CHAPTER 4

PRICING HIGH-DIMENSIONAL AMERICAN CALL

OPTIONS

4.1 Introduction

Pricing of high-dimensional options is complicated for American versions of
these assets where the owner has the right to exercise early. In this chapter, we use a
procedure based on numerical integration and regression for pricing high-dimensional
American basket call options where there is a finite, but possibly large, number of
exercise dates. The numerical results for the American basket call option prices show
that the variation of the prices is not negligible as we vary the non-normality of the

underlying distributions in the price process.
4.2 Pricing of American call options on N assets where N>2

Consider an American basket call option on the N assets (N>2) with time T to
expiration and a strike price of K. Suppose the distribution of the vector of asset prices

S(t) = (5,(1),S,(t),...,Sy(t)) is described via a Levy process. Let At be a small

increment in time, ti= kAt, k=0, 1,..., k*, where k" At = T. The i-th component of the
time-ti value of the vector of asset prices S(tx) = [S1(ty), Sa(ty),..., SN(tk)]T is then given

approximately by
S;(t,) =S" =8* D 4 S VAt + S Vo wi VAL 1 =1,2,..,N; k=0, 1, ..., k*.
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Let a, 20,a, 20,...,ay 20 be N given constants such that a, +a, +...+ay =1,

and
h(t,,x™)=(a,S,(t,)+2a,S,(t,)+...+2a,S(t,)—K)" (42.2)

the payoff from exercise of the basket call option at time t; at which where S(ty) = x(k),

for k =0, 1,..., k*. The conditional-expectation of the option value when S(tx+) = xD

is given by E"[h(t,.,x"“”)IS(t,..,)=x*“""] where E" is as defined in Section 3.2.

For a given risk-free interest rate r, let

Q(tx, x™) = max( h(ty, ), e"™YE [Q(ts1, S(te1)) | S(ty) = x¥]) for k < k* (4.2.3)

E" is as defined in Section 3.2, and
Q(tys, x*7) = h(ter, ). (4.2.4)

The value Q = Q(0, S(0)) will then represent the price of the American basket call
option.
The function Q(ty+, x(k*)) of x* may be computed and summarized as follows.

First we note that the distribution of S*” (see Section 2.4) is specified by

5 (k%) S (k")

Ky v
ST 4.2.5)
T v
(R RELEEN g >0
where 70 = 2 . (4.2.6)
M G ENT - (%», & <0

and €*” ~N(0,1), i=1,2,..., N.

1

We transform (§*”,8”,...,€{”) to an N-dimensional polar coordinate system

(k*)

given by the radial distance p"*’ and (N-1) polar angles. For example, in the 3-

dimensional case, we introduce a spherical coordinate system given by
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~(kH 2, rx(kH 2 rx(kH12 _ rakdq2
[E5 P +[&5F +[ ] =[p*"]

&% =™ cos 6™ sin §*”

& = 5% sin ¢ sin §*”

and e =p" cos @™

for 0° < ¢*? <360°, 0°< 6™ <180°.

We may also express Eq.(4.2.7)-(4.2.10) as

~(k972 | rx(kH 2 rx(kH2 _raknq2
[EF P +[&5F +[ ] =[p*"]

g =q,p"™” cos¢*” sin 0

&) =, sin §*

and &% = g™ cos 8*”,0° < §*” <90°,0° < §*” <90°

sin O

(k%)

4.2.7)

(4.2.8)

4.2.9)

(4.2.10)

4.2.11)

4.2.12)

4.2.13)

4.2.14)

where q,, q,, q; (see Table 4.2.1) depend on the quadrant in which the point

Sk (k9 kN s
(g "7,8, ", ") lies.

Table 4.2.1: The values of q,, q,, q;,

QuadrantNo. | q, | 9, | 95
1 1|11
2 1|1 ]-1
3 1|-1]1
4 1 |-1]-1
5 1)1 )1
6 1)1 -1
7 -1 -1 )1
8 -1 -1 -1
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In general, for the N-dimensional case, we can express & " as follows:

[P+ [+ + B = [T *.2.15)
8% =q,p*” cos 8% cos O cosO)...cos B sin 6" (4.2.16)
&5 = q,p*" sin 0% cos 6" cos 8X7)...cos B sin 6" (4.2.17)
&% = q,p™ sin 637 cos B()...cos B sin 6" (4.2.18)
g = q 0 p™ sin ’éék*) sin éfk*) 4.2.19)
&M = q P cos 6% ,0°<B* <90°,i=1,2, ..., N-1 (4.2.20)

where gi=-1 or+1 fori=1,2,...,N

For each of the 2V quadrants, we choose randomly a set of n, values of
0" = (0™,0",...,6%") | and for each chosen value of ®*”, we consider the

following n+1 values of p*”:

p* =jh,j=0,1,..., oy 4.2.21)

where h = ¢/n;and ¢% =¥} 01 is the 99% point of the chi square distribution with N

degrees of freedom. For each ®*”, we use Eq.(4.2.2) and Eq.(4.2.4) - (4.2.6) to find

Q(ti+x*") as a function of p™”. This function of p*” turns out to be the form

Q,(ty,x x*)  for 0< 5(“*> < g(k*)

P S 4.2.22)
0 for  p*>E®

Q(ty,x"”) ~{

where &% is a constant which depends on @*” .
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We may approximate Q(ti+,x*”) by a quadratic function of $*”and express Q(tis,x*”)

as

~ (k%) 4 &Nk ;X EKHrxk*H)q2 (k%) o« (k¥
Q(t X(k*)) — Co + ¢ p + %) [p ] ’ 0< p < g (4 2 23)
ke 0 k) F k) -
, P >8

where ¢*7, €7, ¢i*” and £ are constants which depend on ®*” .

For example, consider the case when N=3, T=10/365, r=0.05, K=46, a, =0.3,
a,=03, and a,=04. Let m’ =E[v" ]’ and m{’ =E[v{"]*(see Eq.(2.4.2)). Suppose
the (i, j) entry of P={corr(w”,w{”)} is given by Table 4.2.2 and the values of
u.,c,,8”, m” and m" are given by Table 4.2.3 fori, j=1,2, 3.

