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CHAPTER 1 

INTRODUCTION 

1.1 Background 

An option is a derivative security that gives the buyer of the option the right to 

buy or sell the underlying asset, at or before some maturity date T, for an agreed price K, 

called the strike price or exercise price. A call (or put) option is a right to buy (or sell). 

Obviously the profit of the buyer of a call (or put) option will depend on the price S(t) 

of the underlying asset at time t. As exercise is a right and not an obligation, the 

exercise payoff at time t is  

(S(t) K) =max{S(t) K,0}+− −      (1.1.1) 

for a call option and  

(K S(t)) =max{K S(t),0}+− −      (1.1.2) 

for a put option. The payoff function of the call option is shown in Figure 1.1.1 while 

that of the put option is shown in Figure 1.1.2. There are two kinds of options: 

European options and American styled options. European options can only be exercised 

at the maturity date T, whereas American options can be exercised at any time at or 

before the maturity date. Thus American options allow the buyer to have extra 

flexibility and thus are never worth less than European options. As the date that may be 

chosen to exercise the options by the buyer, is completely random, the pricing of 

American options is difficult.    



  2 

 

 

  

 

Figure 1.1.1: The payoff function of a call option 

 

 

   

 

Figure 1.1.2: The payoff function of a put option 

1.2 Overview of methods for pricing American options 

 The important methods for evaluating American option prices include the 

simulation procedure and the stochastic mesh approach: 

(A) Simulation 

Let (t)
i

S  be the time-t price of the i-th asset and T

N21 )]t(S),...,t(S),t(S[=S(t)  

the vector of asset prices. In the simulation procedure, a large number of paths of asset 

prices of the form S = (S(t0), S(t1) , …, S(tk*) ) at the times 0 = t0< t1<…< tk* = T are 

generated. The following are some approaches for pricing American options based on 

simulation. 

(I) The Regression Approach 

At each point in time, the value of the American option is determined by the 

maximum of the value from immediate exercise and the conditional-expectation 
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or continuation value. The conditional-expectation or continuation-value 

function is estimated by means of regression. A complete specification of the 

optimal exercise strategy along each path can be obtained by estimating the 

conditional-expectation function for each exercise date. American options can 

then be valued approximately by simulation (see for example Longstaff and 

Schwartz (2001), Tsitsiklis and Van Roy (1999, 2001), and Carriére (1996)). 

The above approach tends to underprice American options. An upper bound to 

the price of an American option may be found by using a procedure proposed by 

Andersen and Broadie (2004). The above lower and upper bounds enable us to 

get a better idea of the true value of an American option. 

(II)  The Parametric Approach 

The early decision rule is represented by a finite number of parameters and an 

approximation to the American option price is maximized over the parameter 

space to get an estimate of the American option price (see Bossaerts (1989), Li 

and Zhang (1996), Grant et al. (1997), Andersen (2000), and Garcia (2003)). 

(III) The Stratification Approach 

The space of the underlying assets is partitioned appropriately into a number of 

cells (or strata) such that the early exercise strategy is constant over these cells. 

Monte Carlo simulation is combined with the above stratification to compute 

the set of conditional probabilities corresponding to changes in the payoff value 

over time. An approximate value of the American price can then be computed 

backwards in time using the conditional probabilities (see Barraquand and 

Martineau (1995) and Raymar and Zwecher (1997)). Tilley (1993) used an idea 

similar to that of stratification for options based on one asset.  
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(IV) The Simulated Tree Approach 

From the distribution of S(t1) conditioned on S(t0), b values (branches) of S(t1) 

are generated. For k = 2, 3, …, k*, b values of S(tk) are generated from the 

distribution of S(tk) conditioned on the generated value of S(tk-1). Then from the 

set of generated paths of the form (S(t0), S(t1), …, S(tk*)), the option value (i.e. 

maximum (immediate exercise value, discounted expected option value)) at tk 

are found for k = k*, k*-1, …, 0. The option value at t0 will be an estimate of 

the American option price (see Broadie and Glasserman (1997) and Broadie et 

al. (1997b)). 

(V) Neural Networks 

Let 
k

( j)

tx  be the j-th chosen value of S(tk) and 
k

( j)

tŷ  the continuation value 

evaluated at  
k

( j)

tx , j = 1, 2, …, n. Then {(
k

(1)

tx , 
k

(1)

tŷ ), (
k

(2)

tx , 
k

(2)

tŷ ), …, (
k

(n)

tx , 

k

(n)

tŷ )} may be treated as a training sample. There are various neural networks 

classes.  An example is the Multi-layer perceptrons (MLP) networks which 

make use of  
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where h(x)  is a smooth, monotonic, increasing function of the form x1/(1 e )−+ ,  

