APPENDIX

Case 1: Standard error of American option price when $\overline{m}_{3}^{(i)} = 0$ and $\overline{m}_{4}^{(i)} = 3.0$, for i = 1, 2, 3.

Figure A1: The values of $S_Q(t_k, \mathbf{x}_0^{(k)})$ when n_r is fixed but n_v is varied

[Number of underlying assets is 3, k*=10, exercise dates are 1/365, 2/365,..., 10/365, r=0.05, K=46, $a_1 = 0.3$, $a_2 = 0.3$, $a_3 = 0.4$, $\overline{m}_3^{(i)} = 0$ and $\overline{m}_4^{(i)} = 3.0$ for i=1, 2, 3, other parameters are as given in the beginning part of Section 5.3]

Figure A2: The values of $S_O(t_k, \mathbf{x}_0^{(k)})$ when n_r is fixed but n_v is varied

Figure A3: The values of $S_O(t_k, \mathbf{x}_0^{(k)})$ when n_r is fixed but n_v is varied

[Number of underlying assets is 3, k*=10, exercise dates are 1/365, 2/365,..., 10/365, r=0.05, K=46, $a_1 = 0.3$, $a_2 = 0.3$, $a_3 = 0.4$, $\overline{m}_3^{(i)} = 0$ and $\overline{m}_4^{(i)} = 3.0$ for i=1, 2, 3, other parameters are as given in the beginning part of Section 5.3]

Figure A4: The values of $S_O(t_k, \mathbf{x}_0^{(k)})$ when n_r is fixed but n_v is varied

Figure A5: The values of $S_O(t_k, \mathbf{x}_0^{(k)})$ when n_r is fixed but n_v is varied

[Number of underlying assets is 3, k*=10, exercise dates are 1/365, 2/365,..., 10/365, r=0.05, K=46, $a_1 = 0.3$, $a_2 = 0.3$, $a_3 = 0.4$, $\overline{m}_3^{(i)} = 0$ and $\overline{m}_4^{(i)} = 3.0$ for i=1, 2, 3, other parameters are as given in the beginning part of Section 5.3]

Figure A6: The values of $S_Q(t_k, \mathbf{x}_{_0}^{(k)})$ when n_v is fixed but n_r is varied

Figure A7: The values of $S_Q(t_k, \mathbf{x}_0^{(k)})$ when n_v is fixed but n_r is varied

[Number of underlying assets is 3, k*=10, exercise dates are 1/365, 2/365,..., 10/365, r=0.05, K=46, $a_1 = 0.3$, $a_2 = 0.3$, $a_3 = 0.4$, $\overline{m}_3^{(i)} = 0$ and $\overline{m}_4^{(i)} = 3.0$ for i=1, 2, 3, other parameters are as given in the beginning part of Section 5.3]

Figure A8: The values of $S_Q(t_k, \mathbf{x}_0^{(k)})$ when n_v is fixed but n_r is varied

Case 2: Standard error of American option price when $\overline{m}_{3}^{(i)} = 0.1$ and

 $\overline{m}_{4}^{(i)} = 3.0$ for i =1, 2, 3

Figure A9: The values of $S_O(t_k, \mathbf{x}_0^{(k)})$ when n_r is fixed but n_v is varied

[Number of underlying assets is 3, k*=10, exercise dates are 1/365, 2/365,..., 10/365, r=0.05, K=46, $a_1 = 0.3$, $a_2 = 0.3$, $a_3 = 0.4$, $\overline{m}_3^{(i)} = 0.1$ and $\overline{m}_4^{(i)} = 3.0$ for i=1, 2, 3, other parameters are as given in the beginning part of Section 5.3]

Figure A10: The values of $S_O(t_k, \mathbf{x}_0^{(k)})$ when n_r is fixed but n_v is varied

Figure A11: The values of $S_{Q}(t_{k}, \mathbf{x}_{0}^{(k)})$ when n_{r} is fixed but n_{v} is varied

[Number of underlying assets is 3, k*=10, exercise dates are 1/365, 2/365,..., 10/365, r=0.05, K=46, $a_1 = 0.3$, $a_2 = 0.3$, $a_3 = 0.4$, $\overline{m}_3^{(i)} = 0.1$ and $\overline{m}_4^{(i)} = 3.0$ for i=1, 2, 3, other parameters are as given in the beginning part of Section 5.3]

Figure A12: The values of $S_Q(t_k, \mathbf{x}_0^{(k)})$ when n_r is fixed but n_v is varied

Figure A13: The values of $S_{Q}(t_{k}, \mathbf{x}_{0}^{(k)})$ when n_{r} is fixed but n_{v} is varied

[Number of underlying assets is 3, k*=10, exercise dates are 1/365, 2/365,..., 10/365, r=0.05, K=46, $a_1 = 0.3$, $a_2 = 0.3$, $a_3 = 0.4$, $\overline{m}_3^{(i)} = 0.1$ and $\overline{m}_4^{(i)} = 3.0$ for i=1, 2, 3, other parameters are as given in the beginning part of Section 5.3]