Table 4.2.2: The (i, j) entry of P = {corr(w{, w{")}

]
1 2 3
11 0.1 |0.15
1{2] 0.1 1 ]0.05
31015005 1

Table 4.2.3: Values of y,,0,, S, m" and m}’

[N=3, exercise dates are 1/365, 2/365,..., 10/365, r=0.05, K=46, a, =0.3, a, =0.3, and

a,=04]
] . o so | @ )
1 0.05 0.15 50 0.1 5.0
2 0.05 0.1 60 0.2 4.0
3 0.05 0.2 35 0.2 3.8

Examples of the fitted quadratic function of Q(tyx, x*?) are shown in Figures 4.2.1 —

4.2.2. Figures 4.2.1 — 4.2.2 show that the right side of Eq.(4.2.23) gives a satisfactory fit

to the computed values of Q(ty+, x|
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[N=3, Quadrant number=1, exercise dates are 1/365, 2/365,..., 10/365, r=0.05, K=46,

y=0.02089x%+0.65561x+1.04905, other parameters are as given in Tables 4.2.2 and

Figure 4.2.1: Computed and fitted values of Q(tix, X~ )

(05,857 = (0°,0°), (ny, n,)=(20, 30), fitted function is

4.2.3]
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[N=3, Quadrant number=8, exercise dates are 1/365, 2/365,..., 10/365, r=0.05, K=46,

Figure 4.2.2: Computed and fitted values of Q(ty+, x©7)

(05,85 = (74°,11°), (ny, n)=(20, 30), fitted function is y=0.003835x"-
0.41564x+1.04905, other parameters are as given in Tables 4.2.2 and 4.2.3]
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~ (k*)

Then, for each quadrant and each value of g = 0, 1, 2, we may regress C, = on

[k J(kH Ak

6,"7,06, ’,...,0y, to get

©) _ 300 N AEOFED L NN FEIFEIFED N G060 FED 2

Ce :dg() +ngi 6; +szgij 0; ej +ngii 6,1, 4.2.24)
i=l i=1

=l

=1
#i
for 0°< 0™ <90°,1i,j=1,2, ..., N-1.

Examples of the computed and fitted value of *”, g =0, 1, 2, in the first and
fourth quadrants with (ny, n;) = (20, 30) when N = 3 are shown in Figures 4.2.3 — 4.2.8.
The figures indicate that the fit given by Eq.(4.2.24) seems to be satisfactory as the plot

of the computed value and the fitted value of T*” cluster around the straight line y = x.

Computed values of w

T - r v AR

Fittedvaluesafl:.: 7

Figure 4.2.3: The fitted and computed values of the coefficient T of Q(ty+, x*7)

[N=3, Quadrant number=1, exercise dates are 1/365, 2/365,..., 10/365, r=0.05, K=46,
(ny, n)=(20, 20), (20, 25), (20, 30), the fitted equations for ¢*” is

8 = 1.0491- (5.00E - 16)8(% — (4.44E - 16)8"

-(1.30E-18)0* 6" - (8.67E - 19)[ 6" > + (3.47E -18)[ 6" |, other parameters are as
given in Tables 4.2.2 and 4.2.3]

45



Computed values of &7
0.8

o7 M

08

®

0.5

34

# (nv,nr)=(20,20)
0.4 W (nv, nr)=(20,25)

. ‘u {mv, nr) ={20,30)

03

0.2

[.X%

o

o 01 0.2 0.3 0.4 0s 0.8 07 0.8

Fitted values of £

Figure 4.2.4: The fitted and computed values of the coefficient ¢ of Q(txx, x®9)

[N=3, Quadrant number=1, exercise dates are 1/365, 2/365,..., 10/365, r=0.05, K=46,

(ny, n,)=(20, 20), (20, 25), (20, 30), the fitted equations for & is
& =0.648+0.00326™ +0.00236:”
-(1.50E - 06)0" 8" - (8.89E - 05)[0'*" * - (3.21E - 05)[0'*" 1,
other parameters are as given in Tables 4.2.2 and 4.2.3]
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Figure 4.2.5: The fitted and computed values of the coefficient ¢*” of Q(tix, x'*”)

[N=3, Quadrant number=1, exercise dates are 1/365, 2/365,..., 10/365, r=0.05, K=46,

(ny, n;)=(20, 20), (20, 25), (20, 30), the fitted equations for ¢.*” is
Y =0.02159 - (2.57E - 04)9“‘*) +(1.02E - 05)9“‘*)
+(1.86E-06)0 "0 + (1.64E -07)[ 8" > + (2.07E - 07)[ 6" 7,
other parameters are as given in Tables 4.2.2 and 4.2.3]
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Figure 4.2.6: The fitted and computed values of the coefficient T*” of Q(tis, x*7)

[N=3, Quadrant number=4, exercise dates are 1/365, 2/365,..., 10/365, r=0.05, K=46,
(ny, n,)=(20, 20), (20, 25), (20, 30), the fitted equations for ¢*” is

& =1.049+ (OE +00)6*” —(2.22E-16)8.""

+(0.E+00)0576%" - (3.93E-19)[6*"T* + (OE + 00)[6*”]*, other parameters are as
given in Tables 4.2.2 and 4.2.3]
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Figure 4.2.7: The fitted and computed values of the coefficient &*” of Q(ti, x*”)

[N=3, Quadrant number=4, exercise dates are 1/365, 2/365,..., 10/365, r=0.05,
K=46, (ny, n,)=(20, 20), (20, 25), (20, 30), the fitted equations for ¢*” is
& =0.6698 -0.005986 % -0.0014360%” - (1.52E —06)6 78"
—(4.85E—-05)[6{""]* +(2.29E—05)[6"]*, other parameters are as given in Tables
4.2.2 and 4.2.3]
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Figure 4.2.8: The fitted and computed values of the coefficient ¢*” of Q(ti, x'*”)

[N=3, Quadrant number=4, exercise dates are 1/365, 2/365,..., 10/365, r=0.05, K=46,

(ny, n,)=(20, 20), (20, 25), (20, 30), the fitted equations for &.*” is
T 20,0223 — (2.45E - 04)8” + (1.01E — 04)8" — (3.20E - 06)8<"8<"
+(5.20E-07)[6*" 1> = (7.31E-07)[6{""]*, other parameters are as given in Tables
4.2.2 and 4.2.3]

Fork=k, k-1, ..., 2, 1, we next find Q(t;, x*). To achieve this, we first note

that the distribution of S*™" can be described via

(k-1
Vl

~(k-1)
Ly
SV=| i |+B*Y (4.2.25)
where
~ ke~ ~ - 1+ 7&" b -
- ki(;(_l)ei(k_l) + ki(;—l)([ei(k—l)]Z ( i3 )) ei(k—l) > O
gD = (4.2.26)
k-~ (k-1) | A (k-1) oA (k-1)p~(k-1)72 1+7“(k K ~(k-1)
A E T A T AGTETT T - (———),  &77<0
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We again introduce an N-dimensional polar coordinate system given by

