636 20015.63603 1005 225 47699.8954 

 

S98T5      

GA 622282.2 12055.62789 6900.85 63 6211.688 

VNS 614969.003 12001.76965 2.08E+03 64 4795.377 

 

S98T10      

GA 1227730 23618.67115 22196.24 123 20830.47 

VNS 1238072.3 24184.95692 3024.50000 129 11125.742 

 

S98T14      

GA 1748293 33642.90853 31147.38 175 40951.13 

VNS 1737358.2 33953.80804 3467.7500 181 24589.923 
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Table 4.3: Results in terms of best total cost, mean, standard deviation and percentage  

for the 14 data sets. 
 

DATA SET Best Mean 
Standard 

Deviation 

Percentage  

Difference 
     

S12T5     

GA 2813.6 2874.05 33.75240732 
32.92403 

VNS 2116.69772 2220.682552 53.46672405 
     

S12T10     

GA 5138.7 5254.36 69.75471629 
16.77684 

VNS 4400.44429 4602.540375 99.8780332 
     

S12T14     

GA 6463.9 6524.57 62.0473305 
2.583759 

VNS 6301.09489 6518.409439 118.7918287 
     

S20T5     

GA 4019.9 4130.33 64.64047666 
25.04885 

VNS 3214.66361 3291.6613 47.48976733 
     

S20T10     

GA 9530.5 9760.74 139.1531067 
42.48015 

VNS 6689.00211 6905.192298 110.2097406 
     

S20T14     

GA 10921 11339.43 267.8343727 
14.04575 

VNS 9575.98166 9889.577845 175.1161491 
     

S20T21     

GA 15254 15572.9 167.2951152 
5.212164 

VNS 14498.3236 14794.60764 174.1445678 
     

S50T5     

GA 5729.6 5808.87 57.28982943 
5.15345 

VNS 5448.79888 5556.953049 60.05909385 
     

S50T10     

GA 12081.1 12342.23 156.4574848 
5.11171 

VNS 11493.5814 11779.95515 196.7903542 
     

S50T14     

GA 17521 17727.9 127.3529217 
4.921149 

VNS 16699.2071 16904.2173 126.647619 
     

S50T21     

GA 27189 27415.6 160.1653312 
6.537314 

VNS 25520.636 25957.79358 267.1046518 
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Table 4.3: Continued. 

DATA SET Best Mean Standard 

Deviation 

Percentage 

Difference 

 

S98T5     

GA 622282.2 627889.2 6216.909 
1.189198 

VNS 614969.0026 621393.77 5625.8505 
     

S98T10     

GA 1227730 1251571 12671.58 
0.842396 

VNS 1238072.346 1243025.22 4762.692796 
     

S98T14     

GA 1748293 1760186 11384.16 
0.629395 

VNS 1737358.152 1744193.9 3774.7856 
     

 

4.7 Enhanced Variable Neighbourhood Search (EVNS) 

Some modifications are introduced to improve the results obtained. A pre-

optimization step (Step 2a) is introduced after the clustering and routing was performed 

by the double sweep algorithm (DSA). In addition a different neighbourhood structure 

was introduced in search for a better solution as selecting the best neighbourhood 

structure was very crucial. In the first algorithm, GENI was performed only during an 

insertion procedure if the sum of the pick-up quantity for the respective supplier 

exceeded the vehicle‟s capacity. Performing the DSA produced deterministic results 

where there were not many variations between solutions, resulting in not much 

improvement in the overall solutions obtained.  

In order to improve the solution, in Step 3.2.1 part ii (b) contraction was 

performed to identify the suppliers to be removed from the route prior to performing 

GENI. The function of a contraction was to contract the feasible solution by removing 

one or more suppliers on the route in order to accommodate the additional increase in 

the total pickup quantity for supplier 𝑠𝑖 . The supplier to be removed was selected among 

the suppliers contributing the most to the transportation cost from a poorly utilized route 
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(Lee et al., 2003). The quality of a route was measured by the ratio of the length of the 

route to the total pickup quantity. A long route with a small pickup quantity was 

considered poorly utilized and was very likely to be removed. The ratio was calculated 

for all the suppliers on route 𝑅𝑘  and the supplier with the maximum ratio was selected 

to be removed.  The selected supplier to be removed would be inserted in other routes in 

period 𝑢 using GENI.  

