CHAPTER 5

Results on Energy Gap for ZnS,Se,.,: The Effect of Spin-Orbit

Interaction

5.1 INTRODUCTION

Solutions to the energy-eigenvalue problem of a semiconductor crystal yields the
band structure in the form of "E—k" diagram, or the ‘dispersion’-curve of the
semiconductor. Electronic, optical, and magnetic phenomena in semiconductors can be
understood by looking at a small portion of the band structure. These portions of the
band structure are the lowest level in the conduction band and the highest level in the
valence band. The highest point of the valence bands are known as the I'-point, and
constitute the (k« = 0, ky = 0, k, = 0) point in the k-space. In most compound
semiconductors, the maximum of the valence band and the minimum of the conduction
band occur at the same point in the k-space i.e. at the I'-point. Such semiconductors are

called direct band gap semiconductors and form the core of most optical devices.

Spin-orbit splitting occurs in semiconductors in the valence band, because the
valence electrons are very close to the nucleus. In quantum-mechanical description, the
wave equation depends on the spin of the particles. The usual Schrodinger equation
applies to the spin-0 particles in the non-relativistic domain, while the Klein—Gordon
equation is the relativistic equation appropriate for spin-0 particles. The spin-1/2
particles are governed by the relativistic Dirac equation which, in the non-relativistic

limit, leads to the Schrddinger—Pauli equation [Bjorken and Drell, 1964; Davydov,
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1965; Messiah, 1968]. In the case of particles with spin 1 (i.e., bosons), only relativistic
equations are considered [Berestetskii, 1989]. A charged particle with non-zero spins
couples to an external magnetic field as if, in addition to its electric charge, it had a
magnetic dipole moment. In the case of a spin-1/2 charged particle, the relation between
the magnitudes of the magnetic dipole moment and of the intrinsic angular momentum
given by the Dirac or the Schrodinger—Pauli equation does not coincide with that of a
uniformly charged rotating body given by classical physics, but somewhat surprisingly
it does coincide with that of a rotating charged black hole in the Einstein—-Maxwell
theory [Debney et al., 1969; Newman, 2002]. The k.p perturbation method [Nag, 1980;
Kane, 1966] is based on the fact that the cell periodic functions for the electrons for any
wave number k in different bands form a complete set and the expression of the wave
functions for electrons are in terms of the functions for the minima and maxima (i.e.

HOMO-LUMO bands).

The calculation of Eg by solving the Schrodinger-Pauli equation with the effect of

spin-orbit interaction will be obtained.

5.2 COUPLING OF SPIN AND ORBITAL ANGULAR MOMENTUM

The energy of an electron due to coupling between its spin (s) and orbital angular
momentum (I) can be derived as follows. The magnetic field B generated by an electron
travelling with momentum p in the electrostatic field E created by nucleus plus core

electrons is given as [Cohen-Tannodji et al., 1977]

Exp (5.1)

where my is the free electron mass and c is the velocity of light. Since eE =—-VV so
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B=-

em,c’

VV xp

(5.2)

where e is the charge of an electron, and V is the effective potential. The intrinsic

magnetic moment of the electron

interacts with B. This interaction energy is given by

Heo =M, B=—.(WWxp)

S 2
2mgc

where 6 = 2s// is the Pauli spin matrices.

(5.3)

(5.4)

Another relativistic correction due to the precession of the spin angular

momentum vector relative to the laboratory frame gives an additional factor of 1/2

[McGlynn et al.,, 1969]. Including this correction factor, the total relativistic

contribution to the Hamiltonian due to the spin-orbit coupling is given by [Herman et

al., 1963]

H = ————
0 amic?
In a central field potential, V =V (r) and
VvV = 1 d_V r
r dr

[VV x pl.&

(5.5)

(5.6)
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Consequently, Egn. (5.5) can be written as

:—h d—Vo”'(Fx”)
4micr dr P

N
4mic’r dr

=(ls

SO

Gl (5.7)

Hso is the one-electron spin-orbit coupling operator for one atom. In a solid this

operator is summed over all atoms.