[e(k P g [é-(k DP 4o+ [é-(k D [p-(k—l)]z 4.2.27)
&5 = q,p* " cos 0% cos 0% cos 8% ...cos B sin O (4.2.28)
& =q,p* " sin 0% cos 8% cos 8E L .. cos 8% sin 6" (4.2.29)
& =5 sin 0 cos O L. cos 0% sin (4.2.30)
& =qy,p* " sin B sin 6" (4.2.31)
gD =g p* " cos OV (4.2.32)

0°<8*"<90°,i=1,2,...,N-1

For each of the 2V quadrants, we choose randomly a set of n, values of
A% = (8,0 .. 8%"), and for each chosen value of ®*", we consider the

following n+1 values of p*™:

P =jh,j=0, 1,00 1y 4.2.33)

where h= ¢/n;and 0% =3 0,01 is the 99% point of the chi square distribution with N

degrees of freedom. For each @ we

()  find &<, fori=1,2, ..., N by using Eq.(4.2.28) — (4.2.32) with p*=p{",

()  findv*?", fori=1, 2, ..., N by using Eq.(4.2.26), and

(i)  find S(t1) = x*" by using Eq.(4.2.25).
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We next need to find h(ty_q, x(k'l)) and E*[Q(tk, SOISED = x(k'l))] in order to determine

Q(tict, x*).

To find E[Q(t, S¥IS* " = x*)], we may perform an N-dimensional numerical
integration. The relevant procedure is as follows.

First we introduce an N-dimensional polar coordinate system given by

PP + [P +...+ [V =[p* T 4.2.34)
el =q,p" cos B, cos Oy, cos0(,...cos B sin 6" (4.2.35)
ey =q,p™ sin O, cos 0%, cosB,...cos 8% sin 6 (4.2.36)
el =q,p™ sin B, cos B(,...cos 8" sin O (4.2.37)

e, =qy_p"™ sin 65 sin O’ (4.2.38)
e® =q,p™ cos 0", 4.2.39)

0°<0® <90°, i=1, 2,..., N-1.

For each of the 2V quadrants, we choose randomly a set of n, values of
0™ =(6",0,...,8¢ ), and for each chosen value of ®", we consider the following

n+1 values of p™:

p® = jh, j=0, 1,..., n, (4.2.40)

where h = ¢/n;and ¢% =} 01 is the 99% point of the chi square distribution with N

degrees of freedom. For each ®"“ and p*, we use Eq.(4.2.35)-(4.2.39) to compute

* * * .
e™,el,....e) . We next compute (v, v5* ..., v{¥)using
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1+A,
Ae® (e - (ﬁ)), e® >0
vk _ 2
! 1+ A
Ae™ + A, (Ag[e®]? - (Tﬁ)), e <0

4.2.41)

where (A,,A,,,A;;)" as defined in Section 2.4, is the parameter A, of the quadratic-

normal distribution for v;*.

We next compute (see Eq.(2.4.1) and (2.4.2))
w=Bv®, 4.2.42)
and
x® = §;®(conditioned on $;*") =S (1 + rAt + o;w; ¥ JA) fori=1.2,...N.
(4.2.43)
Then we find ¥® =B®Tx®-i®) (see Eq. (24.4), and
(89,80, 8%) (see Eq.(4.2.6)), and obtain ™, 0% 8%, ... 0%, using Eq.(4.2.15)-
(4.2.20) with k* changed to k.
From @ =®®,6",...6%,), we find the quadrant which contains ®* and
use Eq.(4.2.24) to get 6(;), g=0,1,2. From 6(;), g=0,1,2, we find
Q(t,,x*)=[CP +cPp® + P [p 1" (4.2.44)

In short for a given value of (q,,q,.,....qy,0;",6,....6%,) and the values p{“’, j = 0,1,

2, ...,0of p™, we find / +1corresponding values of Q(x, x(k)). From these / +1 values

of Q(ty, x(k)), we use a regression procedure to obtain

® L OO, 012 ® ®
Cy Ftepl+ey [P, 0<pT<E

0 o5 g (4.2.45)

Q(tk s X(k)) = {
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For a given value of (q,.q,,....qy) , we need to compute the multiple integral

/2 T1I/2 m/2 &Y

Loan = | oo [ [P +cMp™ 4+ p™ e g
0 =06"=0 6, =0p"=0
dp™deyy, ..de’de, (4.2.46)
k k k
del”  dey’  dey
p®  9p® p®
del®  del ey
1 N
_ . . ®) LK) ()Y 1= . o ol
where J=[ Jacobian obtained from (e,",e,"”,...,e’) | 89§ ) 89§ ) . 89§ )
) W ®
de, dey”  dey
) ) )
aeN—l aeN—l aeN—l
To compute the integral in Eq.(4.2.46) we
(1) use numerical integration to perform the integration with respect to p® .
gr p g P p

(ii) regress the value from (i) on egk),e(k),...,eg‘ll to obtain a polynomial of low

degree in the polar angles.
(iii)  use numerical integration to evaluate integrals of which the integrands are

products of the powers, sines and cosines of the polar angles.

Then
E*[Q(tk’s(k)ls(k—l):X(k—l))]: 5 S
a4, =-1l+lq, ==L+l gy =-1+ “1"2"°N
(4.2.47)
and
Q(tit, x*™) = max(h(ti1, x*), e ™VE [Q(ty, SVIS* = x* ). (4.2.48)

For each of @*", we may approximate Q(ti.;, xX*") by a quadratic function of

p*P and express Q(ti.1, x*V) as

~(k-1) ~(k-1) x(k-1) ~(k-Drx(k-1)72 ~(k-1) £ (k-1)
C +C +C , 0< <
A R T pr <t (4.2.49)

(k=1)y _
Q(t,_,,x )= { 0 ﬁ(k—l) S &(k—l)
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where ¢, ¢, ¢ and £ are constants which depend on ®*".

Examples of the fitted quadratic function of Q(tks.1, x(k*'l)) when N = 3 and k* = 10 are

shown in Figures 4.2.9 — 4.2.10. Figures 4.2.9 and 4.2.10 show that the right side of

Eq.(4.2.49) gives a satisfy fit to the computed values of Q(txx1, x(k*'l)).