The second modification was made by adding the selected supplier, if it was not 

visited in the preceding two periods. Again GENI (or the Least Cost Method if the 

number of suppliers was less than 3 on the existing route) was utilized to insert the 

supplier in the existing routes. If this failed due to the violation of constraints, a new 

route would be initiated. Finally, the local search was modified where a simple nearest 

neighbour method was employed to replace the more time consuming GENI. 

Step 3.2. is modified as follows: 

Step 3.2 :  Until k=kmax 

3.2.1 Shaking: Generate a random solution, x' in the kth neighborhood of 

𝑥 𝑥′ ∈ 𝑁𝑘(𝑥) . This is done in the following manner: 

i. Select randomly k number of suppliers from x. Note that the suppliers 

can be chosen from the same or different periods. 

ii. Identify the period where the supplier is to be moved. If the current 

period is t, then the selected period (to be moved) must be between 

1and t−1. If suppliers I in period t,𝑡 ∈  2,3,…… , 𝑇 is chosen, then the 

amount 𝑎𝑖𝑙𝑡  where 𝑠𝑖 ∈ 𝑅𝑙   is aggregated with 𝑎𝑖𝑘𝑢  where 𝑠𝑖 ∈ 𝑅𝑘 ,𝑢 ∈

{1,2,… , 𝑡 − 1}. If the total amount is greater than a vehicle’s 

capacity, (𝑎𝑖𝑙𝑡 + 𝑎𝑖𝑘𝑢 > 𝐶), then select a new supplier. Otherwise, 
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remove 𝑠𝑖  from 𝑅𝑙   in period t and do the following: 

(a) If 𝑎𝑖𝑙𝑡 + 𝑎𝑖𝑘𝑢 < 𝐶 and  𝑎𝑝𝑘𝑢 + 𝑎𝑖𝑙𝑡
|𝑅𝑘 |
𝑝=1 ≤ 𝐶, update the pickup 

amount for 𝑠𝑖  in period 𝑢. 

(b) If 𝑎𝑖𝑙𝑡 + 𝑎𝑖𝑘𝑢 < 𝐶 and  𝑎𝑝𝑘𝑢 + 𝑎𝑖𝑙𝑡
|𝑅𝑘 |
𝑝=1 > 𝐶,  

 Update the pick-up amount for 𝑠𝑖  in period 𝑢.   

 Perform contraction by choosing the maximum ratio of 

𝑟𝑖 = 𝑐𝑝𝑖 + 𝑐𝑖𝑚 − 𝑐𝑝𝑚 /𝑎𝑖𝑡  , where p immediately precedes 

i, supplier m immediately succeeds supplier i and 𝑎𝑖𝑡   the 

pickup quantity of supplier i. 

 Remove the selected supplier and insert in other routes 

using GENI. If no route can accommodate the supplier 

due to violation of constraints, initiate a new vehicle.  

(c) If 𝑎𝑖𝑙𝑡 + 𝑎𝑖𝑘𝑢 = 𝐶 then remove supplier 𝑠𝑖  from route 𝑅𝑘  in 

period 𝑢and create its own route, 𝑠0 , 𝑠𝑖 , 𝑠𝑁+1 , 𝑠0. 

(d) If  𝑠𝑖  is not visited in the two preceding periods, add 𝑠𝑖  to the tour 

and insert into one of the existing vehicles using Least Cost 

Method. If this fails due to violation of constraints, initiate a new 

vehicle. 

3.2.2 Local Search: Perform nearest neighbor as local search.  

3.2.3 Move or Not: If the local optimum is better than the incumbent, let 𝑥 = 𝑥" 

and 𝑘 ← 1: Otherwise set 𝑘 = 𝑘 + 1 

4.7.1 Computational Results 

In order to compare with the analytical results using the mathematical 

programming software CPLEX version 11.1, the route length constraint (constraint (1j)) 
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was removed from the formulation given in Section 4.3 and reformulated using the 

network flow approach where the index for the number of vehicles is omitted. CPLEX 

was not able to produce significant solutions if the route length was not removed. The 

new formulation is given as follows: 
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It is noted that all the previous notations remain the same except for 𝑥𝑖𝑗𝑡  and 𝑞𝑖𝑗𝑡  

which represent the number of times that the directed arc (𝑖, 𝑗) is traversed by vehicles 

in period 𝑡 and the quantity transported through the directed arc (𝑖, 𝑗) in period 𝑡 

respectively.     

