PRICING OF AMERICAN CALL OPTIONS USING SIMULATION AND NUMERICAL ANALYSIS

BEH WOAN LIN

FACULTY OF SCIENCE UNIVERSITY OF MALAYA KUALA LUMPUR

PRICING OF AMERICAN CALL OPTIONS USING SIMULATION AND NUMERICAL ANALYSIS

BEH WOAN LIN

THESIS SUBMITTED IN FULFILLMENT OF THE REQUIREMENT FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

INSTITUTE OF MATHEMATICAL SCIENCES FACULTY OF SCIENCE UNIVERSITY OF MALAYA KUALA LUMPUR

ABSTRACT

Consider the American basket call option in the case where there are N underlying assets, the number of possible exercise times prior to maturity is finite, and the vector of asset prices is modeled using a Levy process. A numerical method based on regression and numerical integration is proposed to estimate the prices of the American options. In the proposed method, we make use of the distribution for the vector of asset prices at a given time t in the future to determine the "important" values of the vector of asset prices of which the option values should be determined. In determining the option values at time t, we first perform a numerical integration along the radial direction in the N-dimensional polar coordinate system. The value thus obtained is expressed via a regression procedure as a function of the polar angles, and another numerical integration is performed over the polar angles to obtain the continuation value. The larger value of the continuation value and the immediate exercise value will then be the option value. A method is also proposed to estimate the standard error of the computed American option price.

ABSTRAK

Pertimbangkan opsyen Amerika jenis *basket call* dalam kes ketika ada N aset yang terlibat, jumlah kali pelaksanaan yang mungkin sebelum kematangan adalah terhingga, dan vektor harga aset dimodelkan dengan menggunakan proses Levy. Suatu kaedah berangka berasaskan regresi dan pengamilan berangka dicadangkan untuk menilai harga opsyen Amerika. Dalam kaedah yang dicadangkan, kita menggunakan taburan bagi vektor harga aset pada suatu masa hadapan t untuk menentukan nilai "penting" dari vektor harga aset yang mana nilai opsyen harus ditentukan. Dalam menentukan nilai opsyen pada masa t, kita mula-mula melakukan pengamilan berangka sepanjang arah jejari dalam sistem koordinat polar N-dimensi. Nilai yang diperolehi kemudian diungkapkan dengan menggunakan tatacara regresi sebagai fungsi bagi sudut kutub, dan satu lagi pengamilan berangka dilakukan terhadap sudut kutub untuk mendapatkan nilai lanjutan opsyen. Kemudian nilai yang lebih besar antara nilai lanjutan opsyen dan nilai perlaksanaan opsyen serta-merta merupakan nilai opsyen Amerika.

ACKNOWLEDGEMENTS

First and foremost I offer my sincerest gratitude to my supervisors, Professor Dr. Pooi Ah Hin and Professor Dr. Goh Kim Leng, who have supported me throughout my thesis with their patience, knowledge and support. Without their encouragement and effort, this thesis would not have been completed or written. One simply could not wish for better or friendlier supervisors.

I also thank the Department of Mathematics lab staff, especially Miss Ng Lee Leng. I would like to express my gratitude to all those who have supported me in any respect during the course of my research.

My special appreciation goes to my family members, especially my husband, Cheang Tze Kin, and my son Cheang Yong En, who was born before this dissertation was completed. Thanks for their supporting and encouraging me to pursue this degree. Without my husband's encouragement, I would not have finished the degree.

Finally, I would like to express special thanks to my parents, especially my mother, for looking after my son at a moment's notice and for all her encouragement and profound understanding.

TABLE OF CONTENTS

ABSTRAK		iii
ABSTRACT		iv
ACKNOWLEDGEMENTS	5	v
TABLE OF CONTENTS		vi
LIST OF FIGURES		ix
LIST OF TABLES		xvi
CHAPTER 1	INTRODUCTION	1
1.1	Background	1
1.2	Overview of Methods for Pricing American	
	Options	2
1.3	Introduction to the Thesis	5
1.4	Layout of the Thesis	7
CHAPTER 2	DISTRIBUTION FOR ASSET PRICES AT	
	A GIVEN TIME	8
2.1	Introduction	8
2.2	N-Dimensional Brownian Motion for Asset Prices	8
2.3	Levy Process	9
2.4	Multivariate Quadratic-Normal Distribution of	
	Asset Prices	11
2.5	Numerical Examples	14

CHAPTER 3 PRICING OF AMERICAN CALL OPTIONS ON

		TWO ASSETS	21
	3.1	Introduction	21
	3.2	Pricing of European Call Options on N Assets	22
	3.3	Pricing of American Call Options Using Numerical	
		Integration	27
	3.4	Pricing of American Call Options Using Simulation	ı 34
	3.5	Numerical Results	37
	3.6	Concluding Remarks	38
CHAPTER	4	PRICING HIGH-DIMENSIONAL AMERICAN	
		CALL OPTIONS	39
	4.1	Introduction	39
	4.2	Pricing of American Call Options on N Assets	
		Where N>2	39
	4.3	Pricing of American Call Options Using Simulation	ı 57
	4.4	Numerical Examples	61
CHAPTER	5	STANDARD ERROR OF THE COMPUTED	
		PRICE OF AN AMERICAN OPTION	78
	5.1	Introduction	78
	5.2	Estimation of the Standard Error	78
	5.3	Estimation of the Standard Error of the Price	
		of An American Option When N=3	81
	5.4	Estimation of the Standard Error of the Price	
		of An American Option When N=6	92
CHAPTER	6	CONCLUSIONS	101