L

r3
. // + computed
// —fitted

Value ofthe Q function
n

05

o

o 05 1 s oo z z5 3 3.5

Figure 4.2.9: Computed and fitted values of Q(ty-1, X )

[N=3, Quadrant number=1, k*=10, exercise dates are 1/365, 2/365,..., 10/365, r=0.05,
K=46, (6", 05") = (40°,81°), (ny, n,) = (20, 30), fitted function is
y=0.02122x2+0.581 17x+1.04828, other parameters are as given in Tables 4.2.2 and
4.2.3]

value of the G furction
|
3

Figure 4.2.10: Computed and fitted values of Q(t,.;, x*™)

[N=3, Quadrant number=5, k*=10, exercise dates are 1/365, 2/365,..., 10/365, r=0.05%,
K=46, (X", 05) = (5°,15°, (ny, n,) = (20, 30), fitted function is
y=0.1 16x%-0.746x+1.076, other parameters are as given in Tables 4.2.2 and 4.2.3]



Then, for each quadrant and each value of g = 0, 1, 2, we may regress ¢, = on

8D B B o get

z

—1N-1

Z q- l)e(k—l)égk—l) +Nz_d§; VeI, (4.2.50)
i=1

=1

~(k H _ d(k D +Zd(k l)e(k D +
g0

.

MM

for 0°<8*" <90° andi,j=1,2, ..., N-1.

Examples of the computed and fitted value of ;™" , g =0, 1, 2, in the first and eighth

quadrants when N = 3 and k* = 10 are shown in Figures 4.2.11 — 4.2.16. Figures 4.2.11
—4.2.16 indicate that the right side of Eq.(4.2.50) also gives a fairly satisfactory fit to

the computed values of ¢, g=0, 1, 2.
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Figure 4.2.11: The fitted and computed values of the coefficient & of Q(ti«1, x*)

[N=3, Quadrant number=1, k*=10, exercise dates are 1/365, 2/365,..., 10/365, r=0.05,
K=46, (ny, n;)=(20, 20), (20, 25), (20, 30), the fitted equations for ¢\ is

CD = 1,048+ (4.62E—05)0 " + (5.71E - 06)0 " — (4.76E- 7)1

— (6.28E—07)[9fk*_1)] —(4.41E—08)[9§k*_1)] , other parameters are as given in Tables
4.2.2 and 4.2.3]
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Figure 4.2.12: The fitted and computed values of the coefficient ™ of Q(tys, x*)
[N=3, Quadrant number=1, k*=10, exercise dates are 1/365, 2/365,..., 10/365, r=0.05,

K=46, (ny, n,)=(20, 20), (20, 25), (20, 30), the fitted equations for ¢ is
g =0.619+0.003090" + (8.58E —04)6' " - (3.68E - 06) 0
—(7.97E-05)[6“""1* - (1.22E -05)[6 " 1*, other parameters are as given in Tables

4.2.2 and 4.2.3]
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Figure 4.2.13: The fitted and computed values of the coefficient & of Q(tix;, x* )

[N=3, Quadrant number=1, k*=10, exercise dates are 1/365, 2/365,..., 10/365, r=0.05,
K=46, (n,, n,)=(20, 20), (20, 25), (20, 30), the fitted equations for ¢\ is

ED = 0.0218 - (1.83E—04)0 " + (2.63E - 05)8 " + (1.85E -06) 6 "<~V
—(1.21E-06)[8 "> — (2.21E - 07)[ 6" ]?, other parameters are as given in Tables
4.2.2 and 4.2.3]
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Computed values of £2®
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Figure 4.2.14: The fitted and computed values of the coefficient ¢ " of Q(tix.1, x &y

[N=3, Quadrant number=8, k*=10, exercise dates are 1/365, 2/365,..., 10/365, r=0.05,
K=46, (ny, n;)=(20, 20), (20, 25), (20, 30), the fitted equations for ¢\ " is

E Y =1.069+ (1.86E—04)0 " + (1.77E - 04)0 " + (4.37E—07)0 9"
- (6.96E - 06)[ 0 "]? - (2.09E - 06)[ """ ]?, other parameters are as given in Tables

4.2.2 and 4.2.3]
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Figure 4.2.15: The fitted and computed values of the coefficient & of Q(ti-;, x*™)

[N=3, Quadrant number=8, k*=10, exercise dates are 1/365, 2/365,..., 10/365,
r=0.05, K=46, (n,, n,)=(20, 20), (20, 25), (20, 30), the fitted equations for g*" is
gD =.0.7436 -0.00436 " - (2.90E - 03)6 " + (4.58E —06) 09"
+(1.25E-04)[6* " ]* +(3.50E—05)[6{“"]*, other parameters are as given in Tables
4.2.2 and 4.2.3]
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Computed values of cz"‘m";'
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Figure 4.2.16: The fitted and computed values of the coefficient €™ of Q(tys, x*)

[N=3, Quadrant number=8, k*=10, exercise dates are 1/365, 2/365,..., 10/365, r=0.05,
K=46, (ny, n,)=(20, 20), (20, 25), (20, 30), the fitted equations for &* " is

EF D 20,1122+ (6.81E—04)0%" +(1.09E — 03)8" - (3.50E - 06)8 <" <
-(2.89E-05)[6"1? - (1.22E-05)[ 6"V, other parameters are as given in Tables
4.2.2 and 4.2.3]

By finding Q(tix, x*7), Q(tie1, x*), ..., Q(t1, xP), Q(to, x®) in the indicated

order, we can finally obtain the price of the American basket call option

Q = Q(to, x?) = Q(0, S(0)). (4.2.51)

4.3 Pricing of American call options using simulation

For each of the 2" quadrants, we choose randomly a set of n, values of
O =(8™",8{",...,6) | and for each chosen value of ®%”, we consider the

following n+1 values of p*”:

P =jh j=0,1,..., n 43.1)
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where h = ¢ /n; and (1)2 = XIZ\I,O.OI is the 99% point of the chi square distribution with N

degrees of freedom. For each @(m, we

()  find 87, fori=1, 2, ..., N by using Eq.(4.2.16) — (4.2.20) with p*” =p"",

(i) findv*”, fori=1,2, ..., Nbyusing Eq.(4.2.6),
(iii)  find S*” by using Eq.(4.2.5),

and

(iv)  find Q(tex, x*”) using Eq.(4.2.4).

For each @, we may approximate Q(t-x"*") by a quadratic function of p*” and

express Q(ty+,x*") as

k) sk (k%) | (k) (k) (k%) o F (k9
S+ P + MM, 0<p* Y <g

o e 4.32)
0’ p(k') > g(k')

Q(t,..x*) = {

Sk k%
9

where ¢, €7, T and £*” are constants which depend on @*".