Figure A15: The values of $S_Q(t_k, \mathbf{x}_0^{(k)})$ when n_v is fixed but n_r is varied

[Number of underlying assets is 3, k*=10, exercise dates are 1/365, 2/365, ..., 10/365, r=0.05, K=46, $a_1 = 0.3$, $a_2 = 0.3$, $a_3 = 0.4$, $\overline{m}_3^{(i)} = 0.1$ and $\overline{m}_4^{(i)} = 3.0$ for i=1, 2, 3, other parameters are as given in the beginning part of Section 5.3]

Figure A16: The values of $S_Q(t_k, \mathbf{x}_0^{(k)})$ when n_v is fixed but n_r is varied

Case 3: Standard error of American option price when $\overline{m}_{3}^{(i)} = 0$ and

 $\overline{m}_{4}^{(i)} = 8.0$ for i=1,2,3

Figure A17: The values of $S_{0}(t_{k}, \mathbf{x}_{0}^{(k)})$ when n_{r} is fixed but n_{v} is varied

[Number of underlying assets is 3, k*=10, exercise dates are 1/365, 2/365,..., 10/365, r=0.05, K=46, $a_1 = 0.3$, $a_2 = 0.3$, $a_3 = 0.4$, $\overline{m}_3^{(i)} = 0$ and $\overline{m}_4^{(i)} = 8.0$ for i=1, 2, 3, other parameters are as given in the beginning part of Section 5.3]

Figure A18: The values of $S_Q(t_k, \mathbf{x}_0^{(k)})$ when n_r is fixed but n_v is varied

Figure A19: The values of $S_O(t_k, \mathbf{x}_0^{(k)})$ when n_r is fixed but n_v is varied

[Number of underlying assets is 3, k*=10, exercise dates are 1/365, 2/365,..., 10/365, r=0.05, K=46, $a_1 = 0.3$, $a_2 = 0.3$, $a_3 = 0.4$, $\overline{m}_3^{(i)} = 0$ and $\overline{m}_4^{(i)} = 8.0$ for i=1, 2, 3, other parameters are as given in the beginning part of Section 5.3]

Figure A20: The values of $S_Q(t_k, \mathbf{x}_0^{(k)})$ when n_r is fixed but n_v is varied

Figure A21: The values of $S_0(t_k, \mathbf{x}_0^{(k)})$ when n_r is fixed but n_v is varied

[Number of underlying assets is 3, k*=10, exercise dates are 1/365, 2/365,..., 10/365, r=0.05, K=46, $a_1 = 0.3$, $a_2 = 0.3$, $a_3 = 0.4$, $\overline{m}_3^{(i)} = 0$ and $\overline{m}_4^{(i)} = 8.0$ for i=1, 2, 3, other parameters are as given in the beginning part of Section 5.3]

Figure A22: The values of $S_O(t_k, \mathbf{x}_0^{(k)})$ when n_v is fixed but n_r is varied

Figure A23: The values of $S_{Q}(t_{k}, \mathbf{x}_{0}^{(k)})$ when n_{v} is fixed but n_{r} is varied

[Number of underlying assets is 3, k*=10, exercise dates are 1/365, 2/365,..., 10/365, r=0.05, K=46, $a_1 = 0.3$, $a_2 = 0.3$, $a_3 = 0.4$, $\overline{m}_3^{(i)} = 0$ and $\overline{m}_4^{(i)} = 8.0$ for i=1, 2, 3, other parameters are as given in the beginning part of Section 5.3]

Figure A24: The values of $S_0(t_k, \mathbf{x}_0^{(k)})$ when n_v is fixed but n_r is varied

Case 4: Standard error of American option price when $\overline{m}_{3}^{(1)} = 0.1$,

$$\overline{\mathbf{m}}_{4}^{(1)} = 5.0, \ \overline{\mathbf{m}}_{3}^{(2)} = 0.2, \ \overline{\mathbf{m}}_{4}^{(2)} = 4.0, \ \overline{\mathbf{m}}_{3}^{(3)} = 0.2 \ \text{and} \ \overline{\mathbf{m}}_{4}^{(3)} = 3.8$$

Figure A25: The values of $S_O(t_k, \mathbf{x}_0^{(k)})$ when n_r is fixed but n_v is varied

[Number of underlying assets is 3, k*=10, exercise dates are 1/365, 2/365,..., 10/365, r=0.05, K=46, $a_1 = 0.3$, $a_2 = 0.3$, $a_3 = 0.4$, $\overline{m}_3^{(1)} = 0.1$, $\overline{m}_4^{(1)} = 5.0$, $\overline{m}_3^{(2)} = 0.2$, $\overline{m}_4^{(2)} = 4.0$, $\overline{m}_3^{(3)} = 0.2$ and $\overline{m}_4^{(3)} = 3.8$, other parameters are as given in the beginning part of Section 5.3]

Figure A26: The values of $S_Q(t_k, \mathbf{x}_0^{(k)})$ when n_r is fixed but n_v is varied

