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CHAPTER 1 

 

INTRODUCTION TO THE THESIS  

 

Solids are divided into three major classes that are metals, semimetals and 

insulators. A metal is a conductor in which electric current flows when an electric field 

is across it. Application of an electric field across an insulator does not produce current 

flow. There is a simple criterion to distinguish between the three classes on the basis of 

the energy-band theory. This criterion rests on the following statement: A band which is 

completely full carries no current, even in the presence of an electric field. Hence a 

solid behaves as a metal only when some of the bands are partially occupied. 

Semiconductors are a group of materials having electrical conductivities intermediate 

between metals and insulators. The most important property of these materials is that 

their conductivity can be varied over orders of magnitudes by changes in temperatures, 

optical excitation, and impurity content.  

 

Semiconductors have been widely studied for a long time (since 1920‘s). Studies 

on semiconductor intensified after Shockley, Bardeen, and Brattain invented the 

transistor in the late 1940‘s. This invention led to the development of other solid-state 

devices.    

 

Combination of group II and VI elements produces semiconductors with large 

band gap. ZnS (Eg=3.7eV) [Persson and Zunger, 2003] and ZnSe (Eg=2.82eV) [Huang 

and Ching, 1993] are examples. They have received a lot of attention due to: 
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(a) Their potential application in optoelectronic devices operating in the visible-

light range and as UV photo detectors [Jeon et al., 1992; Kawakamin et al., 1993].  

(b) The possibility of having a vanishingly small conduction band offset ∆Ec 

[Qteish et al., 1995]. 

 

In semiconductor alloys, the band gap value and the lattice parameters are among 

the most important physical parameters. These parameters control the band offset and 

the mismatching in different devices. The lattice parameter of the ternary alloy ABxC1-x 

is well described by Vegard‘s law, but this is not the case of the band gap value [Van 

Vechten, 1970]. 

 

Energy band gap and electron effective mass as well as their composition 

dependence are the most critical parameters for band structure calculations of 

semiconductor alloys. Therefore, an accurate knowledge of these parameters is very 

important. Unfortunately, there is limited experimental and theoretical information in 

the literature regarding the electronic band parameters for ZnSxSe1-x alloys.  

 

Ghatak et al., [2008] presented a relation between the energy band gap Eg and 

reduced mass µ
*
 based on the model which was presented by Kane [1957] i.e., the 

three- band model of Kane. Ghatak and co-workers improved Kane's model and 

presented a new relation between energy band gap Eg and the ratio (µ
*
/mc), beginning 

from the Hamiltonian to establish their theory. We believe that the reduced mass µ
*
 is 

related to the energy gap Eg. By developing a relationship between the ratio (µ
*
 /mc) 

and unperturbed energy gap Eg0 from experimental results obtained from the literature a 

theory for calculating energy gap Eg for ZnSxSe1-x is established. 
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1.1  OBJECTIVES 

 

1) To compute using CASTEP the unperturbed energy band gap of ZnSxSe1-x              

(0 ≤ x ≤ 1).  

2) To develop a theory based on k.p perturbation theory to predict the band gap for 

ZnSxSe1-x
 
(0 ≤ x ≤ 1).  

3) To compare predicted energy band gap using Eg0 obtained from computation 

using CASTEP with published experimental results.  

4) To use the developed theory and formulate the density of states (DOS) for the 

II–VI materials in the presence of a quantizing magnetic field. 

 

1.2    OUTLINE OF THESIS  

 

Chapter 2 presents a review of energy bands, semiconductor band structures, and 

the simple theory of band structure by solving the Schrödinger equation are given in 

section 2.1. In section 2.2 the definition of Brillouin zone and first Brillouin zone will 

be presented together with the concept of real space and reciprocal lattice vector. In 

section 2.3 the normal form of energy band and axes of the Brillouin zone of the face 

centered cubic (fcc), body centered cubic (bcc), simple cubic and hexagonal lattices and 

the notations used to label the critical points of high symmetry are described. Section 

2.4 reviews crystal structures of some ZnSxSe1-x alloys.  The lattice parameters and 

properties of these compounds will be listed in section 2.7. Sections 2.5, 2.6 review the 

definitions of effective mass and reduced mass. 

 

In section 2.8 the band gaps for ZnSxSe1-x (0 ≤ x ≤ 1) from previous works will be 

tabled and the main theory of the energy gap for the II-VI materials reported. Sections 
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2.9, 2.10, 2.11 and 2.12 review the main ideas of Schrödinger equation, perturbation 

theory, k.p theory, and the spin-orbit interaction respectively. Section 2.13 reviews the 

effect of large magnetic field, and section 2.14 reviews the definition of density of states 

function and the determination of density of states.  

 

Section 2.15 covers the concept of the density functional theory (DFT) and the 

two fundamental mathematical theorems proven by Hohenberg and Kohn (H-K) 

(Hohenberg and Kohn, 1964) and the derivations by Kohn and Sham (K-S) [Kohn and 

Sham, 1965] which are important for the entire field of DFT. The local density 

approximation (LDA) will be described in subsection 2.15.1, local spin density 

approximation (LSDA) in subsection 2.15.2 and the generalized gradient approximation 

(GGA) in subsection 2.15.3. GGA is used in the Cambridge Serial Total Energy 

Package (CASTEP). The general overview of density functional theory and information 

on the concepts of charge density, the self-consistent field (SFT) procedure and band 

structure, are reviewed in section 2.16. Subsection 2.16.1 shows that the wave vectors 

are reciprocal lattice vectors of the crystal and each electronic function can be written as 

a sum of plane waves.  

 

In subsection 2.16.2 the exchange-correlation functions such as local LDA, 

gradient-corrected GGA and fully nonlocal is implemented in CASTEP which are 

reviewed. Subsection 2.16.3 reviews the concept of pseudopotential applications. 

Subsection 2.16.4 reviews the idea of the self-consistent electrons minimization of the 

total energy. 

 

In Chapter 3 the CASTEP simulation will be used to calculate the electronic-

energy band structures and total density of states for ZnS, ZnS0.125Se0.875, ZnS0.25Se0.75, 
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ZnS0.3755Se0.625, ZnS0.5Se0.5, ZnS0.625Se0.375, ZnS0.75Se0.25, ZnS0.875Se0.125, and ZnSe. The 

figures representing the Brillouin zone for each compound will be presented. The 

energy band gap result for these compounds will be compared with published results 

from the literature.  

 

In Chapter 4 the use of .k p perturbation theory to develop a theory to predict the 

energy gap for II-VI materials with the effect of spin neglected. The theory is derived in 

section 4.1. Our contribution to this theory is the incorporation of an empirical 

relationship that leads to the formulation of a new expression for the energy band 

equation that can be used to calculate the band gap ZnSxSe1-x. The energy gap for 

ZnSxSe1-x materials is then compared with experimental results given by Abo-Hassan et 

al., [2005a] and Larach et al., [1957] to examine the suitability of the new equation. 

Results are plotted in section 4.2. 

 

In Chapter 5 the .k p perturbation theory will again be used to develop the theory 

to calculate the energy gap for II-VI materials but effect of spin is included. Results will 

again be compared with published results. 

 

In Chapter 6 the density of states (DOS) of ZnSxSe1-x is formulated. The effect of 

magnetic fields on the density of states for II-VI materials will be studied. 

 

In Chapter 7 results from this work will be discussed and Chapter 8 concludes 

the thesis with suggestions for future studies.   
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CHAPTER 2 

 

LITERATURE REVIEW 

 

2.1    INTRODUCTION  

In solid-state physics, the electronic band structure (or simply band structure) of a 

solid describes the range of energy an electron is "forbidden" or "allowed" to have. 

Band structure is derived from the diffraction of the quantum mechanical electron 

waves in a periodic crystal lattice with a specific crystal system and Bravais lattice. The 

band structure of a material determines several characteristics, in particular the 

material's electronic and optical properties.   

 

Any solid has a large number of bands. In theory, a solid can have infinitely many 

bands (just as an atom has infinitely many energy levels). However, all but a few of 

these bands lie at energies so high that any electron that has attained such energy will 

escape from the solid. These bands are usually disregarded.  

 

Bands have different widths, depending upon the properties of the atomic orbital 

from which they arise. Also, allowed bands may overlap, producing (for practical 

purposes) a single large band. Figure 2.1 illustrates the electronic band structure of 

typical solid materials. The difference in the type of solids may be attributed to the band 

gap. In metals there is effectively no band gap and the band gap of insulators are larger 

than semiconductors.  