Then, for each quadrant and each value of g = 0, 1, 2, we may regress Eg(k*) on
Ak* fk* k)
6,°7,6,",...,0y, to get

N-I N-1

&9 =q k) JEIPEIFED I
g0+§d 67 +> > dE"6 6! +§ng (6 (4.3.3)
i=l j=1
175

for 0°< 6% <90°,1i,j=1,2, .., N-I.

For k = k*, k*-l, ...y 2, 1, we next find Q(ty.q, x(k'l)). For each of the 2N quadrants,
we choose randomly a set of ny values of @ = (8%, 8", . 6%"), and for each
5D,

chosen value of @, we consider the following ni+1 values of
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P =jh j=0,1,....n 4.3.4)

where h = ¢ /n; and (1)2 = XIZ\I,O.OI is the 99% point of the chi square distribution with N

degrees of freedom. For each @(H), we

()  find §*" , fori=1, 2, ..., N by using Eq.(4.2.28) - (4.2.32) with p*"=p*,

(ii) find V", for i=1, 2, ..., N by using Eq.(4.2.26), and
(i)  find S(t.1) = x*" by using Eq.(4.2.25).

We next need to find h(ty_y, x(k'l)) and E*[Q(tk, S©IgkD = x(k'l))] in order to determine
Q(tir, x*1).

To find E'[Q(tx, SPIS*V = x* )] using simulation, we first generate ns values
of (e,el.....el’) where e ~N(0,1) and e*and e{" are uncorrelated for i# j. For

(k> (k> *(k) V;(k) VEk))

each generated (e, ,....e)) we compute the corresponding (v,
(wi ™ wi® wil®) and (x,x%,.,x ) (see Eq.(4.2.41) — (4.2.43)). We then
(1) find (V¥, V..., ¥Y)) using Eq.(2.4.4),
()  find (8™,8",...,€{") using Eq.(4.2.6) with k* changed to k, and
(i)  find p*,6™,8,...,8% using Eq. (4.2.15)-(4.2.20) with k* changed to k.
From @ =®®,6",...6%,), we find the quadrant which contains ®* and
use Eq.(4.3.3) with k* replaced by k to get c ,2=0,1,2. From ¢ c ,g=0,1,2, we
find
Q(t,, x*)=[CP +c¥p® + PP (4.3.5)

Based on the resulting ng values of Q(tx, x(k)), we find the average value of Q(ty, x(k))

and use it to estimate E [Q(tx, S¥IS* V= x* ).
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Then
Q(ti1, x*) = max(h(ticr, x), ™ ETQ(t, SYIS* Y = x* D)) (43.6)
For each of @, we may approximate Q(t,.;, xX*) by a quadratic function of

p*Y and express Q(ty.1, x* ) as

p
~(k-1) ~(k-1) x(k-1) ~(k-)rxk-1)72 ~(k-1) ~(k—1)
ot x*Vy= Sy HC TIPS, 0<ptY LE 43.7)
k-1 = o 3.
0, Bk > E6D
where ¢, ¢, & and £* are constants which depend on ®*".

Then, for each quadrant and each value of g = 0, 1, 2, we may regress ¢, on

6% B 8D to get

N-I N-1

N-1 N-1
~(k=1) _ J(k-1) T (k=D J(k-1) T (k=D A(k-D)A(k=1) (k=D R(k-1) 72
S =dl + Y AU 3 S AR 1Y qE g, (4.3.8)
i=1 i=l

=

=1
#j
for 0°<0*™" <90° andi,j=1,2, .., N-1I.

By finding Q(tix, x*7), Q(tiw1, x*), ..., Q(t1, xP), Q(to, x®) in the indicated
order, we can finally obtain the price of the American basket call option,

Q= Q(to, x) = Q(0, S(0)). (4.3.9)

We note the procedure in this section is similar to that given in Section 4.2. The
main difference is that instead of using numerical integration to compute the conditional
expectation E[Q(ty, S®IS®Y = x*)] in Section 4.2 (see Eq.(4.2.46), (4.2.47) and

(4.2.48)), we use simulation in this section to estimate the same conditional expectation.
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4.4 Numerical examples

Case A: Pricing American call options when N=3

Let K=46, a,=03 , a,=03, and a,=04 . Suppose the (i, j) entry of

P = {corr(w{”,w{")} is given by Table 4.2.2 and consider four sets of values of

u.,c,,8” , i=1, 2, 3 given by Table 4.4.1. The results for the American call option

prices for k*=10 and 30 are shown in Table 4.4.2 and Table 4.4.4 respectively. The
computing times required for computing the American call option prices for k* = 10
and 30 by using numerical method and simulation (in minutes) in an Intel(R) Core(TM)

i5 processor 2.27GHz computer are shown in Table 4.4.3 and Table 4.4.5 respectively.

Table 4.4.1: Values of y,,6,, S, m” and m_"

[Number of underlying assets is N= 3, r=0.05, K=46, a, =0.3, a, =0.3, a, =0.4]

- 0 [ O [ w0
Example | { | p, o, | SY | my | m

110.05|0.15| 50 | 0.0 | 3.0

Al 2100501 |60 | 00 ] 3.0

310050213500 3.0

1/0.05|0.15| 50 | 0.0 | 8.0

Az 21005 01 |60 | 00| 80

310050213500 80

1/0.05|0.15| 50 | 0.1 | 3.0

As 21005 01|60 | 01| 3.0

310050213501 ] 3.0

1/0.05|0.15]| 50 | 0.1 | 5.0

A4 2100501 |60 | 02] 4.0

3100502 |35 |02 38
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Table 4.4.2: Results for American call option prices

[Number of underlying assets is N = 3, k*=10, exercise dates are 1/365, 2/365,...,
10/365, r=0.05, K=46, a, =0.3, a, =0.3, a, =0.4, other parameters are as given in

Tables 4.2.2 and 4.4.1]