vii

REFERENCES

119

LIST OF FIGURES

Figure 1.1.1	The payoff function of a call option	2
Figure 1.1.2	The payoff function of a put option	2
Figure 2.5.1	The comparison of the cumulative probability function of $\tilde{v}_i^{(100)}$ found by simulation and the numerical procedure (n.p.) for i=1, 2, 3.	15
Figure 2.5.2	The comparison of the cumulative probability function of $\tilde{v}_i^{(100)}$ found by simulation and the numerical procedure (n.p.) for i=1, 2, 3.	17
Figure 2.5.3	The comparison of the cumulative probability function of $\tilde{v}_i^{(100)}$ found by simulation and the numerical procedure (n.p.) for i=1, 2,, 6.	20
Figure 3.3.1	Computed and fitted quadratic function of $Q(t_{k^*}, \mathbf{x}^{(k^*)})$ at $\tilde{\theta}^{(k^*)} = 0^\circ$. [Exercise dates are 1/365, 2/365,, 10/365, r=0.05, K=54, $\rho = 0.01$ and $a_1 = a_2 = 0.5$, the fitted function is y=0.0661 x ² -0.5719x+1.0976, other parameters are as given in Table 3.3.1]	29
Figure 3.3.2	Computed and fitted quadratic function of $Q(t_{k^*}, \mathbf{x}^{(k^*)})$ at $\tilde{\theta}^{(k^*)} = 180^\circ$. [Exercise dates are 1/365, 2/365,, 10/365, r=0.05, K=54, $\rho = 0.01$ and $a_1 = a_2 = 0.5$, the fitted function is y=0.0071 x ² +0.4518x+1.0646, other parameters are as given in Table 3.3.1]	30
Figure 3.3.3	Computed and fitted quadratic function of $Q(t_{k^*}, \mathbf{x}^{(k^*)})$ at $\tilde{\theta}^{(k^*)} = 30^\circ$. [Exercise dates are 1/365, 2/365,, 10/365, r=0.05, K=54, $\rho = 0.01$ and $a_1 = a_2 = 0.5$, the fitted function is y=0.0008 x ² -0.0905x+1.0646, other parameters are as given in Table 3.3.1]	30

Computed and fitted quadratic function of $Q(t_{k^*}, \mathbf{x}^{(k^*)})$ at Figure 3.3.4 $\tilde{\theta}^{(k^*)} = 210^{\circ}.$ [Exercise dates are 1/365, 2/365,..., 10/365, r=0.05, K=54, $\rho = 0.01$ and $a_1 = a_2 = 0.5$, the fitted function is $y=0.0069 x^{2}+0.0905x+1.0646$, other parameters are as given in Table 3.3.1] 31 Computed and fitted values of $Q(t_{k^*}, \mathbf{x}^{(k^*)})$ Figure 4.2.1 [N=3, Quadrant number=1, exercise dates are 1/365, 2/365,..., 10/365, r=0.05, K=46, $(\tilde{\theta}_1^{(k^*)}, \tilde{\theta}_2^{(k^*)}) = (0^\circ, 0^\circ), (n_v, n_r) = (20, 30),$ fitted function is $y=0.02089x^2+0.65561x+1.04905$, other parameters are as given in Tables 4.2.2 and 4.2.3] 44 Computed and fitted values of $Q(t_{k^*}, \mathbf{x}^{(k^*)})$ Figure 4.2.2 [N=3, Quadrant number=8, exercise dates are 1/365, 2/365,..., 10/365, r=0.05, K=46, $(\tilde{\theta}_1^{(k^*)}, \tilde{\theta}_2^{(k^*)}) = (74^\circ, 11^\circ), (n_v, n_r) = (20, 30),$ fitted function is $y=0.003835x^2-0.41564x+1.04905$, other 44 parameters are as given in Tables 4.2.2 and 4.2.3] The fitted and computed values of the coefficient $\tilde{c}_0^{(k^*)}$ of Figure 4.2.3 $Q(t_{k^*}, \mathbf{x}^{(k^*)})$ [N=3, Quadrant number=1, exercise dates are 1/365, 2/365,..., 10/365, r=0.05, K=46, (n_v, n_r)=(20, 20), (20, 25), (20, 30), the fitted equations for $\tilde{c}_{0}^{(k^{*})}$ is $\tilde{c}_{0}^{(k^{*})} = 1.0491 - (5.00\text{E} - 16)\tilde{\theta}_{1}^{(k^{*})}$ $-(4.44\text{E}-16)\widetilde{\theta}_{2}^{(k^{*})} - (1.30\text{E}-18)\widetilde{\theta}_{1}^{(k^{*})}\widetilde{\theta}_{2}^{(k^{*})} - (8.67\text{E}-19)[\widetilde{\theta}_{1}^{(k^{*})}]^{2}$ + $(3.47E-18)[\tilde{\theta}_{2}^{(k^{*})}]^{2}$, other parameters are as given in Tables 4.2.2 and 4.2.3] 45 The fitted and computed values of the coefficient $\tilde{c}_{1}^{(k^{*})}$ of Figure 4.2.4 $Q(t_{k^*}, x^{(k^*)})$ [N=3, Quadrant number=1, exercise dates are 1/365, 2/365,..., 10/365, r=0.05, K=46, (n_v, n_r)=(20, 20), (20, 25), (20, 30), the fitted equations for $\tilde{c}_1^{(k^*)}$ is $\tilde{c}_1^{(k^*)} = 0.648 + 0.0032\tilde{\theta}_1^{(k^*)} + 0.0023\tilde{\theta}_2^{(k^*)}$ $-(1.50E - 06)\tilde{\theta}_1^{(k^*)}\tilde{\theta}_2^{(k^*)} - (8.89E - 05)[\theta_1^{(k^*)}]^2 - (3.21E - 05)[\theta_2^{(k^*)}]^2$

other parameters are as given in Tables 4.2.2 and 4.2.3]