 

http://en.wikipedia.org/wiki/Solid-state_physics
http://en.wikipedia.org/wiki/Solid
http://en.wikipedia.org/wiki/Energy
http://en.wikipedia.org/wiki/Electron
http://en.wikipedia.org/wiki/Dynamical_theory_of_diffraction
http://en.wikipedia.org/wiki/Crystal_lattice
http://en.wikipedia.org/wiki/Crystal_system
http://en.wikipedia.org/wiki/Bravais_lattice
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Figure 2.1: Simplified diagram of the electronic band structure of metals, semiconductors, and 

insulators. 

 

 

2.2    THE ENERGY BANDS  

 

The failure of the free electron model to explain the dissimilarity between metals, 

semimetals, semiconductors and insulators has led to the development of theory of band 

structures in crystals. The atoms in crystals are arranged in a periodic potential which 

gives the energy bands as shown in Figure 2.2. Electrons are allowed in the bands but 

forbidden in the gap. 
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Figure 2.2: Schematic electron occupancy in allowed energy bands for (a) metal, (b) semiconductor 

and (c) insulator which is showing no gap, narrow and wide band gap respectively. The metal has 

half filled conduction band, the insulator has no population in the conduction band and the 

semiconductor has a very small population of electrons [Kittel, 1996]. 

 

 

A semiconductor is a material with a small but nonzero band gap which behaves 

as an insulator at absolute zero but allows thermal excitation of electrons into its 

conduction band at temperatures which are below its melting point. In contrast, a 

material with a large band gap is an insulator. In conductors, the valence and conduction 

bands may overlap, so they may not have a band gap. The conductivity of intrinsic 

semiconductors is strongly dependent on the band gap. The only available carrier for 

conduction is the electrons which have enough thermal energy to be excited across the 

band gap. Figure 2.3 illustrates the band structure of semiconductors. 

 

 

 

 

http://en.wikipedia.org/wiki/Semiconductor
http://en.wikipedia.org/wiki/Electrical_insulator
http://en.wikipedia.org/wiki/Electrical_conductor
http://en.wikipedia.org/wiki/Electrical_conductivity
http://en.wikipedia.org/wiki/Intrinsic_semiconductor
http://en.wikipedia.org/wiki/Intrinsic_semiconductor
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Figure 2.3: Semiconductor band structure. 

 

The band gap energy of semiconductors tends to decrease with increasing 

temperature as can be understood from Eqn. (2.1). When temperature increases, 

amplitude of atomic vibrations increases, leading to larger interatomic spacing. The 

interaction between the lattice phonons and the free electrons and holes will also affect 

the band gap to a smaller extent. The relationship between band gap energy and 

temperature can be described by Varshni's empirical expression as given by Vainshtein 

et al., [1999],  

                                                               
2

0
T

Eg T Eg
T




 


                                  (2.1)  

                           

where T is the temperature, Eg(0) is the magnitude of Eg at zero temperature and α, β 

are material constants. 

http://en.wikipedia.org/wiki/Phonon
http://en.wikipedia.org/wiki/Y._P._Varshni
http://www.springerlink.com/content/?Author=I.+A.+Vainshtein
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In the periodic crystal lattice, the quantum mechanical electron waves occur such that 

the conduction electron waves interact with the ion cores which results in the formations 

of the band gaps [Kittel, 1996]. Each crystal consists of infinite bands with different 

widths and has special characteristic features when a single band overlaps with another 

band. A discontinuity in energy between the bottommost of the conduction band which 

is almost unoccupied and the uppermost of the valence band which is almost fully 

occupied is the energy gap where a particle like wave electron is forbidden from 

propagating. Current will flow in the crystal only if an electron gets sufficient energy to 

cross-over the band gap and gets excited to the conduction band. Three major types of 

materials that we have to concern with are metals, semiconductors, and insulators. If the 

conduction band is partly filled 50% regardless of temperature, the crystal behaves as a 

metal. The crystal is an insulator whenever the electrons cannot move under the 

influence of an electric field to the empty conduction band. The crystal is characterized 

to be a semiconductor if one or two conduction bands are slightly filled or slightly 

empty. Therefore, metals have very high conductivity and lower electrical conductivity 

is found in insulators. The conductivity dependence on temperature of a material is the 

property that enables semiconductors to conduct current since the conductivity and 

intrinsic carrier concentration are largely controlled by Eg/kBT, the ratio of the band gap 

to thermal energies. 

 

In a regular semiconductor crystal, the band gap is fixed owing to continuous 

energy states. In a quantum dot crystal, the band gap is size dependent and can be 

altered to produce a range of energies between the valence band and conduction band. It 

is also known as quantum confinement effect. Band gaps also depend on pressure. Band 

gaps can be either direct or indirect, depending on the electronic band structure. 

http://en.wikipedia.org/wiki/Quantum_dot
http://en.wikipedia.org/wiki/Quantum_confinement_effect
http://en.wikipedia.org/wiki/Direct_and_indirect_bandgaps
http://en.wikipedia.org/wiki/Electronic_band_structure
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Ghatak et al., [2008] studied theoretically the electron energy spectrum and the 

photoemission from ternary and quaternary materials in the presence of light waves, 

whose unperturbed energy band structures are defined by the three-band model of Kane. 

They expressed the band gap of semiconductors by the expression [Chakraborty et al., 

2007; Ghatak et al., 2007] 

                                      
 

1

2

0 *

0

12
1 c

E Em
Eg Eg

Eg





  
   

                                       (2.2) 

 

where mc is the effective electron mass at the edge of the conduction band, and µ
* 

is the 

reduced mass and is given by   

                                                            
*

1 1 1

c vm m
                                                               (2.3)

  

                              

 

mv is the effective mass of the heavy hole at the top of the valence band , Eg0 is the 

unperturbed band gap, and α=1/Eg0 . 

 

These authors have in the past several years studied the Boltzmann transport 

equation and have introduced new insights for experiments in the presence of external 

photo excitation. 

 

Afia et al., [2005], reported that the energy band gaps and electron effective mass 

as well as their composition dependence are the most critical parameters for band 

structure calculations of semiconductor alloys, therefore, an accurate knowledge of 

these parameters is very important. In their computation they declare that the band gap 

variation versus sulfur concentration shows two different behaviors: clear diminution of 
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gap energy for low concentrations, and quasi linear behavior with a small bowing for 

large values of x.  

 

The theory of band structure in crystals is simplified with the consideration of 

only one electron in a periodic crystal lattice. Actually, the crystal always has been a 

many- electron problem. In fact, the crystals will have imperfections, voids, and 

dangling bonds and are not perfectly periodic. The solution of Schrödinger‘s equation 

[Schrödinger, 1926] can be expressed as Bloch waves  

 

                                                                   .ik r

i ir r e                                          (2.4) 

 

in which  i r is periodic in r  with the periodicity of the potential in Eqn. (2.4) 

characterized by the wave number k and the energy of a state ψi. An energy band results 

from the relation between energy and wave number. 

 

2.3    BRILLOUIN ZONE  

 

Information relating to the energy band structure is usually presented by plotting 

the energy of the electron E for values of the wave vector k , limited to within the first 

Brillouin zone. The concept of a Brillouin zone [Callaway, 1958] was first developed by 

Léon Brillouin (1889-1969), a French physicist. During his work on the propagation of 

electron waves in a crystal lattice, he introduced the concept of Brillouin zone in 1930. 

A Brillouin zone is defined as a Wigner-Seitz primitive cell [Wigner and Seitz, 1933] in 

the reciprocal lattice. The first Brillouin zone is the smallest volume entirely enclosed 

by planes that are the perpendicular bisectors of the reciprocal lattice vectors drawn 

from the origin. The concept of Brillouin zone is particularly important in the 

http://www-llb.cea.fr/presllb/leonbrillouin_e.pdf
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consideration of the electronic structure of solids. There are also second, third, etc., 

Brillouin zones, corresponding to a sequence of disjoint regions (all with the same 

volume) at increasing distances from the origin, but these are rarely used. As a result, 

the first Brillouin zone is often called simply the Brillouin zone. The region in k-space 

(here an imaginary plane whose rectangular coordinates are kx and ky) that low-k 

electrons can occupy without being diffracted is called first Brillouin Zone, shown in 

Figure 2.4. The second Brillouin zone is also shown; it contains electrons with k values 

form /a to 2 /a for electrons moving in the ±x and ±y directions, with the possible 

range of k values narrowing as the diagonal directions are approached.  

