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CHAPTER 4 

 

Results on Energy Gap for ZnSxSe1-x (0 ≤ x ≤ 1): A Simple 

Theory 
 

 

4.1    THE SPINLESS k.p PERTURBATION  

 

Consider the time independent Schrödinger equation, 

 

                                                 2 2

02 0m E V r        .                               (4.1) 

 

An electron exists in a periodic potential V(r) yields different bands that are separated 

from each other by an energy gap. The top of the lower band (valence band) is the 

highest occupied molecular orbital (HOMO) and the bottom of the upper band 

(conduction band) is the lowest unoccupied molecular orbital (LUMO). The difference 

in energy HOMO and LOMO is the band gap. For semiconductors the wave functions 

of the electrons at the band edges within a few kBT from the LUMO and HOMO 

extremes are sufficiently described by atomic s and p orbitals [Altarelli, 1985; Bastard, 

1981; Bastard and Brum, 1986]. For states slightly away from the LUMO and HOMO 

extremes the k.p  perturbation theory proves to be a very useful approximation for the 

wave function of the electron. The k.p perturbation theory [Kane, 1966; Wang 1966; 

Nag, 1980] is based on the fact that the cell periodic functions for the electrons for any 

wave vector k in different bands form a complete set and the expression of the wave 

functions for electrons are in terms of the functions for the minima and maxima (i.e., 

HOMO and LUMO bands). 
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Consider the wave function for electrons having a value k near the minima (i.e., in 

Brillouin zone) in the n
th

 band. For simplicity, the minima is assumed to be located at 

k=0. The wave function is given by 

 

                                           0exp . exp .nk m mm
u r ik r C u r ik r                       (4.2) 

 

where n is the band index and k is the wave vector, Cm is the coefficient over m where       

m = 1, 2,...., n. 

 

 Substituting Eqn. (4.2) into Eqn. (4.1) gives 
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                                                                                                                               (4.3) 

 

After factoring out e
ik.r

 and replacing p i    gives 
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                        (4.4) 

 

However um0 is the wave function for k=0 in the n
th

 band satisfying the equation 
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                           (4.5) 
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Substituting Eqn. (4.2) in Eqn. (4.4) and using Eqn. (4.5), the potential energy due to 

the electron-electron interaction is obtained as 

 

                               
2

2

0 0

0 0

0 .
2

m m m m n mC E k k p u r C E k u r
m m

 
   

 
            (4.6) 

 

Multiplying both sides of Eqn. (4.5) by  *

0lu r and integrating over the unit cell (Vc), the 

following set of linear homogeneous equations is obtained 

 

                                     
2 2

0 0

0 . 0
2

l n l m lm

m

k
C E k E C k P

m m

 
    
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where    *

0 0

c

lm l m

V

P u r pu r dr  .  By giving l successive integer values one obtains 

the full set of equations. 

 

In the general case, the set of equations has a non-trivial solution if the 

determinant of the coefficients is zero, namely if l=2 and m=1, 2 then 
2 1

2 2

0
C C

C C
  when 

C1=C2. 

 

This condition gives the energy eigenvalues En (k) in terms of the quantities Em (0) and 

Plm. The relative values of the expansion coefficient Cm is then obtained using the 

values En (k). The absolute values of Cm are obtained by imposing normalization 

condition on the wave function ψ. Therefore, the energy eigenvalues near a 

characteristic point k = 0 can be expressed as 
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where the prime at the sum indicates summation overall n and l with n≠l. 

 

The second and third terms in Eqn. (4.4) can be considered as small perturbations 

in the vicinity of the minima k = k0 ≠0. Therefore, Eqn. (4.4) can be written as 
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and the energy eigenvalue in Eqn.(4.8) near a characteristic point k0 can be expressed as 
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Eqn. (4.10) can be simplified when interactions between only two neighboring bands 

are of interest (e.g., the valence and conduction bands) and the energy difference 

between these is small compared to the difference with all other bands. Then  

 

                                                  
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0 *2

i
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where i= x, y, z, and the effective mass *

im  can be expressed as [Nag, 1980] 
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with + or - for the upper or lower band, respectively. Eqn. (4.10) can be rewritten  
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                                                                                                                            (4.13) 

 

since the last term is so small so, the energy E(k) near a critical point k
0
 can be written 

as 

 

          
     

222 22
0 00 2
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From Eqn. (4.13), and Eqn. (4.14) can be written as 

 

          
   

2 22 2

0 0

0 *
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1

2 2 2
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                (4.15) 

 

with m
*
as the effective mass in the conduction (+) or valence (-) band. Eg = Ec(k0) − 

Ev(k0) is the band gap energy. This illustrates the usefulness of the k.p method. If Eqn. 