46

х

- Figure 4.2.5 The fitted and computed values of the coefficient $\tilde{c}_{2}^{(k^*)}$ of $Q(t_{k^*}, \mathbf{x}^{(k^*)})$ [N=3, Quadrant number=1, exercise dates are 1/365, 2/365,..., 10/365, r=0.05, K=46, (n_v, n_r)=(20, 20), (20, 25), (20, 30), the fitted equations for $\tilde{c}_{2}^{(k^*)}$ is $\tilde{c}_{2}^{(k^*)} = 0.02159 - (2.57E - 04)\tilde{\theta}_{1}^{(k^*)}$ $+ (1.02E - 05)\tilde{\theta}_{2}^{(k^*)} + (1.86E - 06)\tilde{\theta}_{1}^{(k^*)}\tilde{\theta}_{2}^{(k^*)} + (1.64E - 07)[\tilde{\theta}_{1}^{(k^*)}]^2$ $+ (2.07E - 07)[\tilde{\theta}_{2}^{(k^*)}]^2$, other parameters are as given in Tables 4.2.2 and 4.2.3]
- Figure 4.2.6 The fitted and computed values of the coefficient $\tilde{c}_{0}^{(k^*)}$ of $Q(t_{k^*}, \mathbf{x}^{(k^*)})$ [N=3, Quadrant number=4, exercise dates are 1/365, 2/365,..., 10/365, r=0.05, K=46, (n_v, n_r)=(20, 20), (20, 25), (20, 30), the fitted equations for $\tilde{c}_{0}^{(k^*)}$ is $\tilde{c}_{0}^{(k^*)} = 1.049 + (0E + 00)\tilde{\theta}_{1}^{(k^*)} - (2.22E - 16)\tilde{\theta}_{2}^{(k^*)}$ $+ (0.E + 00)\tilde{\theta}_{1}^{(k^*)}\tilde{\theta}_{2}^{(k^*)} - (3.93E - 19)[\tilde{\theta}_{1}^{(k^*)}]^2 + (0E + 00)[\tilde{\theta}_{2}^{(k^*)}]^2$, other parameters are as given in Tables 4.2.2 and 4.2.3] 47

Figure 4.2.7 The fitted and computed values of the coefficient
$$\tilde{c}_{1}^{(k^{*})}$$
 of
 $Q(t_{k^{*}}, \mathbf{x}^{(k^{*})})$
[N=3, Quadrant number=4, exercise dates are 1/365, 2/365,...,
10/365, r=0.05, K=46, (n_v, n_r)=(20,20), (20,25), (20,30), the fitted
equations for $\tilde{c}_{1}^{(k^{*})}$ is $\tilde{c}_{1}^{(k^{*})} = 0.6698 - 0.00598\tilde{\theta}_{1}^{(k^{*})} - 0.00143\tilde{\theta}_{2}^{(k^{*})}$
 $-(1.52E - 06)\tilde{\theta}_{1}^{(k^{*})}\tilde{\theta}_{2}^{(k^{*})} - (4.85E - 05)[\theta_{1}^{(k^{*})}]^{2} + (2.29E - 05)[\theta_{2}^{(k^{*})}]^{2}$,
other parameters are as given in Tables 4.2.2 and 4.2.3] 47

Figure 4.2.8 The fitted and computed values of the coefficient $\tilde{c}_{2}^{(k^*)}$ of $Q(t_{k^*}, \mathbf{x}^{(k^*)})$ [N=3, Quadrant number=4, exercise dates are 1/365, 2/365,..., 10/365, r=0.05, K=46, (n_v, n_r)=(20,20), (20,25), (20,30), the fitted equations for $\tilde{c}_{2}^{(k^*)}$ is $\tilde{c}_{2}^{(k^*)} = 0.0223 - (2.45E - 04)\tilde{\theta}_{1}^{(k^*)}$ $+ (1.01E - 04)\tilde{\theta}_{2}^{(k^*)} - (3.20E - 06)\tilde{\theta}_{1}^{(k^*)}\tilde{\theta}_{2}^{(k^*)}$, other parameters are as given in Tables 4.2.2 and 4.2.3] 48

Figure 4.2.9 Computed and fitted values of $Q(t_{k^{*-1}}, \mathbf{x}^{(k^{*-1})})$ [N=3, Quadrant number=1, k*=10, exercise dates are 1/365, 2/365 ,..., 10/365, r=0.05, K=46, $(\tilde{\theta}_{1}^{(k^{*-1})}, \tilde{\theta}_{2}^{(k^{*-1})}) = (40^{\circ}, 81^{\circ}), (n_{v}, n_{r}) =$ (20, 30), fitted function is y=0.02122x²+0.58117x+1.04828, other parameters are as given in Tables 4.2.2 and 4.2.3] 53

Figure 4.2.10 Computed and fitted values of $Q(t_{k-1}, \mathbf{x}^{(k-1)})$ [N=3, Quadrant number=5, k*=10, exercise dates are 1/365, 2/365 ,..., 10/365, r=0.05, K=46, $(\tilde{\theta}_1^{(k^*-1)}, \tilde{\theta}_2^{(k^*-1)}) = (5^\circ, 15^\circ)$, $(n_v, n_r) =$ (20, 30), fitted function is y=0.116x²-0.746x+1.076, other parameters are as given in Tables 4.2.2 and 4.2.3] 53

Figure 4.2.11 The fitted and computed values of the coefficient $\tilde{c}_{0}^{(k^{*}-1)}$ of $Q(t_{k^{*}-1}, \mathbf{x}^{(k^{*}-1)})$ [N=3, Quadrant number=1, k*=10, exercise dates are 1/365, 2/365 ,..., 10/365, r=5%, K=46, (n_v, n_r)=(20, 20), (20, 25), (20, 30), the fitted equations for $\tilde{c}_{0}^{(k^{*}-1)}$ is $\tilde{c}_{0}^{(k^{*}-1)} = 1.048 + (4.62E - 05)\tilde{\theta}_{1}^{(k^{*}-1)}$ $+ (5.71E - 06)\tilde{\theta}_{2}^{(k^{*}-1)} - (4.76E - 7)\tilde{\theta}_{1}^{(k^{*}-1)}\tilde{\theta}_{2}^{(k^{*}-1)} - (6.28E - 07)[\tilde{\theta}_{1}^{(k^{*}-1)}]^{2}$ $- (4.41E - 08)[\tilde{\theta}_{2}^{(k^{*}-1)}]^{2}$, other parameters are as given in Tables 4.2.2 and 4.2.3] 54

Figure 4.2.12 The fitted and computed values of the coefficient $\tilde{c}_{1}^{(k^{*}-1)}$ of $Q(t_{k^{*}-1}, \mathbf{x}^{(k^{*}-1)})$ [N=3, Quadrant number=1, k*=10, exercise dates are 1/365, 2/365, ..., 10/365, r=0.05, K=46, (n_v, n_r)=(20, 20), (20, 25), (20, 30), the fitted equations for $\tilde{c}_{1}^{(k^{*}-1)}$ is $\tilde{c}_{1}^{(k^{*}-1)} = 0.619 + 0.00309\tilde{\theta}_{1}^{(k^{*}-1)}$ $+ (8.58E - 04)\tilde{\theta}_{2}^{(k^{*}-1)} - (3.68E - 06)\tilde{\theta}_{1}^{(k^{*}-1)}\tilde{\theta}_{2}^{(k^{*}-1)} - (7.97E - 05)[\theta_{1}^{(k^{*}-1)}]^{2}$ $- (1.22E - 05)[\theta_{2}^{(k^{*}-1)}]^{2}$, other parameters are as given in Tables 4.2.2 and 4.2.3] 55