 

Figure 2.4: The first and second Brillouin zones of a two-dimensional square lattice [Kittel, 1996]. 

 

The calculation of the minimum energy of k points in the Brillouin zone has to 

converge for a given Bravais lattice [Sholl and Steckel, 2009]. The Bloch theorem will 

satisfy the concepts associated with reciprocal space. The periodically repeated cell in 

space is defined by the lattice vectors a1, a2 and a3. The space of vectors, r and k are real 

space and reciprocal space (or simply k space) respectively. Three vectors, b1, b2 and b3 

that define position in reciprocal space are called the reciprocal lattice vectors just as for 

http://www.flickr.com/photos/36250605@N07/3347351382/
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lattice vectors a1, a2 and a3 in real space. The expressions are defined so that ai.bj = 2π if 

i=j and 0 otherwise as shown in Eqn. (2.5), 

                            
     

2 3 3 1 1 2
1 2 3

1 2 3 2 3 1 3 1 2

2 , 2 , 2
. . .

a a a a a a
b b b

a a a a a a a a a
  

  
  

  
        (2.5) 

 

The lattice and the reciprocal lattice vectors both define cubes for the former with side 

length of a and the latter with side length of 2π/a. The real space is the feature of the 

simplest crystal structure for the face-centered cubic and hexagonal close-packed 

materials and has been discussed in detail in Kittel [1996] and Sholl and Steckel [2009]. 

The real space concept describes the primitive cell for the simple cubic material and 

uses one atom per supercell but eight atoms per supercell is used in the reciprocal space 

is shown in Figure 2.5. 

 

 

Figure 2.5: The lattice vectors for fcc primitive cell of (a) real space where atoms is represented by 

circles and (b) reciprocal space with basis vectors shown inside a cube with side length 17/4a 

centered at the origin [Sholl and Steckel, 2009]. 

 

The concepts of real space and reciprocal lattice vector are then considered by the well-

known Wigner-Seitz cell in Bravais lattice. The primitive cell that is minimal in terms 

of volume can be made more precise and also easily defines the reciprocal lattice 

vectors. The Brillouin zone plays a central role in the band theory of the materials which 
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will be discussed in the next section. We note that the volume of Brillouin zone, VBZ is 

[Kittel, 1996], 

                                                                   
 

3
2

BZ

cell

V
V


                                               (2.6) 

where the Vcell is the volume of the primitive cell in real space defined by Wigner-Seitz 

construction. The integral expression in k space that reduces a great deal of work in 

DFT calculations is defined in reciprocal space and the integral is performed only over 

the possible values of k in the Brillouin zone, (Eqn. 2.7), [Kittel, 1996] 

 

                                                        
 

   3
2

cell

BZ

V
g g k d k


                                        (2.7) 

 

2.4    NORMAL FORM OF AN ENERGY BAND 

 

A standard form for a particular band is defined for the reason of strong dependency on 

the potential by the relation of the various bands to each other. It may be a useful 

concept in metals but somewhat less in semiconductors. In an empty lattice, the 

corresponding free electron band can be defined as s, p and d bands at symmetry points 

of the Brillouin zone determined in the expansion of the wave function by the lowest 

spherical harmonic [Bell, 1954]. There is exactly one independent value of k that 

contributes to each energy band. If two independent orientations of the electron spin are 

taken into account, in each energy band there are 2N independent orbitals where, N is 

the number of primitive cells. A band with half filled electrons or it can be exactly filled 

if contribution of one or two valence electron in each primitive cell by a single atom 

respectively. For which k =0 known as Γ type is that of the lowest level would be 

formed from plane wave in an ―empty‖ lattice of the body-centered cubic type. 

However, the symmetry of this minimum is different in the body-centered and face-
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centered cubic as shown in Figure. 2.6. The notations are described and tabulated in 

Table 2.1. 

 

 

 

 

Figure 2.6: Standard labels of the symmetry and axes of the Brillouin zone of the face centered 

cubic (fcc), body centered cubic (bcc), simple cubic and hexagonal lattices where Г is the zone 

center( k=o on Г point) [Kittel, 1996]. 
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Table 2.1: The notations, used to label the critical points of the symmetry and axes of the Brillouin 

zone. 

 

 

  Symbol                                   Description 

 

      Г                                        Center of the Brillouin zone 

 

   Simple cubic 

 

     M                                        Center of an edge 

     R                                         Corner point (intersected three edges) 

     X                                         Center of a face 

  Face-centered cubic 

 

     K                                         Middle of an edge joining two hexagonal faces 

     L                                         Center of a hexagonal face 

     U                                         Middle of an edge joining a hexagonal and a square  

                                                 face 

    W                                         Corner point 

     X                                         Center of a square face 

 

  Body-centered cubic 

     

    H                                          Corner point joining four edges 

    N                                          Center of a face 

    P                                          Corner point joining three edges 

 

  Hexagonal 

 

   A                                           Center of a hexagonal face 

   H                                           Corner point 

   K                                           Middle of an edge joining two rectangular faces 
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2.5    ZnSxSe1-x (0≤x≤1) AS II-VI COMPOUNDS CRYSTAL STRUCTURE 

 

Almost all compounds of the II-VI type crystallize in such a manner that each 

atom of one element is located at the center of a regular tetrahedron, the apices of which 

are occupied by atoms of the other element. Two possible structures can be formed from 

such tetrahedral: the sphalerite (cubic type) and the wurtzite (hexagonal) type. The 

sphalerite structure is very similar to the structure of diamond, but it differs from the 

latter by the alternation of atoms of two different elements. In the sphalerite structure, 

the atoms of one element are located at the sites of a fcc lattice, while the atoms of the 

second element occupy the centers of four (out of a total of eight) small cubes (Figure 

2.7 and Figure 2.8). The space group is F43m.  Figure 2.9 shows the wurtzite structure. 

Its space group is P63mc. 

 

                                                         

 

Figure 2.7: Crystal structure of sphalerite for ZnS with space group F-43M (TD-2). The lattice 

parameters for ZnS sphalerite crystal structure are a=5.41
0

  [Aswegen and Verleger, 1960]. 
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Figure 2.8: Crystal structure of sphalerite for ZnSe with space group F-43M (TD-2). The lattice 

parameter for ZnSe sphalerite crystal structure a=5.6686±0.006 
0

  [Goryunova and Fedorova, 

1959]. 

 

 

                                                      
 
Figure 2.9: Crystal structure of wurtzite for ZnS with space group P63mc. The lattice parameter 

for wurtzite crystal structure a=3.82
0

 , c=6.26
0

  [Hansen and Andreko, 1968], for ZnSe the lattice    

parameter in case of wurtzite crystal structure are a=4.01±0.02
0

 , c=6.54±0.02 
0

  [Pashinkin et al., 

1960; Goryunova and Fedorova, 1959]. 

 

 

Figures 2.10 shows the sphalerite crystal structure with space group P-42M (D2D-1). 

Figures 2.11 and 2.12 show the sphalerire crystal structure with space group P-4M2 



20 

 

(D2D-5), while figures 2.13 and 2.14 show the sphalerite crystal structure with space 

group CMM2 (C2V-11).   

 

 
                                                
 

Figure 2.10: Crystal structure of sphalerite for ZnS0.125 Se0.875 with space group P-42M (D2D-1) and 

lattice parameter a=b=5.4093
0

 , c=10.8186
0

  [CASTEP simulation]. 

 

 

  
 

Figure 2.11: Crystal structure of sphalerite for ZnS0.25 Se0.75 with space group P-4M2 (D2D-5) and 

lattice parameter a=b=5.4093
0

 , c=10.8186 
0

  [CASTEP simulation]. 
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Figure 2.12: Crystal structure of sphalerite for ZnS0.5 Se0.5 with space group P-4M2 (D2D-5) and 

lattice parameter a=b=5.4093
0

 , c=10.8186 
0


 
[CASTEP simulation]. 