) Simulation
Example | (ny, n;) | Numerical Method n=1.000 | m=10.000
(20,5) 1.07386 1.07513 | 1.07385
(20,10) 1.07286 1.07377 | 1.07297
(20,15) 1.07206 1.07424 | 1.07251
AL (20,20) 1.07290 1.07396 | 1.07282
(20,25) 1.07252 1.07036 | 1.07200
(20,30) 1.07221 1.07447 | 1.07284
(25,30) 1.07197 1.07026 | 1.07121
(30,30) 1.07181 1.07285 | 1.07167
(20,5) 1.40158 1.39761 | 1.40625
(20,10) 1.43865 1.42870 | 1.43507
(20,15) 1.44019 143014 | 1.44381
A (20,20) 1.46270 1.45508 | 1.46567
(20,25) 1.46854 1.45989 | 1.46802
(20,30) 1.46996 145751 | 1.46588
(25,30) 1.46839 146338 | 1.46445
(30,30) 1.46701 146031 | 1.46682
(20,5) 1.18216 1.15853 | 1.17812
(20,10) 1.17726 1.17046 | 1.17430
(20,15) 1.19874 1.18194 | 1.19610
As (20,20) 1.21031 1.20543 | 1.21707
(20,25) 1.21054 1.20960 | 1.21169
(20,30) 1.23852 1.22629 | 1.23634
(25,30) 1.24432 1.23296 | 1.24906
(30,30) 1.24291 1.24015 | 1.24177
(20,5) 1.72343 1.71063 | 1.72120
(20,10) 1.70150 1.69207 | 1.70448
(20,15) 1.77721 1.76829 | 1.77388
A (20,20) 1.97814 1.96577 | 1.97558
(20,25) 2.11944 2.12441 | 2.11823
(20,30) 2.02370 1.98887 | 2.02318
(25,30) 2.11902 2.09741 | 2.11811
(30,30) 2.13794 2.12675 | 2.13966




From Table 4.4.2 we can get the following findings:

Flt

Fz:

F3aZ

F3b2

The American call option prices found by using numerical method agree well
with those based on simulation especially when the number ng of points chosen

randomly from the N-dimensional space is very large.

When the distributions of v{* are normal (see example Aiin Tables 4.4.1 and
4.4.2), an increase in the value of (ny, n;) does not affect the price based on
numerical method very much. However when the distributions of v{* deviate

from normality (see examples A2, A3, and Asin Tables 4.4.1 and 4.4.2), the

variation of ny and n; has a rather large effect on the price based on numerical
method. Thus when the Vi(k) are non-normal, we need to use fairly large n, and

n;in order to compute the price accurately.

(k)

i

As we move from example Aito A2, the kurtosis of the distributions of v

increases from 3.0 to 8.0, and the American call option price also increases from

about 1.07 to 1.46.

As we move from example Aito As, the skewness of the distributions of Vi(k)

increases from 0 to 0.1, and the American call option price also increases from

about 1.07 to 1.24.

When the distributions of Vi(k) are skewed and having larger kurtosis, the
American call option price tends to deviate from the American call option price

computed when the distributions of v{*’ are normal.
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Table 4.4.3: Computation times (in minutes) required for computing the American call
option prices presented in Table 4.4.2

[Number of underlying assets is N = 3, k*=10, exercise dates are 1/365, 2/365,...,
10/365, r=0.05, K=46, a, =0.3, a, =0.3, a, =0.4, other parameters are as given in
Tables 4.2.2 and 4.4.1]

' Simulation
(n,, ;) Numerical Method 000 =100
(20,5) 4.68 3.54 5.14
(20,10) 6.38 6.21 9.32
(20,15) 9.85 9.54 13.45
(20,20) 12.61 12.45 17.67
(20,25) 16.55 16.04 21.29
(20,30) 20.75 20.57 25.02
(25,30) 25.18 25.02 30.38
(30, 30) 29.75 29.46 35.75

From Table 4.4.3 we see that the computing times required by numerical method are
comparable to those required by the simulation procedure when ng = 1,000. But when

ns = 10,000, the simulation procedure requires slightly longer time.
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Table 4.4.4: Results for American call option prices

[Number of underlying assets is N = 3, k*=30, exercise dates are 1/365, 2/365,...,
30/365, r=0.05, K=46, a, =0.3, a, =0.3, a, = 0.4, other parameters are as given in

Tables 4.2.2 and 4.4.1]

) hod Simulation
Example | (ny, n;) | Numerical Metho n=1.000 | m=10.000
(20,5) 1.21096 1.22001 | 1.20630
(20,10) 1.20050 1.21585 | 1.20245
(20,15) 1.20712 1.19733 | 1.20456
AL (20,20) 1.20064 1.19910 | 1.20201
(20,25) 1.20702 1.19841 | 1.20380
(20,30) 1.20237 1.20158 | 1.20390
(25,30) 1.20017 1.20313 | 1.20189
(30,30) 1.20580 1.20449 | 1.20507
(20,5) 1.24745 1.23088 | 1.24698
(20,10) 1.24016 1.23028 | 1.24166
(20,15) 1.24488 1.23167 | 1.24568
A (20,20) 1.24836 1.24177 | 1.24706
(20,25) 1.23027 1.23876 | 1.23190
(20,30) 1.23964 1.23095 | 1.23690
(25,30) 1.23928 1.23759 | 1.23858
(30,30) 1.23450 1.23328 | 1.23384
(20,5) 1.16859 1.18691 | 1.16428
(20,10) 1.16985 1.16676 | 1.16722
(20,15) 1.17137 1.17981 | 1.17083
As (20,20) 1.17453 1.17146 | 1.17314
(20,25) 1.18784 1.18984 | 1.18997
(20,30) 1.18675 1.18435 | 1.18553
(25,30) 1.18722 1.18647 | 1.18823
(30,30) 1.18609 1.18546 | 1.18596
(20,5) 1.27918 1.24168 | 1.27849
(20,10) 1.24114 1.25969 | 1.24599
(20,15) 1.26077 1.27294 | 1.26162
A (20,20) 1.28836 1.25073 | 1.28990
(20,25) 1.26835 1.26172 | 1.26230
(20,30) 1.24990 1.24564 | 1.24767
(25,30) 1.24034 1.24122 | 1.24350
(30,30) 1.24178 1.24355 | 1.24808




From Table 4.4.4, we see that the findings F, F,, Fs,, and Fs. derived from Table 4.4.2

basically still hold. However Table 4.4.4 shows that an increase in skewness may also

result in a decrease in the American call option price.

Table 4.4.5: Computation times (in minutes) required for computing the American call

option prices presented in Table 4.4.4

[Number of underlying assets is N = 3, k*=30, exercise dates are 1/365, 2/365,...,
30/365, r=0.05, K=46, a, =0.3, a, =0.3, a, =0.4, other parameters are as given in

Tables 4.2.2 and 4.4.1]

' Simulation

(0, ;) Numerical Method =700 T m=T0.000
(20,5) 12.82 11.62 16.28
(20,10) 19.20 18.56 27.89
(20,15) 29.57 28.67 40.36
(20,20) 37.85 37.32 53.01
(20,25) 49.62 49.36 63.91
(20,30) 62.12 62.07 75.02
(25,30) 50.35 50.08 91.06
(30, 30) 89.21 89.19 107.22

From Table 4.4.5, we see that the computing times required by numerical method are

comparable to those required by the simulation procedure when ns = 1,000. But when

ns = 10,000, the simulation procedure requires longer time.
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Case B: Pricing American call options when N=4

Consider the case when K=46.5, a, =0.2, a, =0.3, a,=0.2 and a, =0.3. Suppose the

(i, j) entry of P ={corr(w{",w{")} is given by Table 4.4.6 and consider four sets of

1

values of ui,ci,S“’) , for i =1, 2, 3, 4, given by Table 4.4.7. The results for the
American call option prices are shown in Table 4.4.8. The computing times required for
computing the American call option prices by using numerical method and simulation
(in minutes) respectively in an Intel(R) Core(TM) i5 processor 2.27GHz computer are

shown in Table 4.4.9.

