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ABSTRACT 

 

The aim of this work is to study a theory of the energy band gap of ZnSxSe1-x        

(0≤ x ≤1) materials, and to obtain the density of states (DOS) in a quantizing magnetic 

field. From .k p
 

perturbation theory, momentum matrix elements and energy eigenvalue 

of the Zn-S-Se alloy are derived. An empirical relationship  where       

(μ
*
)
-1

=(mc)
-1

+(mv)
-1

, and mc, mv are the electron and hole rest masses respectively, is 

incorporated in the derivation of the energy gap equation  

 

The perturbation theory is also extended to include the spin-orbit interaction 

leading to a different expression for the energy gap 

 

Third, the density of states (DOS) for ZnSxSe1-x in a quantizing magnetic field has been 

determined by the E-k relation. The energy gap calculated from CASTEP is considered 

the unperturbed energy gap, Eg0. The actual energy Eg is related to Eg0 and results 

obtained are in reasonable agreement with published results obtained from literature. 

Energy gap with spin-orbit interaction is higher than the values calculated using energy 

gap equation without spin.  

The DOS                       

is shown to depend on the electron energy and the magnetic field. Fermi level is 

modified by the magnetic field. 
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ABSTRAK 

 

Tujuan kerja ini adalah untuk membangunkan teori jurang jalur tenaga bahan-

bahan  ZnSxSe1-x (o ≤ x ≤ 1), dan untuk mendapatkan ketumpatan keadaan (DOS) dalam 

medan magnet pengkuantuman. Menurut teori pertubasi , matriks momentum 

unsur-unsur dan nilai tenaga eigen aloi Zn-S-Se diperolehi. Hubungan empirikal di 

mana  (μ
*
)
-1 

= (mc) 
-1

 + (mv) 
-1

, dengan mc dan mv masing-masing adalah jisim elektron 

dan jisim lohong dimuatkan dalam menerbitkan persamaan jurang tenaga. 

 

Teori pertubasi juga diperluaskan kepada interaksi spin-orbit yang membawa 

kepada ungkapan yang berlainan bagi persamaan jurang tenaga  

 

Ketiga, ketumpatan keadaan (DOS) untuk ZnSxSe1-x dalam medan magnet 

pengkuantuman telah ditentukan oleh hubungan E-k. Jurang tenaga yang ditaksir dari 

CASTEP dianggap jurang tenaga tidak terusik, Eg0. Tenaga jalur tidak terusik adalah 

berkaitan dengan Eg0 dan keputusan yang diperolehi adalah munasabah dengan hasil 

yang telah diterbitkan dalam jurnal. Jurang tenaga dengan interaksi spin-orbit adalah 

lebih tinggi daripada nilai-nilai dikira menggunakan persamaan jurang tenaga tanpa 

spin-orbit. 

DOS                                

ditunjukkan bergantung kepada tenaga elektron dan medan magnet. Aras Fermi 

diubahsuai oleh medan magnet. 
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