 

 

 

 

  
                                                         
 

Figure 2.13: Crystal structure of sphalerite for ZnS0.375 Se0.625 with space group CMM2 (C2V-11) 

and lattice parameter a=b=5.4093
0

 , c=10.8186 
0

  [CASTEP simulation]. 
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Figure 2.14: Crystal structure of sphalerite for ZnS0.75 Se0.25 with space group CMME (C2V-11) and 

lattice parameter a=b=5.4093
0

 , c=10.8186 
0

  [CASTEP simulation]. 

 

The basic difference between the sphalerite and wurtzite crystal structures is in the 

positions of atoms in the third coordination sphere, because the distances from a given 

atom to its neighbors in that sphere are shorter in the wurtzite structure than in the 

sphalerite structure [Birman, 1958]. Therefore, we may expect the compound with a 

large difference between the electro-negativities of the constituent elements usually 

have the wurtzite structure, that is for ZnS and ZnSe crystal structure. 

 

At room temperature, the application of high pressures induces transitions in 

chalcogenides of the zinc subgroup. The pressure at which such phase transitions occur 

and the crystal structures of the high-pressure phases: for ZnS sphalerite crystal structure 

at pressure 240-250 kbar the crystal structure becomes CsCl crystal structure, and for 

ZnSe sphalerite crystal structure at pressure 165kbar becomes CsCl crystal structure 

[Drickamer, 1963]. Note that the caesium chloride CsCl structure adopts a primitive 

cubic lattice with a two atom basis, where both atoms have eightfold coordinates. The 
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chloride atoms lie upon the lattice points at the edges of the cube, while the caesium 

atoms lie in the holes in the center of the cubes as shown in Figure 2.15. 

 

 

                                                         
                                                    Cs              Cl 

 

Figure 2.15: CsCl crystal structure [Slyusarenko, 2008]. 

 

2.6    EFFECTIVE MASS 

 

Effective mass is defined by analogy with Newton's second law F=ma. Using 

quantum mechanics it can be shown that for an electron in an external electric field E, 

the acceleration al along coordinate direction l is:   

                              
 2

2

1
l m

m l m

k
a qE

k k




 
                                                 (2.8) 

where ћ=h/2π is reduced Planck's constant, k is the wave vector (often loosely called 

momentum since k = p/ћ for free electrons), ε (k) is the energy as a function of k, or the 

dispersion relation as it is often called. For a free particle, the dispersion relation is 

quadratic, and so the effective mass would be constant (and equal to the real mass). In a 

crystal, the situation is far more complex. The dispersion relation is not even 

approximately quadratic in the large scale. However, wherever a minimum occurs in the 

http://en.wikipedia.org/wiki/Newton%27s_laws_of_motion
http://en.wikipedia.org/wiki/Quantum_mechanics
http://en.wikipedia.org/wiki/Planck%27s_constant
http://en.wikipedia.org/wiki/Wave_vector
http://en.wikipedia.org/wiki/Momentum
http://en.wikipedia.org/wiki/Dispersion_relation
http://en.wikipedia.org/wiki/Quadratic_curve
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dispersion relation. The minimum can be approximated by a quadratic curve in the 

small region around that minimum, for example: 

                    2 2 2

2 2

1 1 1 1 1
0 x y z

x y z

k k k k k
m m m

                     (2.9) 

where the minimum is assumed to occur at k=0. In many semiconductors the minimum 

does not occur at k=0. For example, in silicon the conduction band has six 

symmetrically located minima along the Δ= [100] symmetry lines in k-space. The 

constant energy surfaces at these minima are ellipsoids oriented along the k-space axes 

as shown in Figure 2.16. 

 

 

 

Figure 2.16: Constant energy ellipsoids in silicon near the six conduction band minima. The 

longitudinal and transverse effective masses are ml =0.92 m and mt = 0.19 m with m the free electron 

mass [Kittel, 1996]. 

 

 

 

In contrast, the holes at the top of the silicon valence band are classified as light 

and heavy and the band energies for the two types are given by a complicated relation 

[Kittel, 1996]: 

 

                 2 2 4 2 2 2 2 2 2 2

x y y z z xk Ak B k C k k k k k k                        (2.10) 

 

http://en.wikipedia.org/wiki/Conduction_band
http://en.wikipedia.org/wiki/Constant_energy_surface
http://en.wikipedia.org/wiki/Electron_hole
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leading to what is termed warped energy surfaces. Parameters A, B and C are 

wavevector independent constants. This behavior is introduced here to alert the reader 

that it is common for carriers to have rather non-parabolic energy-wavevector relations. 

A simplification can be made, however, for electrons which have energy close to a 

minimum, and where the effective mass is the same in all directions. The mass can be 

approximated as a scalar m
*
 [Kittel, 1996]: 

 

                                                   

1
2

* 2

2
.m

k




 
  

 
                                              (2.11) 

 

In energy regions far away from a minimum, the effective mass can be negative or 

even approach infinity. Effective mass, being generally dependent on direction (with 

respect to the crystal axes), is a tensor. However, for many calculations the various 

directions can be averaged out. 

 

2.7    REDUCED MASS 

 

Reduced mass is the "effective" inertial mass appearing in the two-body problem 

of Newtonian mechanics. This is a quantity with the unit of mass, which allows the two-

body problem to be solved as if it were a one-body problem. Note however that the 

mass determining the gravitational force is not reduced. In the computation one mass 

can be replaced by the reduced mass, if this is compensated by replacing the other mass 

by the sum of both masses. The reduced mass is frequently denoted by the Greek letter 

μ.  

 

http://en.wikipedia.org/wiki/Infinity
http://en.wikipedia.org/wiki/Miller_index
http://en.wikipedia.org/wiki/Tensor
http://en.wikipedia.org/wiki/Inertial_mass
http://en.wikipedia.org/wiki/Two-body_problem
http://en.wikipedia.org/wiki/Newtonian_mechanics
http://en.wikipedia.org/wiki/Units_of_measurement
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Given two bodies, one with mass m1 and the other with mass m2, the equivalent one-

body problem, with the position of one body with respect to the other as the unknown, 

is that of a single body of mass, the reduced mass: 

 

                                                   1 2

1 2

1 2

1

1 1red

m m
m

m m

m m

  




                                        (2.12) 

 

where the force on this mass is given by the force between the two bodies. The reduced 

mass is always less than or equal to the mass of each body and is half of the harmonic 

mean of the two masses.   

  

2.8    PHYSICAL PROPERTIES OF THE ZnS and ZnSe COMPOUNDS 

 

Different research activates have been published on the electronic and optical 

properties of ZnSxSe1-x alloys and their applications in optoelectronic and 

microelectronic devices [Lai et al., 2003]. The ternary compound has many advantages 

over binary compounds because the lattice constant, band gap and optical properties can 

be varied by changing the composition.  

 

The electrical properties of some of the ZnS and ZnSe compounds are given in Table 

2.2. The optical value of the forbidden band width is given for these compounds. The 

temperature and pressure coefficients of the forbidden band width, the effective mass, 

and the optical and static permittivity are all listed. 

 

 

 

http://en.wikipedia.org/wiki/Harmonic_mean
http://en.wikipedia.org/wiki/Harmonic_mean
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Table 2.2: Electrical Properties of ZnS and ZnSe Compounds. 

Compound 

Forbidden 

Band width 

∆E (eV) 

 

[Hamilto, 

1964] 

Temperature 

coefficient  

forbidden 

band 

width.104 

eV/deg 

[Aigrain and 

Balkanski, 

1961] 

Dependence 

of ∆E on 

pressure 106  

eV/kbar 

 

[Aigrain and 

Balkanski, 

1961] 

Effective mass 

 

[Krӧger, 1965] 

Permittivity 

 

Electrons 

mn
*/m0 

 

[Krӧger, 

1965] 

Holes 

mp
*/m0 

High 

Frequenc

y 

(optical) 

Low 

Frequenc

y 

(static) 

ZnS 

(Sphalerite 

Structure) 
3.6 -5.3 5.7 0.25 0.5-1 8  

ZnS 

(Wurtzite 

Structure) 
__ 

-3.8 

(97<T<2930K

) 

9     

ZnSe 
(Sphalerite 

Structure) 
2.7 

-7.2 

(90<T<4000K

) 

6 
0.15-

0.17 
0.6 8.1 

5.75 
[Aven et 

al.,  1961] 

  

 

The value of the effective mass and of the permittivity at optical frequencies is 

known for the majority of the II-VI compounds and the static permittivity has been 

determined just for ZnSe compound.  