Table 4.4.6: The (i, j) entry of P = {corr(w{, w{")}

]

1 1 0.01 | 0.045 | 0.08

2| 0.01 1 0.05 |0.03

310.045 | 0.05 1 0.1

41 008 |0.03| 0.1 1
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Table 4.4.7: Values of y,,c,, S, m{" and m_"

[Number of underlying assets is N=4, k*=10, exercise dates are 1/365, 2/365,..., 10/365,

r=0.05, K=46.5,a, =0.2,a, =0.3,a, =0.2,a, =0.3]

Example | i | p, | o |s® [ m{ | my
17005(015| 50 | 00 | 3.0
21005101 |60 | 00| 3.0

B:
31005102135 |00 3.0
41005102 |40 | 00| 3.0
17005(015| 50 | 00 | 5.0
21005101 |60 | 001 50
B>
31005102135 |00 50
41005102 |40 | 00| 5.0
11005(0.15| 50 | 0.1 3.0
21005 01 | 60 | 0.1 3.0
B3
3100502 ] 35| 0.1 3.0
4100502 | 40 | 0.1 3.0
11005(0.15| 50 | 0.1 5.0
21005101 |60 | 021 40
B4
3100510235 |02 38
41005 02|40 | 03 3.4
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Table 4.4.8: Results for American call option prices

[Number of underlying assets is N=4, k*=10, exercise dates are 1/365, 2/365,..., 10/365,

r=0.05, K=46.5,a, =0.2,a, =0.3,a, =0.2,a, = 0.3 ,other parameters are as given in

Tables 4.4.6 and 4.4.7]

' Simulation
Example (ny, n;) | Numerical Method 000 510000
(50,30) 0.72728 0.74401 | 0.72539
B: (100,30) 0.73897 0.72578 | 0.73391
(200,30) 0.74089 0.74219 | 0.74122
(50,30) 0.76091 0.74009 | 0.75935
B: (100,30) 0.76002 0.75401 | 0.76195
(200,30) 0.77610 0.76046 | 0.77723
(50,30) 0.73274 0.72530 | 0.73943
Bs (100,30) 0.72066 0.72747 | 0.72469
(200,30) 0.72505 0.72122 | 0.72344
(50,30) 0.70992 0.71447 | 0.70712
Ba (100,30) 0.70312 0.70139 | 0.70437
(200,30) 0.70005 0.70734 | 0.70296

From Table 4.4.8, we see that the findings Fi, F3, and F3. derived from Table 4.4.2 also

hold. However Table 4.4.8 shows that an increase in skewness may also result in a

decrease in the American call option price.
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Table 4.4.9: Computation times (in minutes) required for computing the American call

option prices presented in Table 4.4.8

[Number of underlying assets is N=4, k*=10, exercise dates are 1/365, 2/365,..., 10/365,

r=0.05, K=46.5, a, =0.2, a, =0.3, a, =0.2, a, =0.3, other parameters are as given in

Tables 4.4.6 and 4.4.7]

' Simulation
(n,, ;) Numerical Method 7000 710,000
(50, 30) 12.496 8.99 320.79
(100, 30) 24.867 18.01 641.78
(200, 30) 49.865 27.00 962.45

From Table 4.4.9, we see that the computing times required by numerical merhod are

slightly longer then those required by simulation procedure when ns = 1,000. But when

ng = 10,000, the simulation procedure requires much longer time.
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Case C: Pricing American call options when N=6

Consider the case when K=46.5,a,=0.2,a,=0.2, a;=0.2, a,=0.1, a;=0.1 and

a, =0.2. Suppose the (i,j) entry of P ={corr(w{",w{)} is given by Table 4.4.10 and

1

consider three sets of values of ui,ci,S(O) fori=1,2,..., 6, given by Table 4.4.11. The
results for the American call option prices are shown in Table 4.4.12. The computing
times required for computing the American call option prices by using numerical
method and simulation (in minutes) respectively in an Intel(R) Core(TM) i5 processor

2.27GHz computer are shown in Table 4.4.13.

Table 4.4.10: The (i, j) entry of P = {corr(w{",w{")}

]

1 1 0.01 | 0.045 | 0.08 | 0.05 | 0.1

2| 0.01 1 0.05 [ 0.03| 0.1 |0.07

310.045 | 0.05 1 0.1 | 0.075{0.09

41 008 |0.03] 0.1 1 0.07 | 0.05

5] 005 | 0.1 {0.075|0.07 1 0.04

6| 0.1 {007 0.09 |[005| 0.04 | 1
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Table 4.4.11: Values of u,,6,, S, m{’ and m}’

[Number of underlying assets is N=6, k*=10, exercise dates are 1/365, 2/365,..., 10/365,

r=0.05, K=46.5,a, =0.2,a,=0.2,a,=0.2,a,=0.1,a,=0.1,a, =0.2]

Example L o |s¢|my | m
1/0.05]0.15| 50 | 0.0 | 3.0
210.05]0.10| 60 | 0.0 | 3.0
310.05(020| 35| 0.0 | 3.0

“ 410.05]020| 40 | 0.0 | 3.0
51005020 45 | 0.0 | 3.0
61005020 52 | 0.0 | 3.0
1/0.05]0.15| 50 | 0.0 | 5.0
2/0.05]0.10| 60 | 0.0 | 50
310.05(020| 35| 00 | 50

C:

41005020 40 | 0.0 | 50
51005020 45 | 0.0 | 50
6005020 52 | 0.0 | 50
1/0.05]0.15| 50 | 0.1 | 3.6
2/0.05(0.10| 60 | 0.1 | 3.2
3100502035 | 0.1 | 34

Cs
410.05]020| 40 | 0.1 | 3.0
510.05(020| 45 | 0.1 | 3.8
6005020 52 | 0.1 | 40
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Table 4.4.12: Results for American call option prices

