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ABSTRACT 

 

Consider the American basket call option in the case where there are N underlying 

assets, the number of possible exercise times prior to maturity is finite, and the vector of 

asset prices is modeled using a Levy process. A numerical method based on regression 

and numerical integration is proposed to estimate the prices of the American options. In 

the proposed method, we make use of the distribution for the vector of asset prices at a 

given time t in the future to determine the “important” values of the vector of asset 

prices of which the option values should be determined. In determining the option 

values at time t, we first perform a numerical integration along the radial direction in the 

N-dimensional polar coordinate system. The value thus obtained is expressed via a 

regression procedure as a function of the polar angles, and another numerical 

integration is performed over the polar angles to obtain the continuation value. The 

larger value of the continuation value and the immediate exercise value will then be the 

option value. A method is also proposed to estimate the standard error of the computed 

American option price.     
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ABSTRAK 

 

Pertimbangkan opsyen Amerika jenis basket call dalam kes ketika ada N aset yang 

terlibat, jumlah kali pelaksanaan yang mungkin sebelum kematangan adalah terhingga, 

dan vektor harga aset dimodelkan dengan menggunakan proses Levy. Suatu kaedah 

berangka berasaskan regresi dan pengamilan berangka dicadangkan untuk menilai harga 

opsyen Amerika. Dalam kaedah yang dicadangkan, kita menggunakan taburan bagi 

vektor harga aset pada suatu masa hadapan t untuk menentukan nilai “penting” dari 

vektor harga aset yang mana nilai opsyen harus ditentukan. Dalam menentukan nilai 

opsyen pada masa t, kita mula-mula melakukan pengamilan berangka sepanjang arah 

jejari dalam sistem koordinat polar N-dimensi. Nilai yang diperolehi kemudian 

diungkapkan dengan menggunakan tatacara regresi sebagai fungsi bagi sudut kutub, dan 

satu lagi pengamilan berangka dilakukan terhadap sudut kutub untuk mendapatkan nilai 

lanjutan opsyen. Kemudian nilai yang lebih besar antara nilai lanjutan opsyen dan nilai 

perlaksanaan opsyen serta-merta merupakan nilai opsyen. Suatu lagi kaedah juga 

dicadangkan untuk menganggar ralat piawai bagi harga opsyen Amerika. 
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