 

The main physical properties for ZnS sphalerite crystal structure have been 

determined as follows: Debye temperature is 315 K [Aigrain and Balkanski, 1961], 

compressibility 1.3 (kbar)
-1

 and density 4.09 g/cm
3
.  For ZnSe sphalerite crystal 

structure: Debye temperature is 400 K [Aigrain and Balkanski, 1961], compressibility is 

2.469(kbar)
-1

 and density is 5.26 g/cm
3
. 
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Most of the investigations on zinc sulfide have been carried out as thin films prepared 

by vacuum evaporation or on powders subjected to heat treatment. The number of 

studies of single crystals is very few because it is difficult to prepare such crystals.  

 

The preparation of ZnSxSe1-x alloys is of interest, since it was realized [Bernard 

and Zunger, 1987] that compounds with physical properties in the intermediate range to 

that of ZnS and ZnSe could be obtained. For instance, depending on the amount of the 

sulphur in the alloy, materials with energy gaps between 2.7 and 3.7 eV, within which 

there is the major part of the solar radiation, can be prepared. 

 

2.9 BAND GAPS FOR ZnSxSe1-x (0 ≤ x ≤ 1) 

 

As discussed earlier the II-VI compounds ZnSxSe1-x may have either the sphalerite 

or the wurtzite crystal structure or allotropic modifications. ZnS and ZnSe are obtainable 

in the zinc-blend form at room temperature.  

Electron mobility has been studied experimentally as well as theoretically in these 

materials, and we note that the band gaps for these materials are large as seen in Table 

2.3. Nonparabolic effects are not therefore significant. The Γ-point minimum being 

lowest and the crystal structure being cubic, the effective mass and as a result the 

electron mobility is isotropic.  
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Table 2.3: Energy band gaps for ZnSxSe1-x (0 ≤ x ≤ 1)  

 

 

ZnSxSe1-x 

 

(x values) 

 

Band gap (eV) 

 

Theoretical Experimental 

Swarnkar 

et al., 

[2009] 

Van de 

Walle  

[1989] 

LCAO 

Homann et 

al., [2006] 

Larach 

et al., 

 [1957] 

Ebina  

et al., 

[1974] 

Homann  

et al., 

[2006] 

Abo 

Hassan 

et al., 

[2005a] 

0.00 2.77 2.82 3.00 - 2.72 2.58 - 

0.12 - - - 2.78 - - 2.58 

0.25 2.99 - 3.18 - 2.85 2.73 - 

0.34 - - - 2.96 - - 2.95 

0.35 - - - 2.99 - - 2.96 

0.37 - - - 3.01 - - 2.96 

0.41 - - - 3.04 - - 2.99 

0.48 - - - 3.10 - - 3.05 

0.50 3.21 - 3.29 - 3.08 2.92 - 

0.75 3.47 - 3.47 - 3.34 3.17 - 

0.78 - - - 3.39 - - 3.29 

0.80 - - - 3.41 - - 3.30 

0.82 - - - 3.44 - - 3.35 

0.96 - - - 3.56 - - 3.51 

0.99 - - - 3.59 - - 3.74 

1.00 3.85 3.78 3.68 - 3.70 3.45 - 

 

 A few theoretical models have been applied on ternary alloys and the binary 

compounds. Swarnker et al. [2009] have calculated the band gap for ZnSxSe1-x alloys by 

employing the Empirical Pseudopotential Method (EPM) within the Modified Virtual 

Crystal Approximation (MVCA).  Homann et al. [2006] applied linear combination of 

atomic orbitals (LCAO) method to report electronic and structural properties of ZnSxSe1-

x alloys over entire composition range. The theory presented by Van de Walle is based 

on the local -density- functional formalism and the model- solid approach [Van de 

Walle, 1989]. The model predicts reliable values for the experimentally observed 
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lineups in a wide variety of test cases and can be used to explore which combinations of 

materials and configurations of the strains will lead to the desired electronic properties. 

 

Only a few experimental studies of the ZnSxSe1-x alloys are reported.  The difficulty 

posed by miscibility in forming the solid state might probably be the reason for paucity 

of experimental studies. Homann et al. [2006] reported band gap for all compositions 

applying optical spectroscopy at room temperature. Abo Hassan et al. [2005a] used 

optical transmission measurements to determine various optical constants and properties 

of ZnSxSe1-x thin films prepared by electron beam evaporation onto glass substrates at 

60
0
C. Ebina et al. [1974] used reflectivity measurements at room temperature to 

determine the variation with composition of the lowest gap energy up to 6.4eV at near-

normal incidence, using a Shimadzu-40R spectrophotometer double-beam prism-grating 

type with a reflectivity-measurement attachment of their design. Larach et al. [1957] 

made measurement of diffused transmission on several materials with a Cary recording 

spectrophotometer, Model 14. Energy gap determinations were made by extrapolations 

on the recorded curves of optical density (log transmission).  

 

On the computation side, Nacer [2003] investigated the electronic band-structures 

of the strained-layer ZnS/ZnSe (001) superlattices (SLs) using the sp
3
s

*
 tight-binding 

method, which includes the strain and spin–orbit effects. The SL band-structures are 

studied versus the biaxial strain, layer thickness, and band offsets. The results suggest 

that the common-cation II–VI heterojunction exhibit a vanishingly small conduction-

band offset (CBO). The results obtain showed that the SL valence-band top state is 

always a heavy-hole localized within ZnSe slabs; whereas the conduction-band edge 

state (electron) is sensitive to the biaxial strain (or VBO).  Nacer [2003] compared 

experimental data and calculated energy gap obtained  using a constant value of 
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valence-band offset (VBO): VBO = 0.78 eV for SLs of ZnSe substrate; and VBO = 0.90 

eV for free-standing SLs for 10 samples as follows: Super lattice from experimental 

data for SLs grown on ZnS/ZnSe substrate are 50/8 (lattice constant a0=50 
0

  for ZnS 

and a0=8 
0

  for ZnSe) , 50/11, 50/23, 50/37, and 50/54 (
0

 )and the energy gaps of free-

standing super lattices (SLs) results are 3.04, 3.00, 2.92, 2.86, and 2.82 eV respectively.  

 

2.10    SCHRÖDINGER EQUATION 

 

In 1926, Schrödinger established a unified scheme valid for describing both the 

microscopic and macroscopic universes. The formulation, called wave mechanics, 

which incorporated the physical notion of quantization first introduced by Planck and 

the wave like nature of matter hypothesized by de Broglie, was subsequently developed 

by Schrödinger to treat the electron systems in crystalline materials. The Schrödinger 

equation for matter waves ψ describes the dynamics of quantum particles. It plays a role 

of similar importance to that which Newton‘s equation of motion does for classical 

particles. As with Newton‘s laws, the Schrödinger equation cannot be rigorously 

derived from some underlying, more fundamental principles. Its form can be made 

plausible, however, by combining the Hamiltonian function of classical mechanics,  

 

                                                          H=T+V=E                                                       (2.13) 

which equals the mechanical energy, with the de Broglie hypothesis of matter waves 

 

                                                        ψ(x) =Ae
i(kx-ωt)

 .                                                  (2.14) 

 

This is further characterized by the wave number k=2π/λ=p/ħ and the angular frequency 

ω=2πv=E/ħ. The ‗‗rationalized‘‘ Planck‘s constant ħ=h/2π=1.05×10
-34

 Js is frequently 
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used in quantum mechanics.  The physical interpretation of the amplitude A was 

provided by Born (1926) in terms of a probability density  

 

                                                       P(x) = │ψ(x) │
2
 =│A│

2
.                                     (2.15)  

 

The potential energy is denoted by V and the kinetic energy by   T= p
2 

/2m.  Formally 

multiplying the wave function ψ(x, t) by Eqn. (2.4) yields  

 

                                          Hψ(x, t) = [p2
/2m] ψ(x, t) + V ψ(x, t)                                (2.16) 

In order to connect the de Broglie relations for energy and momentum appearing in the 

arguments of the plane wave (Eqn. 2.14) with the energy and momentum in the 

Hamiltonian function, H and p in Eqn. (2.16) must be taken as differential operators,                   

                                                         H↔iħ (∂/∂t)  

                                                         p↔ (ħ/i) (∂/∂x)                                                  (2.17) 

 

This substitution into Eqn. (2.13) leads to the time-dependent Schrödinger equation 

                                            
2 2

2

( , )

( ) ( , )
2

i H x t
t

V x x t
m x










 
   

 

                                  (2.18) 

which describes the time evolution of the matter wave. For physical systems that are not 

explicitly time dependent, i.e., that have time-independent potentials V(x), the energy is 

conserved and iħ (∂/∂t) can be replaced by E, giving the time-independent Schrödinger 

equation  

                                                  
2 2

2
( ) ( ) ( )

2
E x V x x

m x
 

 
   

 
 .                         (2.19) 
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If no interaction potential is present (V(x) =0), Eqn. (2.19) is referred to as the free-

particle Schrödinger equation. The plane waves of Eqn. (2.4) are solutions of the free-

particle Schrödinger equation with eigen energies E = (ħk)
 2

/2m. 