[Number of underlying assets is 3, k*=10, exercise dates are 1/365, 2/365,..., 10/365, r=0.05, K=46, $a_1 = 0.3$, $a_2 = 0.3$, $a_3 = 0.4$, $\overline{m}_3^{(1)} = 0.1$, $\overline{m}_4^{(1)} = 5.0$, $\overline{m}_3^{(2)} = 0.2$, $\overline{m}_4^{(2)} = 4.0$, $\overline{m}_3^{(3)} = 0.2$ and $\overline{m}_4^{(3)} = 3.8$, other parameters are as given in the beginning part of Section 5.3]

Figure A27: The values of $S_O(t_k, \mathbf{x}_0^{(k)})$ when n_r is fixed but n_v is varied

[Number of underlying assets is 3, k*=10, exercise dates are 1/365, 2/365,..., 10/365, r=0.05, K=46, $a_1 = 0.3$, $a_2 = 0.3$, $a_3 = 0.4$, $\overline{m}_3^{(1)} = 0.1$, $\overline{m}_4^{(1)} = 5.0$, $\overline{m}_3^{(2)} = 0.2$, $\overline{m}_4^{(2)} = 4.0$, $\overline{m}_3^{(3)} = 0.2$ and $\overline{m}_4^{(3)} = 3.8$, other parameters are as given in the beginning part of Section 5.3]

Figure A28: The values of $S_O(t_k, \mathbf{x}_0^{(k)})$ when n_r is fixed but n_v is varied

[Number of underlying assets is 3, k*=10, exercise dates are 1/365, 2/365,..., 10/365, r=0.05, K=46, $a_1 = 0.3$, $a_2 = 0.3$, $a_3 = 0.4$, $\overline{m}_3^{(1)} = 0.1$, $\overline{m}_4^{(1)} = 5.0$, $\overline{m}_3^{(2)} = 0.2$, $\overline{m}_4^{(2)} = 4.0$, $\overline{m}_3^{(3)} = 0.2$ and $\overline{m}_4^{(3)} = 3.8$, other parameters are as given in the beginning part of Section 5.3]

Figure A29: The values of $S_{Q}(t_{k}, \mathbf{x}_{0}^{(k)})$ when n_{r} is fixed but n_{v} is varied

[Number of underlying assets is 3, k*=10, exercise dates are 1/365, 2/365,..., 10/365, r=0.05, K=46, $a_1 = 0.3$, $a_2 = 0.3$, $a_3 = 0.4$, $\overline{m}_3^{(1)} = 0.1$, $\overline{m}_4^{(1)} = 5.0$, $\overline{m}_3^{(2)} = 0.2$, $\overline{m}_4^{(2)} = 4.0$, $\overline{m}_3^{(3)} = 0.2$ and $\overline{m}_4^{(3)} = 3.8$, other parameters are as given in the beginning part of Section 5.3]

Figure A30: The values of $S_Q(t_k, \mathbf{x}_0^{(k)})$ when n_v is fixed but n_r is varied

[Number of underlying assets is 3, k*=10, exercise dates are 1/365, 2/365,..., 10/365, r=0.05, K=46, a₁ = 0.3, a₂ = 0.3, a₃ = 0.4, $\overline{m}_{3}^{(1)} = 0.1$, $\overline{m}_{4}^{(1)} = 5.0$, $\overline{m}_{3}^{(2)} = 0.2$, $\overline{m}_{4}^{(2)} = 4.0$, $\overline{m}_{3}^{(3)} = 0.2$ and $\overline{m}_{4}^{(3)} = 3.8$, other parameters are as given in the beginning part of Section 5.3]

Figure A31: The values of $S_0(t_k, \mathbf{x}_0^{(k)})$ when n_v is fixed but n_r is varied

[Number of underlying assets is 3, k*=10, exercise dates are 1/365, 2/365,..., 10/365, r=0.05, K=46, $a_1 = 0.3$, $a_2 = 0.3$, $a_3 = 0.4$, $\overline{m}_3^{(1)} = 0.1$, $\overline{m}_4^{(1)} = 5.0$, $\overline{m}_3^{(2)} = 0.2$, $\overline{m}_4^{(2)} = 4.0$, $\overline{m}_3^{(3)} = 0.2$ and $\overline{m}_4^{(3)} = 3.8$, other parameters are as given in the beginning part of Section 5.3]

Figure A32: The values of $S_Q(t_k, \mathbf{x}_0^{(k)})$ when n_v is fixed but n_r is varied

[Number of underlying assets is 3, k*=10, exercise dates are 1/365, 2/365,..., 10/365, r=0.05, K=46, $a_1 = 0.3$, $a_2 = 0.3$, $a_3 = 0.4$, $\overline{m}_3^{(1)} = 0.1$, $\overline{m}_4^{(1)} = 5.0$, $\overline{m}_3^{(2)} = 0.2$, $\overline{m}_4^{(2)} = 4.0$, $\overline{m}_3^{(3)} = 0.2$ and $\overline{m}_4^{(3)} = 3.8$, other parameters are as given in the beginning part of Section 5.3]