[Number of underlying assets is N=6, k*=10, exercise dates are 1/365, 2/365,..., 10/365,

r=0.05, K=46.5, a, =0.2, a, =0.2, a,=0.2, a, =0.1, a;, =0.1, a, =0.2, other

parameters are as given in Tables 4.4.10 and 4.4.11]

Simulation
Example | (ny, n;) | Numerical Method
ns=1,000 | n==10,000
(50,30) 1.39999 1.40089 | 1.40059
(100,30) 1.39266 1.40035 | 1.39412
Ci (200,30) 1.39571 1.40201 | 1.39725
(300,30) 1.39720 1.40252 | 1.39788
(400,30) 1.39247 1.40003 | 1.39275
(50,30) 1.39864 1.40163 | 1.40048
(100,30) 1.40054 1.41781 | 1.40443
C (200,30) 1.40190 1.41650 | 1.40259
(300,30) 1.40855 1.41030 | 1.40828
(400,30) 1.40974 1.41002 | 1.40996
(50,30) 1.41880 1.41012 | 1.41677
(100,30) 1.41983 1.41286 | 1.41530
GCs (200,30) 1.41557 1.41027 | 1.41546
(300,30) 1.41188 1.41747 | 1.41054
(400,30) 1.41347 1.41019 | 1.41517

From Table 4.4.12, we see that the findings F;, F, and Fs. derived from Table 4.4.2 also

hold. However Table 4.4.12 shows that an increase in kurtosis may instead result in a

slight increase in the American call option price.
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Table 4.4.13: Computation times (in minutes) required for computing the American

call option prices presented in Table 4.4.12

[Number of underlying assets is N=6, k*=10, exercise dates are 1/365, 2/365,..., 10/365,
r=0.05, K=46.5, a, =0.2, a,=0.2, a,=0.2, a,=0.1, a;=0.1, a, =0.2, other

parameters are as given in Tables 4.4.10 and 4.4.11]

Simulation

(ny, ny) | Numerical Method

ns=1,000 | n==10,000
(50, 30) 120.25 135.21 1650.12
(100, 30) 253.18 270.51 327043
(200, 30) 1012.28 1078.36 | 6510.76
(300,30) 1665.15 1692.67 | 13030.32
(400,30) 2160.00 2241.39 | 26040.16

From Table 4.4.13, we see that the computing times required by numerical method are
comparable to those required by simulation procedure when ns = 1,000. But when n, =

10,000, the simulation procedure requires much longer time.
Case D: Pricing American call options when N=8

Consider the case when K=47, a, =0.2, a, =0.1, a,=0.2, a, =0.1, a;=0.1, a, =0.2,

a,; =0.1 and a;=0.1. Suppose the (i, j) entry of P={corr(w{",w\")} is given by

Table 4.4.14 and the values of ui,ci,S(O) fori=1, 2,..., 8 are given by Table 4.4.15. The

results for the American call option prices are shown in Table 4.4.16. The computing
times required for computing the American call option prices by using numerical
integration and simulation (in minutes) respectively in an Intel(R) Core(TM) i5

processor 2.27GHz computer are shown in Table 4.4.17.
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Table 4.4.14: The (i, j) entry of P = {corr(w{",w{")}

]

0.01

0.045

0.08

0.05

0.1

0.02

0.035

2] 001

0.05

0.03

0.1

0.07

0.04

0.09

310.045

0.05

0.1

0.075

0.09

0.1

0.07

41 0.08

0.03

0.1

0.07

0.05

0.06

0.12

5] 0.05

0.1

0.075

0.07

0.04

0.21

0.045

6| 0.1

0.07

0.09

0.05

0.04

0.11

0.02

71 0.02

0.04

0.1

0.06

0.21

0.11

0.05

8 10.035

0.09

0.07

0.12

0.045

0.02

0.05

Table 4.4.15: Values of p.,c,,S”,

3

m{’ and m.’

[Number of underlying assets is N=8, k*=10, exercise dates are 1/365, 2/365,..., 10/365,

r=0.05, K=47, a, =0.2, a,=0.1, a, =02, a, =0.1, a, =0.1, a, =0.1, a, = 0.1,

a, =0.1]
T [ [so]m [mp
1{0.05]|0.15| 50 | 0.0 | 3.0
210.05]0.10| 60 | 0.0 | 3.0
31005(020| 35 | 00 | 3.0
41005020 40 | 0.0 | 3.0
5/0.05[020| 45 | 00 | 3.0
61005020 | 52 | 0.0 | 3.0
710.05]0.15| 50 | 0.0 | 3.0
810.050.10| 60 | 00 | 3.0
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Table 4.4.16: Results for American call option prices

[Number of underlying assets is N=8, k*=10, exercise dates are 1/365, 2/365,..., 10/365,

r=0.05, K=47, a, =0.2, a,=0.1, a, =02, a, =0.1, a, =0.1, a, =0.1, a, = 0.1,

a, = 0.1, other parameters are as given in Tables 4.4.14 and 4.4.15]

' Simulation
(ny, my) Numerical Method 7000 | 7=10.000
(50,30) 1.4544 1.4840 1.4858
(100,30) 1.4665 1.4504 1.4680
(200,30) 1.4770 1.4783 1.4786

From Table 4.4.16 we can get the following findings:

(i) The American call option prices found by using numerical method agree fairly well

(i)

with those based on simulation especially when the number ng of points chosen

randomly from the N-dimensional space is very large.

When the distributions of Vi(k) are fairly normal, the value of (ny, n) = (50, 30)

leads to a value of American call option price which is accurate up to the first

decimal place. However the value of (n,, n;) = (200, 30) is still unable to lead to a

value for the American call option price which is accurate up to the second decimal

place.
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Table 4.4.17: Computation times (in minutes) required for computing the American
call option prices presented in Table 4.4.16

[Number of underlying assets is N=8, k*=10, exercise dates are 1/365, 2/365,..., 10/365,
r=0.05, K=47, a, =0.2, a, =0.1, a, =02, a, =0.1, a;,=0.1, a,=0.1, a, =0.1,

a, = 0.1, other parameters are as given in Tables 4.4.14 and 4.4.15]

Simulation
(0, my) Numerical Method

n=1,000 | n=10,000
(50, 30) 1355.10 2040.21 | 6110.12
(100, 30) 7500.838 7950.84 | 13287.36
(200, 30) 13586.45 13712.23 | 18537.49

From Table 4.4.17 we see that the computing times required by numerical method are
comparable with those required by the simulation procedure when ns = 1,000. But when

ng = 10,000, the simulation procedure requires much longer time.
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