 The objective function (2a) comprises both inventory costs and the 

transportation cost (variable travel costs and vehicle fixed cost. The fixed transportation 

cost consists of fixed cost incurred per trip and the constant cost of vehicles returning to 

the depot from assembly plant. Constraint (2b) is the inventory balance equation for 

each product at assembly plant. (2c) is the product flow conservation equations, 

assuring the flow balance at each supplier and eliminating all subtours.  (2d)   assures  

the accumulative  picked-up  quantities at the assembly plant and (2e)  and (2f)  ensure 

that the number of vehicles leaving a supplier, assembly plant or  the depot is equal to  

the number of its  arrival vehicles. Note that constraint (2f) is introduced because each 

vehicle has to visit the plant before returning to the depot. (2g) guarantees that the 

vehicle capacity is respected and gives the logical relationship between qijt and xijt 

which allows for split pick-ups. (2h) is to make sure that the demand at the assembly 

plant is completely fulfilled without backorder. The remaining constraints are the 

nonnegativity constraints. 

4.7.2 Selection of Neighborhood 

The number of maximum neighborhood structure explored was given by 

𝑘𝑚𝑎𝑥 = min  
1

4
 𝑇 × 𝑁 , 100   where 𝑇 and 𝑁  are the maximum number of periods and 

the maximum number of suppliers respectively. This is to ensure that the algorithm do 

not waste a lot of computational time unnecessarily. Number of neighbors used in each 

𝑘𝑡ℎ  neighborhood structure is 100, it is chosen based on the limited number of 

experiments carried out. It is noted that if the number of neighbors explored was too 
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small, the results obtained are poor as there is too little variation and it cannot escape 

from the local optimum. And if it was too big a lot of time was spent exploring 

neighbors that are further away from the incumbent solution. Additional condition was 

also imposed on the stopping criteria where the time spent between two successive 

improvements is set to 60 minutes. In other words if there were no other improvements 

the programme was terminated and the last solution found was accepted as the best 

solution. 

4.7.3 Results and Discussions 

It is noted that EVNS1 incorporated 2-opt in the pre-optimization stage and in 

local search whilst EVNS2 incorporated3-opt in the pre-optimization stage and in the 

local search. The algorithms were run for 10 times each for all the 14 test cases with 

100 members and CPLEX were run for a minimum of 3600 seconds. The results for 

VNSIRP1 and VNSIRP2 are shown in Table 4.4 where the best results for VNSIRP1 

and VNSIRP2 were compared with the lower bound and the best integer found obtained 

using CPLEX software. CPLEX fails to find significant solutions for S50T21, S98T10 

and S98T14. The best results using EVNS are given in bold. The results for EVNS2 

were not better compared to EVNS1. And it was also observed that as the number of 

suppliers in each vehicle was small, not much improvement could be benefitted from 3-

opt.  

Detailed results using the number of neighborhood equals to 100 and 50 are 

given in Table 4.5. The results are the best of 10 runs and they are significantly better 

using 𝑁𝑘 = 100 compared to 𝑁𝑘 = 50. It is shown that a too low number of neighbours 

will be trapped in Local Search. This is however at the expense of higher computational 

times. The best results are given in bold.  
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Table 4.4 : Results for Lower Bound, EVNS1 with 2 –opt and also EVNS2 with 3-opt. 
  

*     Incomplete optimization. 
**   The programmes fail to produce any feasible solution. 

Data 
Lower 

Bound 

Best Integer 

 
Gap 

((BI-

LB)/LB)(

%) 

EVNS1 

(2 opt) 

# 

veh 
Time (secs) 

EVNS2 

(3 opt) 

# 

veh 
Time (secs) 

Objective 

# of 

vehicle

s 

Time 

(secs) 

     

S12T5 1819.1115 1885.2965 14 2340 3.51% 2076.09 14 78.5153 2101.048 15 66.47203 

S12T10 3634.0350 3752.6392 27 3600 3.16% 4280.83 30 280.9578 4349.239 31 194.2369 

S12T14 5350.2538 5556.5428 39 3600 3.71% 6111.22 44 605.50228 6216.60 45 610.8843 

     

S20T5 2790.2284 2883.6062 21 3600 3.24% 3201.7 21 425.99193 3209.261 22 406.367 

S20T10 5601.1254 5919.1889 44 3600 5.37% 6591.03 45 1494.92638 6627.951 46 1319.612 

S20T14 7829.6439 8602.6161 64 2580 8.99% 9289.89 64 2778.53381 9386.829 65 3074.78 

S20T21 11771.7433 12779.0943 94 2520* 7.88% 14228.2 97 4737.98437 14215.68 99 4916.559 

     