Figure 4.2.13 The fitted and computed values of the coefficient
$$\tilde{c}_{2}^{(k^{*}-1)}$$
 of
 $Q(t_{k^{*}-1}, \mathbf{x}^{(k^{*}-1)})$
[N=3, Quadrant number=1, k*=10, exercise dates are 1/365, 2/365,
..., 10/365, r=0.05, K=46, (n_v, n_r)=(20, 20), (20, 25), (20, 30), the
fitted equations for $\tilde{c}_{2}^{(k^{*}-1)}$ is $\tilde{c}_{2}^{(k^{*}-1)} = 0.0218 - (1.83E - 04)\tilde{\theta}_{1}^{(k^{*}-1)}$
 $+ (2.63E - 05)\tilde{\theta}_{2}^{(k^{*}-1)} + (1.85E - 06)\tilde{\theta}_{1}^{(k^{*}-1)}\tilde{\theta}_{2}^{(k^{*}-1)} - (1.21E - 06)[\tilde{\theta}_{1}^{(k^{*}-1)}]^{2}$
 $- (2.21E - 07)[\tilde{\theta}_{2}^{(k^{*}-1)}]^{2}$, other parameters are as given in Tables
 $4.2.2$ and $4.2.3$] 55

- Figure 4.2.14 The fitted and computed values of the coefficient $\tilde{c}_{0}^{(k^{*}-1)}$ of $Q(t_{k^{*}-1}, \mathbf{x}^{(k^{*}-1)})$ [N=3, Quadrant number=8, k*=10, exercise dates are 1/365, 2/365, ..., 10/365, r=0.05, K=46, (n_v, n_r)=(20, 20), (20, 25), (20, 30), the fitted equations for $\tilde{c}_{0}^{(k^{*}-1)}$ is $\tilde{c}_{0}^{(k^{*}-1)} = 1.069 + (1.86E - 04)\tilde{\theta}_{1}^{(k^{*}-1)}$ $+ (1.77E - 04)\tilde{\theta}_{2}^{(k^{*}-1)} + (4.37E - 07)\tilde{\theta}_{1}^{(k^{*}-1)}\tilde{\theta}_{2}^{(k^{*}-1)} - (6.96E - 06)[\tilde{\theta}_{1}^{(k^{*}-1)}]^{2}$ $- (2.09E - 06)[\tilde{\theta}_{2}^{(k^{*}-1)}]^{2}$, other parameters are as given in Tables 4.2.2 and 4.2.3] 56
- Figure 4.2.15 The fitted and computed values of the coefficient $\tilde{c}_{1}^{(k^{*}-1)}$ of $Q(t_{k^{*}-1}, \mathbf{x}^{(k^{*}-1)})$ [N=3, Quadrant number=8, k*=10, exercise dates are 1/365, 2/365, ..., 10/365, r=0.05, K=46, (n_v, n_r)=(20, 20), (20, 25), (20, 30), the fitted equations for $\tilde{c}_{1}^{(k^{*}-1)}$ is $\tilde{c}_{1}^{(k^{*}-1)} = -0.7436 - 0.0043\tilde{\theta}_{1}^{(k^{*}-1)}$ $-(2.90E - 03)\tilde{\theta}_{2}^{(k^{*}-1)} + (4.58E - 06)\tilde{\theta}_{1}^{(k^{*}-1)}\tilde{\theta}_{2}^{(k^{*}-1)} + (1.25E - 04)[\theta_{1}^{(k^{*}-1)}]^{2}$ $+ (3.50E - 05)[\theta_{2}^{(k^{*}-1)}]^{2}$, other parameters are as given in Tables 4.2.2 and 4.2.3] 56

Figure 4.2.16 The fitted and computed values of the coefficient $\tilde{c}_{2}^{(k^{*}-1)}$ of $Q(t_{k^{*}-1}, \mathbf{x}^{(k^{*}-1)})$ [N=3, Quadrant number=8, k*=10, exercise dates are 1/365, 2/365, ..., 10/365, r=0.05, K=46, (n_v, n_r)=(20, 20), (20, 25), (20, 30), the fitted equations for $\tilde{c}_{2}^{(k^{*}-1)}$ is $\tilde{c}_{2}^{(k^{*}-1)} = 0.1122 + (6.81E - 04)\tilde{\theta}_{1}^{(k^{*}-1)}$ $+ (1.09E - 03)\tilde{\theta}_{2}^{(k^{*}-1)} - (3.50E - 06)\tilde{\theta}_{1}^{(k^{*}-1)}\tilde{\theta}_{2}^{(k^{*}-1)} - (2.89E - 05)[\tilde{\theta}_{1}^{(k^{*}-1)}]^{2}$ $- (1.22E - 05)[\tilde{\theta}_{2}^{(k^{*}-1)}]^{2}$, other parameters are as given in Tables 4.2.2 and 4.2.3] 57

- Figure 5.3.1 The values of $S_Q(t_k, \mathbf{x}_0^{(k)})$ when n_r is fixed but n_v is varied [Number of underlying assets is 3, k*=10, exercise dates are 1/365, 2/365,..., 10/365, r=0.05, K=46, $a_1 = 0.3$, $a_2 = 0.3$, $a_3 = 0.4$, $\overline{m}_3^{(i)} = 0$ and $\overline{m}_4^{(i)} = 3.0$ for i=1, 2, 3, other parameters are as given in the beginning part of Section 5.3]
- Figure 5.3.2 The values of $S_Q(t_k, \mathbf{x}_0^{(k)})$ when n_v is fixed but n_r is varied [Number of underlying assets is 3, k*=10, exercise dates are 1/365, 2/365,..., 10/365, r=0.05, K=46, $a_1 = 0.3$, $a_2 = 0.3$, $a_3 = 0.4$, $\overline{m}_3^{(i)} = 0$ and $\overline{m}_4^{(i)} = 3.0$ for i=1, 2, 3, other parameters are as given in the beginning part of Section 5.3]