 

2.11   PERTURBATION THEORY 

 

Atoms are usually studied in the laboratory by applying external fields and 

observing their effects on the atomic properties. Both magnetic and electric fields alter 

the atomic spectrum (which may be observed using spectroscopic techniques), and from 

this one may gain information about the structure of the atom. 

In time-independent perturbation theory, there are two levels of the solution - the first is 

degenerate perturbation theory, and the second non-degenerate theory.  

 

Assume that we have solved the Schrödinger equation for a particular potential with 

Hamiltonian H
(0)

 

                                                                  
(0) (0)

nH n E n                                      (2.20) 

 

where n  denotes the eigenfunction, and (0)

nE  are the eigenvalues. Denote the new 

Hamiltonian by H=H
(0)

 +V, where V is the perturbation. Now if the eigenvalues are 

non-degenerate, the first order energy correction is given by 

 

                                                      
(1)

nE n V n                                             (2.21) 

and there is no correction in the eigenfunction. This is just the diagonal matrix element 

of the perturbing potential. The second order correction arises from non-diagonal terms; 

the energy correction is given by 
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2

(2)

(0) (0)n

m n n m

m V n
E

E E

 


                                          (2.22) 

 

where m  are all other eigenfunctions. The correction to the eigenfunction is 

                                                       
(0) (0)

m n n m

m V n
p n m

E E

 


 .                              (2.23) 

 

Therefore, the total perturbed energy is given by 

 

                                

2

(0) (1) (2) (0)

(0) (0)n n n n n

m n n m

m V n
E E E E E n V n

E E

     


         (2.24) 

 

and the perturbed eigenfunction is given by the  equation before last. 

 

Some other facts will have a direct impact on band structure calculation by the 

k.p method. The total second-order perturbation (2)

nE arises due to the interaction 

between different eigenvalues. Whether interaction between states occurs or not is 

determined by the matrix elements n V m ; if it vanishes, there is no interaction. 

Whether the states vanish or not can typically be quickly inferred by invoking the 

symmetry properties of the eigenfunctions and the perturbing potential V. 

 

2.12 k.p THEORY 

 

In the k.p  method the band structure over the entire Brillouin zone can be 

extrapolated from the zone centre energy gaps and optical matrix elements. The k.p



35 

 

method is particularly convenient for interpreting optical spectra. In addition, using this 

method one can obtain analytic expressions for band dispersion and effective masses 

around high-symmetry points. The k.p method can be derived from the one-electron 

Schrödinger equation given in Eqn. (2.18). Using the Bloch theorem the solutions of 

Eqn. (2.16) are expressed, in the reduced zone scheme, as 

                                                            exp .nk nkik r u r                                        (2.25) 

 

where n is the band index, k lies within the first Brillouin zone, and unk is periodic in r 

with the periodicity in Eqn. (2.25) characterized by the wave number k and the energy 

of a state ψnk . When ψnk is substituted into Eqn. (2.19) we can write the equation in unk 

of the form 

 

                                                
2 2 2.

2 2
nk nk nk

p k p k
V u E u

m m m

 
    

 
                        (2.26) 

At k0 = (0, 0, 0), Eqn. (2.26) reduces to 

                                                 
2

0 0 0
2

n n n

p
V u E u

m

 
  

 
    (n= 1, 2, 3 ...)                     (2.27) 

Similar equations can also be obtained for k equal to any point k0. Eqn.(2.27) is much 

easier to solve than Eqn. (2.16) since the functions un0 are periodic. The solutions of 

Eqn. (2.27) form a complete and orthonormal set of basic functions. Once En0 and un0 

are known, we can treat the terms .k p m and ћ
2
k

2
/ (2m) as perturbations in Eqn. (2.26) 

using either degenerate or nondegenerate perturbation theory. This method for 

calculating the band dispersion is known as the .k p method. Since the perturbation 

terms are proportional to k, the method works best for small values of k (Kane, 1966). In 

general, the method can be applied to calculate the band dispersion near any point k0 by 

expanding Eqn. (2.26) around k0 provided the wave functions (or the matrix elements of 
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p between these wave functions) and the energies at k0 are known. Furthermore, by 

using a sufficiently large number of un0 to approximate a complete set of basic 

functions, Eqn. (2.26) can be diagonalized with the help of computers to calculate the 

band structure over the entire Brillouin zone (Wang, 1966). Only a limited number of 

energy gaps and matrix elements of p determined experimentally are used as input in the 

calculation. 

 

2.13 SPIN-ORBIT INTERACTION 

 

Spin-orbit interaction is a well-known phenomenon that manifests itself in lifting 

the degeneracy of one-electron energy levels in atoms, molecules, and solids. In solid-

state physics, the non-relativistic Schrödinger equation is frequently used as a first 

approximation, e.g. in electron band-structure calculations. Without relativistic 

corrections, it leads to doubly-degenerated bands, spin-up and spin-down, which can be 

split by a spin-dependent term in the Hamiltonian. In this approach, spin-orbit 

interactions can be included as a relativistic correction to the Schrödinger equation.  

 

Kane [1957] calculated the band structure for InSb using the k.p  perturbation 

approach and assuming that the conduction and valence band extrema are at k = 0. The 

small band gap requires an accurate treatment of conduction and valence band 

interactions while higher bands are treated by perturbation theory.  Kane noted that the 

effects of higher and lower bands are treated by perturbation theory. In Kane‘s work it 

enlarges upon the k.p approach of Dresselhaus [1955] and Parmenter [1955]. The spin-

orbit interaction is also treated as a perturbation [Kane, 1956]. Kane assumed that 

because of the smallness of the energy gap at k = 0 it would be a good approximation to 

ascribe all of the unusually low effective mass of the conduction band to the mutual 
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interaction of the conduction and valence bands. Kane takes the k vector in the z 

direction and considered the Hamiltonian corresponding to the first four terms of the 

Schrödinger equation for the cell periodic functions uk(r)  

 

          
2

'

2 2 2 2
. . .

2 4 4
k k k

p
V k p V p V k u r E u r

m m m c m c
 

      
              

      
       (2.28)  

where   
2 2

'

2
k k

k
E E

m
   and Ek is the energy of a state with wave vector k, and σ 

represents the Pauli spin matrices  

0 1 0 1 0
, ,

1 0 0 0 1
x y z

i

i
  

     
       

     
 , given 1i   .  

 

The mutual interaction of the conduction and valence bands leaves the bands doubly 

degenerate. Kane [1957], takes as a basis    , 2 , , 2 ,iS X iY Z X iY       

   , 2 , , 2iS X iY Z X iY         when he defined the positive constant ∆ as 

the spin-orbit splitting of the valence band which is given by 

 

                                                        y x2 2

3 i V V
X p p Y .

4m c x y

 
  

 
                             (2.29)  

Herman et al. (1963) represents the spin-orbit splitting as 

 

                                                     
2 2 y
0

3i X V p Z .
4m c

 
     

 
                                        (2.30) 

and gave the Hamiltonian for the interaction between the spinning and orbital motion of 

the electrons as 

                                               2 2
.

4
spinH V p

m c


 
   
 

                                               (2.31) 
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where V is the potential energy and the effect of this term may be treated as a 

perturbation. 

 

2.14   EFFECT OF LARGE MAGNETIC FIELDS 

 

The band structure may be altered by applying an electric field or magnetic field. 

The electric field causes a shift in the band edge, the magnitude of which is related to 

the electric field by the relation [Moss, 1961; Franz, 1985; Keldysh, 1985].    