the ic , 0iβ  and 1iβ  are parameters and L is the number of hidden units or 

neurons. The values of the ic , 0iβ and 1iβ are chosen to minimize              

k k k
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where ∇  is the gradient operator and λ  is a parameter accounting for the 

smoothness of the required solution. The optimal values of the ic , 0iβ  and 

1iβ are then used to compute kf̂ ( (t ))S  when the value of S(tk) is given. The 

corresponding option value at S(tk) is next obtained. In this way, we may obtain 

the option values at the selected values of S(tk) for k = k*-1, k*-2, …, 0. The 

option value at time t0 is then an estimate of the American option price (see 

Hunt et al. (1992), Sanner et al. (1992), Kelly (1994), Morelli et al. (2004), 

Kohler et al. (2006) and Kohler and Krzyzak (2009)).    

(B) The Stochastic Mesh Approach 

The paths (S(t0), S(t1), …, S(tk*)) are generated using mesh density instead of 

the distribution of S(tk) conditioned on the value of S(tk-1), k = 1, 2, …, k*. An 

example of the mesh density is the average density of the distributions of S(tk) 

conditioned respectively on the b values of S(tk-1) chosen at time tk-1. For k = 

k*-1, k*-2, …, 0, the continuation value at time tk is obtained as the average 

value of the product of the option value at time tk+1 and a weight given by the 

ratio of the conditional density and the mesh density evaluated at the b chosen 

values of S(tk+1) at time tk+1. The resulting option value at time t0 is then an 

estimate of the American option price (see for example, Broadie, Glasserman, 

and Ha (2000), Broadie and Glasserman (2004), Avramidis and Hyden (1999), 

Avramidis and Matzinger (2004), Liu and Hong (2009), Avramidis et al. (2000), 

Boyle et al. (2000, 2002), Broadie, Glasserman, and Jain (1997)). 

1.3 Introduction to the Thesis 

 The thesis aims to estimate the American option price when there are N 

underlying assets, the possible exercise times prior to maturity are 0 = t0, t1, t2, …, tk* = 
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T where tk = k∆t and ∆t is a small increment in time, and the vector of asset prices 

T
1 2 N[S (t),S (t),...,S (t)]=S(t)  is modeled as a Levy process. We use a backward 

procedure to find the option values at )t( *kS , )t( 1*k −S , ..., )0(S  with )0(S  

representing the American option price. 

To find the option value at )t( kS , *kk0 <≤ , we express the vector S(tk+1)  of 

prices at time tk+1 given the value S(tk) as a function of the vector e
(k+1) 

= 

)e,...,e,e(
)1k(

N
)1k(

2
)1k(

1
+++

 of a set of uncorrelated random variables having respectively 

the standard normal distributions. The space formed by e(k+1) is next transformed to the 

N-dimensional polar coordinate system. The continuation value at S(tk) is computed by 

performing numerical integration along the radial direction and over the polar angles. 

The option value at )t( kS  is then given by the larger value of the immediate exercise 

value and the continuation value at S(tk). 

 To find the option value as a function of S(tk), we first derive the distribution of 

S(tk) given S(t0). It turns out the random vector S(tk) can be expressed as a function of 

the vector )e~,...,e~,e~(
)k(

N
)k(

2
)k(

1  of another set of uncorrelated random variables having 

respectively the standard normal distributions. The space formed by the )k(~e  is next 

transformed to the N-dimensional polar coordinate system. We approximate the option 

values for the points along the radial direction by a low degree polynomial. By using a 

regression procedure, each of the coefficients of the polynomial in terms of the radial 

distance is next expressed as a low degree polynomial of the polar angles. In this way, 

we obtain a representation of the option value as a function of S(tk). This function can 

then be used to find the option value at S(tk-1).    

 As the option values and continuation values are approximated by polynomials 

obtained by regression procedure, the computed American option price would not be 
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exact. We estimate the standard error of the option value at time tk for k = k*-1, k*-

2, …, 0 in the indicated order. The estimated standard error at t0 will then be an estimate 

of the standard error of the American option price. 

 When N is large, instead of paying the high cost of estimating the standard 

errors for all the values of k in {k*-1, k*-2, …, 0}, we may compute the initial few 

standard errors and use an extrapolation procedure to get an idea of the size of the 

standard error of American option price. 

1.4 Layout of the Thesis         

 In Chapter 2, we introduce a numerical procedure to find the joint distribution of 

the vector of time-t asset prices of which the randomness in the underlying stochastic 

model is described via a Levy process. We then propose a method based on regression 

and numerical integration for pricing a two-dimensional American basket call option in 

Chapter 3. In Chapter 4, we use a procedure adapted from that in Chapter 3 to price 

high-dimensional American basket call options. Chapter 5 is devoted to the estimation 

of standard error of the computed American call option price. The thesis is concluded in 

Chapter 6.                    