- Figure 5.3.3 The values of $S_Q(t_k, \mathbf{x}_0^{(k)})$ when n_r is fixed but n_v is varied [Number of underlying assets is 3, k*=10, exercise dates are 1/365, 2/365,..., 10/365, r=0.05, K=46, $a_1 = 0.3$, $a_2 = 0.3$, $a_3 = 0.4$, $\overline{m}_3^{(i)} = 0.1$ and $\overline{m}_4^{(i)} = 3.0$ for i=1, 2, 3, other parameters are as given in the beginning part of Section 5.3]
- Figure 5.3.4 The values of $S_Q(t_k, \mathbf{x}_0^{(k)})$ when n_v is fixed but n_r is varied [Number of underlying assets is 3, k*=10, exercise dates are 1/365, 2/365,..., 10/365, r=0.05, K=46, $a_1 = 0.3$, $a_2 = 0.3$, $a_3 = 0.4$, $\overline{m}_3^{(i)} = 0.1$ and $\overline{m}_4^{(i)} = 3.0$ for i=1, 2, 3, other parameters are as given in the beginning part of Section 5.3] 86
- Figure 5.3.5 The values of $S_Q(t_k, \mathbf{x}_0^{(k)})$ when n_r is fixed but n_v is varied [Number of underlying assets is 3, k*=10, exercise dates are 1/365, 2/365,..., 10/365, r=0.05, K=46, $a_1 = 0.3$, $a_2 = 0.3$, $a_3 = 0.4$, $\overline{m}_3^{(i)} = 0$ and $\overline{m}_4^{(i)} = 8.0$ for i=1, 2, 3, other parameters are as given in the beginning part of Section 5.3] 88
- Figure 5.3.6 The values of $S_Q(t_k, \mathbf{x}_0^{(k)})$ when n_v is fixed but n_r is varied [Number of underlying assets is 3, k*=10, exercise dates are 1/365, 2/365,..., 10/365, r=0.05, K=46, $a_1 = 0.3$, $a_2 = 0.3$, $a_3 = 0.4$, $\overline{m}_3^{(i)} = 0$ and $\overline{m}_4^{(i)} = 8.0$ for i=1, 2, 3, other parameters are as given in the beginning part of Section 5.3]
- Figure 5.3.7 The values of $S_Q(t_k, \mathbf{x}_0^{(k)})$ when n_r is fixed but n_v is varied [Number of underlying assets is 3, k*=10, exercise dates are 1/365, 2/365,..., 10/365, r=0.05, K=46, $a_1 = 0.3$, $a_2 = 0.3$, $a_3 = 0.4$, $\overline{m}_3^{(1)} = 0.1$, $\overline{m}_4^{(1)} = 5.0$, $\overline{m}_3^{(2)} = 0.2$, $\overline{m}_4^{(2)} = 4.0$, $\overline{m}_3^{(3)} = 0.2$ and $\overline{m}_4^{(3)} = 3.8$, other parameters are as given in the beginning part of Section 5.3]
- Figure 5.3.8 The values of $S_Q(t_k, \mathbf{x}_0^{(k)})$ when n_v is fixed but n_r is varied [Number of underlying assets is 3, k*=10, exercise dates are 1/365, 2/365,..., 10/365, r=0.05, K=46, $a_1 = 0.3$, $a_2 = 0.3$, $a_3 = 0.4$, $\overline{m}_3^{(1)} = 0.1$, $\overline{m}_4^{(1)} = 5.0$, $\overline{m}_3^{(2)} = 0.2$, $\overline{m}_4^{(2)} = 4.0$, $\overline{m}_3^{(3)} = 0.2$ and $\overline{m}_4^{(3)} = 3.8$, other parameters are as given in the beginning part of Section 5.3] 92

The values of $S_{0}(t_{k}, \mathbf{x}_{0}^{(k)})$ and the fitted equation for $(n_{v}, n_{r}) =$ Figure 5.4.1 (100, 30)[Number of underlying assets is 6, $k^*=10$, exercise dates are 1/365, $2/365, \dots, 10/365, r=0.05, K=46.5, a_1 = 0.2, a_2 = 0.2, a_3 = 0.2,$ $a_4 = 0.1, a_5 = 0.1, a_6 = 0.2, \overline{m}_3^{(i)} = 0 \text{ and } \overline{m}_4^{(i)} = 3.0 \text{ for } i=1, 2, \dots,$ 6, other parameters are as given in the beginning part of Section 94 5.4] The values of $S_O(t_k, \mathbf{x}_0^{(k)})$ and the fitted equation for $(n_v, n_r) =$ Figure 5.4.2 (200, 30)[Number of underlying assets is 6, $k^*=10$, exercise dates are 1/365, $2/365,..., 10/365, r=0.05, K=46.5, a_1 = 0.2, a_2 = 0.2, a_3 = 0.2,$ $a_4 = 0.1, a_5 = 0.1, a_6 = 0.2, \overline{m}_3^{(i)} = 0$ and $\overline{m}_4^{(i)} = 3.0$ for i=1, 2,..., 6, other parameters are as given in the beginning part of Section 96 5.4] The values of $S_O(t_k, \mathbf{x}_0^{(k)})$ and the fitted equation, for $(n_v, n_r) =$ Figure 5.4.3 (300, 30)[Number of underlying assets is 6, $k^*=10$, exercise dates are 1/365, $2/365, \dots, 10/365, r=0.05, K=46.5, a_1 = 0.2, a_2 = 0.2, a_3 = 0.2,$ $a_4 = 0.1, a_5 = 0.1, a_6 = 0.2, \overline{m}_3^{(i)} = 0 \text{ and } \overline{m}_4^{(i)} = 3.0 \text{ for } i=1, 2, \dots,$ 6, other parameters are as given in the beginning part of Section 97 5.4] The values of $S_O(t_k, \mathbf{x}_0^{(k)})$ and the fitted equation for $(n_v, n_r) =$ Figure 5.4.4 (400, 30)

[Number of underlying assets is 6, k*=10, exercise dates are 1/365, 2/365,..., 10/365, r=0.05, K=46.5, $a_1 = 0.2$, $a_2 = 0.2$, $a_3 = 0.2$,