 

                                                             ∆E= (3│e│E
*
ħ/4√2m

*
)
 2/3

                             (2.32) 

where e is the electron charge, E
*
 is a given electric field and m

* 
effective electron mass. 

This effect is known as Franz-Keldysh effect. Franz-Keldysh calculations show that for 

the production of a measurable shift (shift in the band edge) a very high value of the 

electric field is required. The effect is thus observed in few experiments, but there is one 

example in which the effect is observed in a practical device. The field in the domains 

of Gunn diodes is often very high, and it has been observed that a light beam may be 

modulated by the domain field [Guetin and Boccon-Gibod, 1968] through the Franz-

Keldysh effect.  

 

2.15 THE DENSITY OF STATES FUNCTION 

 

The density of states for electrons in a band yields the number of states in a 

certain energy range. This function is important in electronic processes, particularly in 

transport phenomena. When we denote the density of states function by g(E), it is 

defined by the relation  

 g(E)dE= number of electron states per unit volume in the energy range (E,E+dE).(2.33) 
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To evaluate g(E) one applies the definition given by Eqn. (2.28). One draws a shell in k-

space the inner and outer surface of which are determined by the energy contours 

E(k)=E and E(k)=E+dE, respectively, as shown in Figure 2.17. The number of states is 

then given by the number of allowed k values lying inside this shell. When dividing this 

by the thickness of the shell, dE, the desired function g(E) is obtained. Clearly from 

Figure 2.17 that g(E) is closely related to the shape of the energy contours, and hence 

the band structure. The complexities of this structure are reflected in the form taken by 

g(E).                                           

Electron in the conduction band and holes in the valence band behave as free 

particles, but their distribution among the available energy levels, when in thermal 

equilibrium with the lattice, obeys Fermi-Dirac statistics [Fermi, 1926; Dirac, 1926]. 

The function giving the occupancy of the levels, often called the Fermi function, is 

[Fermi, 1926] 

                                                      1 1 exps s s F Bn g E E k T                          (2.34) 

 

where ns is the number of electrons occupying levels of energy Es , the number of which 

is gs; kB is the Boltzman constant, T is the temperature, and EF is referred to as the Fermi 

energy. The density of states gs is essentially determined by the E-k relation, whereas EF 

is determined by the energy band structure, the doping of the materials, and the 

operating temperature. The expression for the density of states in the presence of 

quantizing magnetic field is given as (Nag, 1980) 

 

                                                    g (E)=4π(2m
*
/h

2
)
3/2

E
1/2 

.
                

                        (2.35) 
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Figure 2.17: Concentric shells in k-space used to evaluate the DOS, g(E) [Erkoç and Uzer, 1996]. 

 

 

 

2.16    DENSITY FUNCTIONAL THEORY FROM WAVE FUNCTIONS TO     

 ELECTRON DENSITY 

 

The density functional theory is one of the attractive theoretical methods to study 

the structural and electronic properties of solids. The two fundamental mathematical 

theorems proved by Hohenberg and Kohn [1964] and the derivations by Kohn and 

Sham [1965] in the mid-1960 are important for the entire field of DFT. In the 

Hohenberg and Kohn theory, the DFT is stated by two theorems. The first demonstrates 

a uniqueness of the ground state energy which is a function of the electron density from 

Schrödinger equation. The second H-K theorem proves that the true electron density 

corresponding to the full solution of the Schrödinger equation is the electron density 

that minimizes the energy of the overall functional. The H-K theorem describes a 

function that is useful to write in terms of the single-electron wave function, ψ(r)  

 

                                                             known xcE E E                                           (2.36) 
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(2.37) 



41 

 

From Eqn. (2.36), the energy function can be expressed as a split of a simple analytical 

form, Eknown[{ψ}] and all the quantum mechanical effects that are not included in the 

"known" terms is defined as the exchange-correlation functional Exc[{ψ}]. The "known" 

terms include four contributions that are shown in Eqn. (2.37). The terms on the right 

are, in order, the electron kinetic energies, the Coulomb interactions between electrons 

and nuclei, the Coulomb interactions between pairs of electrons, and the Coulomb 

interactions between pairs of nuclei. The difficulty in fully solving the Schrödinger 

equation is eliminated by using the Kohn and Sham [K-S] equation, which only 

involves a single electron. In K-S formulation, Eqn. (2.37), energy is calculated by 

solving a series of one-electron equations of the form 

                                                          
2

2

2
H xcV r V r V r r r

m
 

 
      
 

           (2.38) 

These equations are quite similar to the Schrödinger equation, Eqn. (2.16).The first term 

on the left-hand side describes the kinetic energy of the electron, V is the potential 

energy of an electron interacting with the nuclei, VH is the Hartree potential and Vxc is 

the exchange-correlation potential. The Hartree potential is expressed as 

  

                                                            
 2 3 '

'
H

n r
V r e d r

r r


                                     (2.39) 

 

describes the Coulomb repulsion between the electron and the  total electron density of 

the system. The energy Vxc which defines exchange and correlation contributions to the 

single-electron is written as 
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The "functional derivative" is written using δ rather d to emphasize that it is not a 

normal derivative. The exchange-correlation potential at the electron density observed 

at that position is 

                                                        electrongas

xc xcV r V n r                                                (2.41) 

 

where n(r) is the electron density, and in the case of uniform electron gas the electron 

density is constant at all points in space.  

 

2.16.1  Local-Density Approximation (LDA) 

 

  The oldest, simplest and probably the most important function is the local 

density approximation (LDA), which was proposed by Hohenberg and Kohn [1964] in 

their original DFT paper. The LDA consists of locally approximating the true exchange-

correlation energy of a system by the exchange-correlation energy associated with a 

homogeneous electron gas of the same density. The homogeneous gas is the only 

system for which the form of the exchange-correlation energy is known precisely. The 

LDA is only dependent on the local density, and the total energy is commonly written as 

 

                                                                3LDA

xc xcE n r d r n r n r                                     (2.42) 

 

where  xc n r     is the exchange-correlation energy density corresponding to a 

homogeneous electron gas of density  n r . 

 

A symbolic graphical description of the local character of LDA approximation is shown 

in Figure 2.18. 
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Figure 2.18: The local density approximation [Koch and Holthausen, 2001]. 

 

 

2.16.2  Local-Spin-Density Approximation (LSDA) 

 

  The extension of LDA function to spin-polarized systems is important especially 

for correct description of elements subjected to magnetism. The formulation is 

straightforward for exchange energy part, where the exact spin-scaling is known, but for 

correlation energy term further approximations must be employed. 

 

A spin polarized system in DFT employs two spin-densities nα and nβ with the 

total     n = nα+nβ, and the form of the local-spin-density approximation (LSDA) (Von 

Barth and Hedin, 1972) is as follows: 

 

                                                      3, ,LSDA

xc xcE n r n r d r n r n r n r                    (2.43) 

 

For the exchange energy, the exact result (not just for local density approximation) is 

known in terms of the spin-unpolarized function [Oliver and Perdew, 1979]:   
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                                                 
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The spin-dependence of the correlation energy density is approached by introducing the 

relative spin-polarization: 
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                                            (2.45) 

 

A value of ζ = 0 corresponds to the paramagnetic spin-unpolarized situation with equal 

α, and β, spin densities, whereas ζ = ±1 corresponds to the ferromagnetic (fully 

polarized) situation where one spin density vanishes. The spin correlation energy 

density for a given value of the total density and relative polarization, εc(n, ζ), is 

constructed so to interpolate the extreme values. Several forms have been developed in 

conjunction with LDA correlation function [Oliver and Perdew, 1979; Vosko et al., 

1980]. 

 

2.16.3  Generalized Gradient Approximation (GGA) 

 

  Hohenberg and Kohn presumed that the LDA would be too simple to work for 

real systems and so proposed an extension to the LDA known as the gradient expansion 

approximation (GEA) [Hohenberg and Kohn, 1964]. The GEA is a series expansion of 

increasingly higher order density gradient terms. The first order form of the GEA was 

subsequently implemented and tested for atoms and molecules and was a complete 

failure. Anyway, GEA provided the basis for the generalized gradient approximation 

(GGA), which is currently the most used exchange-correlation function in 

computational material physics. 
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The vital steps that lead to the GGA were principally made by Perdew [1985] who 

devised a cutoff procedure that sharply terminates the GEA exchange-correlation hole 

in real-space using delta functions, in order to restore the sum rule and non-positive hole 

conditions. As a result of this procedure the GGA can be conveniently written in terms 

of an analytic function known as the enhancement factor,    ,xcF n r n r   , that 

directly modifies the LDA energy density, 

 

                                                        3 hom ,GGA

xc xc xcE n r d r n r n r F n r n r             (2.46) 

 

Using GGA, very good results for molecular geometries and ground-state energies have 

been achieved. 