S50T5 4735.3188 5425.1222 46 3600 12.71% 5390.36 47 2352.71348 5464.526 47 2226.883 

S50T10 9815.8714 10863.7864 99 3600 9.65% 11413.5 101 5189.88807 11699.09 101 4136.476 

S50T14 14017.6983 16618.3996 143 3600 5.65% 16344.9 142 7589.77625 16467.00 144 7649.415 

S50T21 21485.253837 
No solution 

given 
 3600  25248.5 223 17230.24805 25415.48 221 15392.54 

     

S98T5 548104.9499 581951.8482 58 7200 5.82% 605655.2 63 5769.12 623726.7 65 6630.078 

S98T10 1095020.4528 9582506.321
*
   88.57% 1211830 126 18739.01 1230213.92 128 9611.00321 

S98T14 
** 

    1718750 179 48079.18 1728678.64 180 51529.71 
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Table 4.5 : The results run for all 14 cases using EVNS1, with different number of neighbours. 

 
 

 
num_of_neigh= 100 

    
num_of_neigh= 50 

  

             

 
Total cost Vehicle 

Holding 

Cost 
Distance Time 

  
Total cost Vehicle 

Holding 

Cost 
Distance Time 

S12T5 2076.0939 14 174 1622.093916 78.5153 
 

S12T5 2132.490616 15 117 1715.490616 40.06106 

S12T10 4280.8289 30 312 3368.828883 280.9578 
 

S12T10 4417.578385 30 417 3400.578385 154.285 

S12T14 6111.2243 44 381 4850.224312 605.5023 
 

S12T14 6233.891105 45 363 4970.891105 280.4118 

S20T5 3201.7007 21 270 2511.700729 425.9919 
 

S20T5 3234.785508 22 243 2551.785508 187.092 

S20T10 6591.0328 45 450 5241.032816 1494.926 
 

S20T10 6690.759043 46 459 5311.759043 713.9854 

S20T14 9289.8891 64 849 7160.889131 2778.534 
 

S20T14 9448.999249 65 747 7401.999249 1514.645 

S20T21 14228.16 97 996 11292.15995 4737.984 
 

S20T21 14218.08372 100 1089 11129.08372 3554.686 

S50T5 5390.3574 47 185 4265.357386 2352.713 
 

S50T5 5494.303073 48 149 4385.303073 1200.662 

S50T10 11413.509 101 439 8954.509383 5189.888 
 

S50T10 11546.9774 102 417 9089.977396 4006.542 

S50T14 16344.866 142 649 12855.86649 7589.776 
 

S50T14 16652.11541 145 368 13384.11541 4917.822 

S50T21 25202.282 223 798 19944.28236 15544.24 
 

S50T21 25618.02256 225 683 20435.02256 8641.535 

S98T5 605655.16 63 2.46E+03 11811.89355 5769.12 
 

S98T5 614720.84 64 1.35E+03 12011.4168 4416.33 

S98T10 1211830.4 126 4.48E+03 23643.09438 18739.01 
 

S98T10 1229395.68 128 3.29E+03 24010.1136 11234.006 

S98T14 1718749.5 179 5.02E+03 33558.62773 48079.18 
 

S98T14 1702925.976 177 7.45+E03 33201.43952 26039.499 
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In this research, the entire VNS algorithm for all cases was coded using 

MATLAB 7.5 and run on Intel Core 2 Duo processor with 4Ghz speed while GA was 

coded using C++ software and GALib for the GA operators. To obtain the results,  the 

data set was executed not less than ten times. 

4.8 Conclusion 

As a conclusion, selecting of neighbourhood structure was very crucial and had 

to be suitable with the problems. For a smaller problem, it was easy to choose. But for a 

bigger problem, a lot of considerations had to be made, for example less complicated 

structure, not too complex and hard to apply structure. However, a too simple structure 

would not give a good solution either.  

Choosing the correct local search was also very crucial and had to be suitable 

with the problem. A very complicated local search used in this research, GENI was 

good with an increase in the running cpu time. Applying a more complicated local 

search 3-optdid not provide the expected results as the number of vehicles used in a trip 

was not much to give a variety in the search.  

Applying 2-opt as the pre optimization and also in the local search was shown to 

be the best way in solving IRP. Along with it, was the use of GENI as the fundamental 

in the neighbourhood structure. However, the results obtained were quite far compared 

to the best objective found by CPLEX.  

 

 

 

 

 

 

  