 $a_4 = 0.1, a_5 = 0.1, a_6 = 0.2, \overline{m}_3^{(i)} = 0$ and $\overline{m}_4^{(i)} = 3.0$, for i=1, 2, ...,

6, other parameters are as given in the beginning part of Section

5.4]

LIST OF TABLES

Table 2.5.1	Values of $\mu_i, \sigma_i, S^{(0)}$, and the first four moments of $v^{(k)}$ for N=3	14
Table 2.5.2	The values of $\widetilde{B}^{(100)}$ obtained by using numerical procedure and simulation	14
Table 2.5.3	The values of $\tilde{\mu}_i^{(100)}$ and $\tilde{\lambda}_i^{(100)T}$ obtained by using numerical procedure and simulation	15
Table 2.5.4	Values of $\mu_i, \sigma_i, S^{(0)}$, and the first four moments of $\mathbf{v}^{(k)}$ for N=3	16
Table 2.5.5	The values of $\widetilde{\bm{B}}^{(100)}$ obtained by using numerical procedure and simulation	16
Table 2.5.6	The values of $\tilde{\mu}_i^{(100)}$ and $\tilde{\lambda}_i^{(100)T}$ obtained by using numerical procedure and simulation	17
Table 2.5.7	Values of $\mu_i, \sigma_i, S^{(0)}$, and the first four moments of $v^{(k)}$ for N=6	18
Table 2.5.8	The values of $\widetilde{\bm{B}}^{(100)}$ obtained by using numerical procedure and simulation	19
Table 2.5.9	The values of $\tilde{\mu}_i^{(100)}$ and $\tilde{\lambda}_i^{(100)T}$ obtained by using numerical procedure and simulation	19
Table 3.2.1	Values of $\bm{S}^{(0)}, \bm{\mu}_i, \bm{\sigma}_i, \ \overline{m}_3^{(i)}, \overline{m}_4^{(i)}$ and $\bm{\lambda}_i$	26
Table 3.2.2	European call option prices	26
Table 3.3.1	Values of $\bm{S}^{(0)}, \mu_i, \sigma_i,\ \overline{m}_3^{(i)}, \overline{m}_4^{(i)}$ and $\bm{\lambda}_i$	29
Table 3.5.1	Values of $\boldsymbol{S}^{(0)},\boldsymbol{\mu}_{i}$, $\boldsymbol{\sigma}_{i}$, and $\boldsymbol{\lambda}_{i}$	37
Table 3.5.2	Results for American call option prices	37
Table 4.2.1	The values of q_1 , q_2 , q_3	41
Table 4.2.2	The (i, j) entry of $\mathbf{P} = \{ corr(w_i^{(k)}, w_j^{(k)}) \}$	43

Table 4.2.3 Values of $\mu_i, \sigma_i, \mathbf{S}^{(0)}, \overline{\mathbf{m}}_3^{(i)}$ and $\overline{\mathbf{m}}_4^{(i)}$ [N=3, exercise dates are 1/365, 2/365,..., 10/365, r=0.05, K=46, $a_1 = 0.3, a_2 = 0.3$, and $a_3 = 0.4$] 43

Table 4.4.1 Values of $\mu_i, \sigma_i, S^{(0)}, \overline{m}_3^{(i)}$ and $\overline{m}_4^{(i)}$ [Number of underlying assets is N= 3, r=0.05, K=46, $a_1 = 0.3$, $a_2 = 0.3, a_3 = 0.4$]

- Table 4.4.2Results for American call option prices
[Number of underlying assets is N = 3, k*=10, exercise dates are
 $1/365, 2/365, ..., 10/365, r=0.05, K=46, a_1 = 0.3, a_2 = 0.3, a_3 = 0.4,$
other parameters are as given in Tables 4.2.2 and 4.4.1]62
- Table 4.4.3Computation times (in minutes) required for computing the
American call option prices presented in Table 4.4.2
[Number of underlying assets is N = 3, k*=10, exercise dates are
 $1/365, 2/365, ..., 10/365, r=0.05, K=46, a_1 = 0.3, a_2 = 0.3, a_3 = 0.4,$
other parameters are as given in Tables 4.2.2 and 4.4.1]64
- Table 4.4.4Results for American call option prices[Number of underlying assets is N = 3, k*=30, exercise dates are $1/365, 2/365, ..., 30/365, r=0.05, K=46, a_1 = 0.3, a_2 = 0.3, a_3 = 0.4,$ other parameters are as given in Tables 4.2.2 and 4.4.1]65
- Table 4.4.5Computation times (in minutes) required for computing the
American call option prices presented in Table 4.4.4
[Number of underlying assets is N = 3, k*=30, exercise dates are
 $1/365, 2/365, ..., 30/365, r=0.05, K=46, a_1 = 0.3, a_2 = 0.3, a_3 = 0.4,$
other parameters are as given in Tables 4.2.2 and 4.4.1]66
- Table 4.4.6 The (i, j) entry of $\mathbf{P} = \{ corr(w_i^{(k)}, w_i^{(k)}) \}$

Table 4.4.7Values of
$$\mu_i, \sigma_i, \mathbf{S}^{(0)}, \overline{m}_3^{(i)}$$
 and $\overline{m}_4^{(i)}$ [Number of underlying assets is N=4, k*=10, exercise dates are1/365, 2/365,..., 10/365, r=0.05, K=46.5, a_1 = 0.2, a_2 = 0.3, a_3 = 0.2, a_4 = 0.3]68