(4.14) is written in terms of reduced mass μ
* 

where [(μ
*
)
-1

=(mc)
-1

+(mv)
-1

], and mc being 

the effective electron mass at the edge of the conduction band (CB) and mv the effective 

mass of the heavy hole at the top of the valence band (VB) in the absence of any field, 

then  assuming that the conduction band minimum and the valence band maximum are 

at the zone center, it is possible to  write 
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                                      
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c
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and  

                                     
2 2 2 2
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1
2 2 2

v

Eg Egk k
E k
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where 0Eg is the band gap of a pure binary semiconducting alloy. Using the 

approximation  

                                                          
* *

0

1 1 1
2

m m

 
  

 
                                           (4.18)  

                                                     

which is deduced from the results given by Abo Hassan et al., [2005a]. Eqn. (4.16) and 

Eqn. (4.17) give 
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                               (4.19) 

neglecting higher order terms. 

Hence we can write Eg=Eg0+∆Eg where
2 2

*2

k
Eg


  . 

From Abo Hassan et al., [2005a], 
2 2

* 2

2
Eg

D




   implying that we may take k as 

2

D


 

where D is the crystallite diameter. Hence the energy gap may be written as 

 

                                                      
2 2

0 * 2

2
Eg Eg

D




                                                 (4.20) 
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 From the results reported by Abo Hassan et al., [2005a] as shown below in Table 4.1 

 

TABLE 4.1: Shift in band gap ΔEg caused by grain size effect and reduce effective mass μ
* 

for 

ZnSxSe1-x     (0<x<1) thin films. 

 

x */mc  0Eg  (eV) 

0.12 0.14 2.5816 

0.34 0.17 2.9514 

0.35 0.17 2.9565 

0.37 0.17 2.9573 

0.41 0.17 2.9865 

0.48 0.18 3.0521 

0.78 0.22 3.2910 

0.80 0.22 3.3023 

0.82 0.22 3.3531 

0.90 0.23 3.5469 

0.96 0.24 3.5197 

0.99 0.24 3.7351 

 

the relationship between μ
*
/mc and the unperturbed energy gap Eg0 can be written as 

 

                                                     
*

1.76

00.124
c

Eg
m


                                           (4.21) 

Using the relationship given by Eqn. (4.21) 

 

                                               
 

2 2

1.762

0

2

0.124c
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m D Eg


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Substitute Eqn. (4.21) in Eqn. (4.20) gives 
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Eg Eg
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
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Eg0 according to Abo Hassan et al. [2005a] is the energy gap of the stress free crystal. 

The values of Eg0 are taken from the results of CASTEP. 

 

4.2    RESULTS 

 

Results for the band gap Eg of the alloys are depicted in Figure 4.1 upon applying 

the 1.7 correction factor and Figure 4.2 upon applying the 1.66 correction factor for Eg0. 

The theoretical values are compared with the experimental results of Abo Hassan et al. 

[2005a], Larach et al. [1957], and Ebina et al. [1974]. For ZnSe (x = 0), the equation 

proposed by this work predicts that Eg = 2.79 eV. Published experimental works give 

the Eg for ZnSe as 2.70 eV [Abrikosov et al., 1969], 2.72 eV [Ebina et al., 1974], 2.58 

eV reported by Homann et al. [2006], and 2.77 eV reported by Swarnker et al. [2009]. 

For the calculation the value of Eg0 is the band gap value for ZnSe considered in order 

to find out the value for the energy band gap for x=0.12, and using Eqn. (4.23) again to 

find the energy gap for x = 0.25 the substitution of the energy band gap for x = 0.12 as 

Eg0 was used. Following this procedure the energy band gaps for the remaining values 

for x were determined.  Figure 4.3 shows the difference between the values for energy 

band gap from this work and the experimental results given by Larach et al. [1957] and 

Abo Hassan et al. [2005a]. It can be realized the results given by this work is in 

reasonable agreement with the experimental results. 