 

2.17   CAMBRIDGE SERIAL TOTAL ENERGY PACKAGE (CASTEP) 

 

CASTEP [Clark et al., 2005] is a state-of-art quantum mechanics-based program 

designed specifically for solid-state materials science. CASTEP employs the DFT 

plane-wave pseudopotential method, which allows to perform first-principles quantum 

mechanics calculation that explore the properties of crystals and surfaces in materials 

such as semiconductors, ceramics, metals, mineral and zeolites. The CASTEP uses the 

pseudopotentials and the general overview of density functional theory provides 

information on the concepts of charge density, DFT functional, the self-consistent field 

(SFT) procedure and band structure, which are applicable to any computation of DFT. 

   

CASTEP requires that all studies must be performed on a periodic system. In a 

periodic system each electronic wave function can be written as a product of a cell-

periodic part and a wavelike part [Payne et al., 1992] is the main advantage of imposing 
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periodic boundary conditions related to Bloch‘s theorem, Eqn. (2.4). Of a discrete set of 

plane waves, consisting of a basis set, is used for expanding the cell periodic part, ψ 

whose wave vectors are reciprocal lattice vectors of the crystal as shown in Eqn. (2.47) 

 

                                                                    .

,

iG r

i i G

G

r C e                                     (2.47) 

 

where the reciprocal lattice vectors G are defined by G.l=2πm for all l where l is a 

lattice  vector of the crystal and m in an integer. Therefore, each electronic function can 

be written as a sum of plane waves, 

  

                                                                  .

,

iG r

i i k G

G

r c e                                    (2.48) 

 

2.17.1  Exchange-Correlation Function 

 

  A number of exchange-correlation functional such as local (LDA), gradient-

corrected (GGA), and fully nonlocal are implemented in CASTEP. The exchange-

correlation for LDA functional is same as in Eqn.(2.41). The Perdew and Zunger 

[Perdew and Zunger, 1981] parameterization of the numerical results of Ceperley and 

Alder [Ceperley and Alder, 1980], CA-PZ is the only one local function provided in 

CASTEP. The consideration of the local representation of the exchange-correlation 

potential in this particular prescription is to be one of the most accurate descriptions 

available [Srivastava and Weaire, 1987].  The dn/dr as well as n is dependent on the so-

called nonlocal or gradient-corrected function. The gradient corrected calculation 

provides a considerable increase in the accuracy of predicted energies and structures. 

The Perdew-Wang generalized-gradient approximation (PW91) and Perdew-Burke-



47 

 

Ernzerhof correlations (PBE) are also useful for improving the accuracy of the 

calculation. 

 

2.17.2  Pseudopotential 

 

  Since the full Coulomb potential of the electron-ion interaction decays too 

slowly to be accurately presented by a small number of Fourier components, the concept 

of pseudopotential has been treated on each atom in the CASTEP. The degree of 

hardness of pseudopotential is an important concept in the pseudopotential applications 

and is considered as soft when a small number of Fourier components is required for its 

accurate representation and it is hard otherwise.  

 

The potentials for transition metals and for first row elements (O, C, N, etc.) turn 

out to be extremely hard [Bachelet et al., 1982; Kerker, 1980] are quickly showed in the 

early development of accurate norm-conserving pseudopotentials. Various values of 

pseudopotentials have been suggested to improve. The improvement of convergence 

properties of norm-conserving pseudopotentials (Troullier and Martins, 1991) has been 

suggested by various schemes. The kinetic energy optimization scheme developed by 

Lin et al. (1993) and Lee (1996) are used to generate norm-conserving potentials in 

CASTEP. 

 

2.17.3  Self-consistent Electron Minimization 

 

  A choice of methods for electronic relaxation is offered by CASTEP and the 

default is the most efficient and is based on density mixing [Kresse et al., 1996]. In this 

scheme, instead of the self-consistent minimization of the total energy, the sum of 
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electronic eigenvalues is minimized in the fixed potential. At the end of the 

minimization the new charge density is mixed with the initial density and the process is 

repeated until convergence is reached. The sum of eigenvalues is minimized using the 

conjugate gradient-based approach.  

 

A more traditional scheme for electronic relaxation is supported by CASTEP 

involving minimization of the total energy. A plane-wave basis set is used to expand the 

electronic wave functions and varied so as to minimize the total energy. An all-bands 

method performed the minimization that allows simultaneous update of all wave 

functions. A preconditioned conjugate gradients technique [Payne et al., 1992] is used 

for this scheme. 

 

2.18    SUMMARY 

 

  The band structure of a material determines several characteristics, in particular 

the material's electronic and optical properties. Bands have different widths, depending 

upon the properties of the atomic orbital and the difference in the type of solids may be 

attributed to the band gap. The atoms in crystals are arranged in a periodic potential 

which gives the energy bands. A semiconductor is a material with a small but nonzero 

band gap. The conductivity of intrinsic semiconductors is strongly dependent on the 

band gap. The band gap energy of semiconductors tends to decreasing with increasing 

temperature as shown in Eqn. (2.1) 

   
2

0
T

Eg T Eg
T




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
 

which is known as Varshni's empirical expression. The crystal is characterized to be a 

semiconductor if one or two conduction bands are slightly filled or slightly empty. The 

conductivity dependence on temperature of a material is the property that enables 
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semiconductors to conduct current since the conductivity and intrinsic carrier 

concentration are largely controlled by Eg/kBT, the ratio of the band gap to thermal 

energies.  

 

Ghatak et al., [2008] expressed the band gap of semiconductors by the expression 

given in Eqn. (2.2) 
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where mc is the effective electron mass at the edge of the conduction band, and µ
* 

is the 

reduced mass which is given by   

*

1 1 1

c vm m
   

mv is the effective mass of the heavy hole at the top of the valence band , Eg0 is the 

unperturbed band gap, and α=1/Eg0 . Ghatak et al., [2008] studied the Boltzmann 

transport equation on the basis of this equation and have introduced new physical ideas 

experiments in the presence of external photo excitation.  

 

For ZnSxSe1-x (0≤x≤1) as II-VI Compounds there are two possible structures can 

be formed from such tetrahedral: the sphalerite (cubic type) and the wurtzite 

(hexagonal) type. The sphalerite structure is very similar to the structure of diamond, 

but it differs from the latter by the alternation of atoms of two different elements. 

 

The density functional theory is one of the attractive theoretical methods to study 

the structural and electronic properties of solids. Local-density approximations (LDA) 

are a class of approximations to the exchange-correlation (XC) energy functional in 

density functional theory (DFT) that depend solely upon the value of the electronic 

density at each point in space. Many approaches can yield local approximations to the 

http://en.wikipedia.org/wiki/Exchange_interaction
http://en.wikipedia.org/wiki/Electron_correlation
http://en.wikipedia.org/wiki/Functional_%28mathematics%29
http://en.wikipedia.org/wiki/Density_functional_theory
http://en.wikipedia.org/wiki/Electronic_density
http://en.wikipedia.org/wiki/Electronic_density
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XC energy. However, overwhelmingly successful local approximations are those that 

have been derived from the homogeneous electron gas (HEG) model. In this regard, 

LDA is generally synonymous with functional based on the HEG approximation, which 

are then applied to realistic systems (molecules and solids). For a spin-unpolarized 

system, a local-density approximation for the exchange-correlation energy is written as 

Eqn. (2.42) 

     3LDA

xc xcE n r d r n r n r        

where ( )n r is the electronic density and εxc, the exchange-correlation energy density, is 

a function of the density alone. The exchange-correlation energy is decomposed into 

exchange and correlation terms linearly, 

                                                   Exc=Ex+Ec. 

 

CASTEP is a state-of-art quantum mechanics-based program designed 

specifically for solid-state materials science. The CASTEP uses the pseudopotentials 

and the general overview of density functional theory provides information on the 

concepts of charge density, DFT functional, the self-consistent field (SFT) procedure 

and band structure, which are applicable to any computation of DFT.  
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