- Table 4.4.8Results for American call option prices
[Number of underlying assets is N=4, k*=10, exercise dates are
 $1/365, 2/365, \dots, 10/365, r=0.05, K=46.5, a_1 = 0.2, a_2 = 0.3,$
 $a_3 = 0.2, a_4 = 0.3$, other parameters are as given in Tables 4.4.6
and 4.4.7]
- Table 4.4.9Computation times (in minutes) required for computing the
American call option prices presented in Table 4.4.8
[Number of underlying assets is N=4, k*=10, exercise dates are
 $1/365, 2/365, ..., 10/365, r=0.05, K=46.5, a_1 = 0.2, a_2 = 0.3, a_3 = 0.2,$
 $a_4 = 0.3$, other parameters are as given in Tables 4.4.6 and 4.4.7]70
- Table 4.4.10 The (i, j) entry of $\mathbf{P} = \{ corr(w_i^{(k)}, w_i^{(k)}) \}$ 71
- Table 4.4.11 Values of $\mu_i, \sigma_i, \mathbf{S}^{(0)}, \overline{\mathbf{m}}_3^{(i)}$ and $\overline{\mathbf{m}}_4^{(i)}$ [Number of underlying assets is N=6, k*=10, exercise dates are 1/365, 2/365,..., 10/365, r=0.05, K=46.5, a₁ = 0.2, a₂ = 0.2, a₃ = 0.2, a₄ = 0.1, a₅ = 0.1, a₆ = 0.2] 72
- Table 4.4.12Results for American call option prices
[Number of underlying assets is N=6, k*=10, exercise dates are
 $1/365, 2/365, ..., 10/365, r=0.05, K=46.5, a_1 = 0.2, a_2 = 0.2,$
 $a_3 = 0.2, a_4 = 0.1, a_5 = 0.1, a_6 = 0.2, other parameters are as
given in Tables 4.4.10 and 4.4.11]73$
- Table 4.4.13Computation times (in minutes) required for computing the
American call option prices presented in Table 4.4.12
[Number of underlying assets is N=6, k*=10, exercise dates are
1/365, 2/365,..., 10/365, r=0.05, K=46.5, $a_1 = 0.2$, $a_2 = 0.2$,
 $a_3 = 0.2$, $a_4 = 0.1$, $a_5 = 0.1$, $a_6 = 0.2$, other parameters are as
given in Tables 4.4.10 and 4.4.11]74
- Table 4.4.14 The (i, j) entry of $\mathbf{P} = \{ corr(w_i^{(k)}, w_i^{(k)}) \}$ 75

Table 4.4.15 Values of
$$\mu_i, \sigma_i, \mathbf{S}^{(0)}, \overline{m}_3^{(i)}$$
 and $\overline{m}_4^{(i)}$
[Number of underlying assets is N=8, k*=10, exercise dates are 1/365, 2/365,..., 10/365, r=0.05, K=47, $a_1 = 0.2, a_2 = 0.1, a_3 = 0.2, a_4 = 0.1, a_5 = 0.1, a_6 = 0.1, a_7 = 0.1, a_8 = 0.1$] 75

 Table 4.4.16
 Results for American call option prices
 [Number of underlying assets is N=8, k*=10, exercise dates are 1/365, 2/365,..., 10/365, r=0.05, K=47, a₁ = 0.2, a₂ = 0.1, a₃ = 0.2, $a_4 = 0.1$, $a_5 = 0.1$, $a_6 = 0.1$, $a_7 = 0.1$, $a_8 = 0.1$, other parameters are as given in Tables 4.4.14 and 4.4.15] 76 Table 4.4.17 Computation times (in minutes) required for computing the American call option prices presented in Table 4.4.16 [Number of underlying assets is N=8, k*=10, exercise dates are $1/365, 2/365, \dots, 10/365, r=0.05, K=47, a_1 = 0.2, a_2 = 0.1, a_3 = 0.2,$ $a_4 = 0.1$, $a_5 = 0.1$, $a_6 = 0.1$, $a_7 = 0.1$, $a_8 = 0.1$, other parameters are as given in Tables 4.4.14 and 4.4.15] 77 Values of μ_i, σ_i and $\mathbf{S}^{(0)}$ Table 5.3.1 81 The values of $S_O(t_k, \mathbf{x}_0^{(k)})$ for different values of (n_v, n_r) Table 5.3.2 [Number of underlying assets is 3, k*=10, exercise dates are 1/365, 2/365,..., 10/365, r=0.05, K=46, a₁ = 0.3, a₂ = 0.3, $a_3 = 0.4$, $\overline{m}_3^{(i)} = 0$ and $\overline{m}_4^{(i)} = 3.0$, for i=1,2,3, other parameters are as given in the beginning part of Section 5.3] 82 The values of $S_{\Omega}(t_k, \mathbf{x}_0^{(k)})$ for different values of (n_v, n_r) Table 5.3.3 [Number of underlying assets is 3, k*=10, exercise dates are 1/365, 2/365,..., 10/365, r=0.05, K=46, $a_1 = 0.3$, $a_2 = 0.3$, $a_3 = 0.4$, $\overline{m}_3^{(i)} = 0.1$ and $\overline{m}_4^{(i)} = 3.0$, for i=1, 2, 3, other parameters are as given in the beginning part of Section 5.3] 84 The values of $S_{\Omega}(t_k, \mathbf{x}_0^{(k)})$ for different values of (n_v, n_r) Table 5.3.4 [Number of underlying assets is 3, k*=10, exercise dates are 1/365, 2/365,..., 10/365, r=0.05, K=46, $a_1 = 0.3$, $a_2 = 0.3$, $a_3 = 0.4$, $\overline{m}_{3}^{(i)} = 0$ and $\overline{m}_{4}^{(i)} = 8.0$, for i=1, 2, 3, other parameters are as given in the beginning part of Section 5.3] 87 The values of $S_O(t_k, \mathbf{x}_0^{(k)})$ for different values of (n_v, n_r) Table 5.3.5 [Number of underlying assets is 3, k*=10, exercise dates are $1/365, 2/365, ..., 10/365, r=0.05, K=46, a_1 = 0.3, a_2 = 0.3, a_3 = 0.4,$ $\overline{m}_{3}^{(1)} = 0.1, \ \overline{m}_{4}^{(1)} = 5.0, \ \overline{m}_{3}^{(2)} = 0.2, \ \overline{m}_{4}^{(2)} = 4.0, \ \overline{m}_{3}^{(3)} = 0.2$ and $\overline{m}_{\scriptscriptstyle 4}^{(3)}$ = 3.8 , other parameters are as given in the beginning part

of Section 5.3]

xix

- Table 5.4.2
 The values of $S_Q(t_k, \mathbf{x}_0^{(k)})$ for $(n_v, n_r)=(100, 30)$