 

The energy gap of the stress free crystal from chapter 3 applying the 1.7 

correction factor can be fitted to the equation  

 

                                    Eg0 = 0.4267 x
2
 + 0.1905 x +2.793.                                (4.24) 
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For x=1 the energy gap from our work for ZnS is 3.41 eV. Ebina et al. [1974] obtained 

Eg(ZnS) as 3.70 eV, Van de Walle (1989) 3.78 eV, Homann et al. [2006] as 3.68 eV 

using the linear combination of atomic orbitals (LCAO) method and Swarnkar et al. 

[2009] reported a value of Eg(ZnS)=3.85 eV and published results give Eg for ZnS as 

3.60 eV [Abrikosov et al., 1969]. The comparison for the results from this work with 

the results from the literature is shown in Figure 4.3.  The D values are obtained from 

Abo Hassan et al., [2005b] and given in Table 4.2. 

 

 

Table 4.2:  D values for ZnSxSe1-x [Abo Hassan et al., 2005b]. 

x 

 

Crystallite Diameter 

D (m) 

 

 x 
Crystallite Diameter 

D (m) 

0.12 662×10
-10

  0.78 250×10
-10

 

0.34 593×10
-10

  0.8 977×10
-10

 

0.35 383×10
-10

  0.82 532×10
-10

 

0.37 480×10
-10

  0.90 285×10
-10

 

0.41 342×10
-10

  0.96 224×10
-10

 

0.48 158×10
-10

  0.99 357×10
-10

 

 

 

In calculating Eg for ZnSxSe1-x  for  x = 0.12, 0.25, 0.34, 0.35, 0.37, 0.41, 0.48, 0.5, 

0.625, 0.75, 0.78, 0.8, 0.82, 0.875, 0.96, 0.99, the results are listed in Table 4.3 upon 

applying the 1.7 correction factor and in Table 4.4 upon applying the 1.66 correction 

factor. 
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Table 4.3: Energy gap Eg from this work upon applying the 1.7 correction factor. 

x Eg (eV)  x Eg (eV) 

0.12 2.82  0.78 3.2 

0.34 2.9  0.80 3.22 

0.35 2.91  0.82 3.24 

0.37 2.92  0.9 3.31 

0.41 2.94  0.96 3.37 

0.48 2.98  0.99 3.4 

 

 

Table 4.4: Energy gap Eg from this work upon applying the 1.66 correction factor. 

x Eg (eV) 

 

x Eg (eV) 

0.12 2.74 0.78 3.08 

0.34 2.85 0.80 3.09 

0.35 2.86 0.82 3.1 

0.37 2.87 0.9 3.15 

0.41 2.88 0.96 3.18 

0.48 2.92 0.99 3.2 

 

The value of Eg for each composition is calculated from Eqn. (4.23). 
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Figure 4.1: Eg as a function of x upon applying the 1.7 correction factor. 

 

 

Figure 4.2: Eg as a function of x upon applying the 1.66 correction factor. 

 

Figure 4.3 shows the comparison between results from this work and the results given 

by Larach et al. [1957] and Abo Hassan et al. [2005a].  

2.4 

2.6 

2.8 

3 

3.2 

3.4 

3.6 

0 0.2 0.4 0.6 0.8 1 1.2 

E
g

 (
eV

) 

x 

2.4 

2.5 

2.6 

2.7 

2.8 

2.9 

3 

3.1 

3.2 

3.3 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

E
g

 (
eV

) 

x 



90 

 

 

Figure 4.3: Eg as a function of x from Larach et al.,[1974],  Abo Hassan et al., [2005a],  and the 

results for this work. 

 

 

 

 

 

4.3    SUMMARY 

 

The theoretical results were presented in Eqn. (4.19) 

 

   
2 2

0 *

0

1

2 2 2

0 *

0

2 2

0 *

1

1

2

c v

k
E k E k Eg

Eg

k
Eg

Eg

k
Eg







  

 
  

 

 

 

 and Eqn. (4.22)  
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by using the approximation given in Eqn. (4.18)  
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and the empirical relationship given in Eqn. (4.20) 
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Eg0 according to Abo Hassan et al., [2005a] is the energy gap of the stress free crystal, 

and taken from the results of CASTEP.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 