 [Number of underlying assets is 6, k*=10, exercise dates are

 1/365, 2/365,..., 10/365, r=0.05, K=46.5, $a_1 = 0.2$, $a_2 = 0.2$,

 $a_3 = 0.2$, $a_4 = 0.1$, $a_5 = 0.1$, $a_6 = 0.2$, $\overline{m}_3^{(i)} = 0$ and $\overline{m}_4^{(i)} = 3.0$,

 for i=1, 2,..., 6, other parameters are as given in the beginning

 part of Section 5.4]
- Table 5.4.3The estimated values of $S_Q(t_k, \mathbf{x}_0^{(k)})$ obtained by using linear
extrapolation for $(n_v, n_r) = (100, 30)$
[Number of underlying assets is 6, k*=10, exercise dates are
 $1/365, 2/365, ..., 10/365, r=0.05, K=46.5, a_1 = 0.2, a_2 = 0.2,$
 $a_3 = 0.2, a_4 = 0.1, a_5 = 0.1, a_6 = 0.2, \overline{m}_3^{(i)} = 0$ and $\overline{m}_4^{(i)} = 3.0$,
for i=1, 2,..., 6, the fitted function is $S_Q(t_k, \mathbf{x}_0^{(k)}) = -0.001(k) +$
0.0088, other parameters are as given in the beginning part of
Section 5.4]

Table 5.4.4The values of
$$S_Q(t_k, \mathbf{x}_0^{(k)})$$
 for $(n_v, n_r) = (200, 30)$ [Number of underlying assets is 6, k*=10, exercise dates are
1/365, 2/365,..., 10/365, r=0.05, K=46.5, $a_1 = 0.2$, $a_2 = 0.2$,
 $a_3 = 0.2$, $a_4 = 0.1$, $a_5 = 0.1$, $a_6 = 0.2$, $\overline{m}_3^{(i)} = 0$ and $\overline{m}_4^{(i)} = 3.0$,
for i=1, 2,..., 6, other parameters are as given in the beginning
part of Section 5.4]95

Table 5.4.5The estimated values of
$$S_Q(t_k, \mathbf{x}_0^{(k)})$$
 obtained by using linear
extrapolation for $(n_v, n_r)=(200,30)$
[Number of underlying assets is 6, k*=10, exercise dates are
 $1/365, 2/365, ..., 10/365, r=0.05, K=46.5, a_1 = 0.2, a_2 = 0.2,$
 $a_3 = 0.2, a_4 = 0.1, a_5 = 0.1, a_6 = 0.2, \overline{m}_3^{(i)} = 0$ and $\overline{m}_4^{(i)} = 3.0,$
for i=1, 2,..., 6, the fitted function is $S_Q(t_k, \mathbf{x}_0^{(k)}) = -0.0008(k)$
 $+0.0074$, other parameters are as given in the beginning part of
Section 5.4]96

Table 5.4.6 The values of
$$S_Q(t_k, \mathbf{x}_0^{(k)})$$
 for $(n_v, n_r)=(300, 30)$
[Number of underlying assets is 6, k*=10, exercise dates are 1/365, 2/365,..., 10/365, r=0.05,K=46.5, $a_1 = 0.2$, $a_2 = 0.2$, $a_3 = 0.2$, $a_4 = 0.1$, $a_5 = 0.1$, $a_6 = 0.2$, $\overline{m}_3^{(i)} = 0$ and $\overline{m}_4^{(i)} = 3.0$, for i=1, 2,..., 6, other parameters are as given in the beginning part of Section 5.4] 97

- Table 5.4.7The estimated values of $S_Q(t_k, \mathbf{x}_0^{(k)})$ obtained by using linear
extrapolation for $(n_v, n_r)=(300, 30)$
[Number of underlying assets is 6, k*=10, exercise dates are
 $1/365, 2/365, ..., 10/365, r=0.05, K=46.5, a_1 = 0.2, a_2 = 0.2,$
 $a_3 = 0.2, a_4 = 0.1, a_5 = 0.1, a_6 = 0.2, \overline{m}_3^{(i)} = 0$ and $\overline{m}_4^{(i)} = 3.0,$
for i=1, 2,..., 6, the fitted function is $S_Q(t_k, \mathbf{x}_0^{(k)}) = -0.0008(k) +$
0.0069, other parameters are as given in the beginning part of
Section 5.4]
- The values of $S_{0}(t_{k}, \mathbf{x}_{0}^{(k)})$ for (nv, nr)=(400,30) Table 5.4.8 [Number of underlying assets is 6, $k^*=10$, exercise dates are 1/365, $2/365, \dots, 10/365, r=0.05, K=46.5, a_1 = 0.2, a_2 = 0.2, a_3 = 0.2,$ $a_4 = 0.1, a_5 = 0.1, a_6 = 0.2, \overline{m}_3^{(i)} = 0$ and $\overline{m}_4^{(i)} = 3.0$, for i=1, 2, ..., 6, other parameters are as given in the beginning part of Section 5.4] 98 The estimated values of $S_O(t_k, \mathbf{x}_0^{(k)})$ obtained by using linear Table 5.4.9 extrapolation for $(n_v, n_r)=(400, 30)$ [Number of underlying assets is 6, $k^*=10$, exercise dates are 1/365, $2/365, \dots, 10/365, r=0.05, K=46.5, a_1 = 0.2, a_2 = 0.2, a_3 = 0.2,$ $a_4 = 0.1, a_5 = 0.1, a_6 = 0.2, \overline{m}_3^{(i)} = 0$ and $\overline{m}_4^{(i)} = 3.0$, for i=1, 2,..., 6, the fitted function is $S_0(t_k, \mathbf{x}_0^{(k)}) = -0.0007(k) + 0.0065$, other parameters are as given in the beginning part of Section 5.4] 99 Table 5.4.10 The estimated standard error of the price at time t=0 based on linear extrapolation when n_r is fixed but n_v is varying

[Number of underlying assets is 6, k*=10, exercise dates are 1/365,

 $2/365,..., 10/365, r=0.05, K=46.5, a_1 = 0.2, a_2 = 0.2, a_3 = 0.2,$

 $a_4 = 0.1$, $a_5 = 0.1$, $a_6 = 0.2$, $\overline{m}_3^{(i)} = 0$ and $\overline{m}_4^{(i)} = 3.0$,

for i=1, 2, ..., 6, other parameters are as given in the beginning part of Section 5.4] 100