5.3 THE k.p PERTURBATION THEORY WITH THE EFFECT OF SPIN-ORBIT
INTERACTION

Let as assume that the conduction band minimum and the valence band maximum

are at the zone center and that the valence band is triply degenerate. Define

E'=E-#n’k*/2m, (5.8)

where E is the energy eigenvalue, 7 is Plank’s constant divided by 2z, and m is the free
electron mass. On the basis on this consideration and including the spin vector we may
choose iS1, (X+iY)|, Z1, (X-1Y)], iS|, Z|, (X+iY)?1 as the base vectors for y. Here X,
Y and Z represent the x, y and z axis of the Brillouin zone. The periodic wave function

can be written as
l//nka (r’ 6-) = eiE'Funka (F’ 6-) (59)
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where u is periodic. a = £ 1 is a (pseudo)spin index; o represents a vector of the Pauli

01 0 i 10
spin matriceso, = o, =| . 0, = , andi=+/-1. Using w,,,, from
p O-x |:1 Oj| O-y |:| o:| o |:o _1i| g 4 ke

Egn. (5.9) in the Schrodinger-Pauli equation gives

{—(hz/Zmo)Vz +#Wv x pl.6 +V (r)}// =Ey (5.10)

0

Substituting Eqn. (5.9) into Eqgn. (5.10) gives

[—(hz/Zmo)v2 +thcz[ﬁv x pl.6 +V (r)}e“z-funka (F,6)=Ee*"u,, (F,6) (5.11)

0

that finally leads to

—(12/2m, )| €¥"Vu,, (F,6) + 2ike "V, (F,6) - K€" Uy, (7,5) |
7{%502[% x pl.6 +V (r)}e‘“unka (7,5)
=Ee*"u,, (F,5)

(5.12)

ik.F

After factoring the term €™ and replacing p =7k we get

~(n*/2m )v2+v(r)+ik.p+ il +L[vap].a+h—2[vvxk].a Up (T, 5)
0 m, 2m, ) 4m3c? 4m’c? nke

= Eu,, (F,0)

(5.13)
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Note that the total Hamiltonian is given by

H=H,+Hg

-, (5.14)
= Ve+V(r)+H
2m0 SO

Taking the k vector in the z direction and consider the Hamiltonian corresponding to the
terms of Eqgn. (5.13), the mutual interaction of the conduction and valence bands leaves

the band doubly degenerate. We take as a basis

[is 4),|(x =iv)T/N2). [z L) | (x +iv) 1 /¥2) [is 1)
(X +iY) LN2), |2 1) |(x -iv) L /N2)

(5.15)

The first four functions are respectively degenerate with the last four. The 8 x 8

. . . . H 0
Interaction matrix may be written as |: 0 H:| where

E, 0 kP 0
0 E,-A3 243 0
H= (5.16)
kP 2A/3 E, 0
0 0 0 E +A/3]

The positive constant A which is the spin-orbit splitting of the valence band, and the real

quantity P is defined by [Kane, 1957] as

P =-i(1/m)([p,|2) 617
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and

ov ov

&py_a Px

a=M <x
4myc

Y> (5.18)

E. and E, refer to the eigenvalues of the Hamiltonian Ho. E. corresponds to the
conduction band and E, to the valence band. Symmetry properties have been used. We

should note that Hy = Ew and H given by Eq. (5.16).

The doubly degenerate wave functions which result from the diagonalization of

the Hamiltonian of Eqgn. (5.16) may be written as

L o X =iY ") A .
u (K,7)=a_isd +bk+( % j? AN (5.19)
and
. N XY ") . N
uz(k,r)zakflsT b, (TJJ« +c, 2'T (5.20)

where the coefficients ay,, by,, Ck are obtained by applying the normalization condition

(i.e.a’+b?+c? =1), and are given by [Haga and Kimura, 1964]
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_ Ego_(Vki)z(Ego_g')
‘_ﬂ\/ Eg,+J" B

m
6(Eg, +24/3)(Eg, +A) |
(6Eg; +9Eg,A+4A%)

(e
7k*{—2(§k+5') , ¢ = WK 2m",

b - 47 X
| 3(BEg; +9Eg,A +4A%) Tl
5 = (Eg?A)(6Eg: +9Eg,A+4A7) ",

6(Eg, +2A/3)
Cki Etyki’ tE (2 go / ) 2
(6Eg; +9Eg,A+4A%)

s is the s-type atomic orbital (i.e. in conduction band) in both unprimed and primed
coordinates (i.e. X, X', Y, Y',and Z, Z') and 1", I indicates the spin-up and spin-down
function in the primed coordinates, X', Y'and Z' are the p-type atomic orbital’s in the

primed coordinates.
If the k vector is not in the z direction, the Hamiltonian is more complicated but it can

be transformed to the form of Eq. (5.14) by a rotation of the basis function.

m_{e—wﬂcos(e/z) ewzsm(e/z)m

V] | -e"2sin(6/2) €2 cos(6/2) || ¥

X cos@dcos¢g cosfsing —sind || X
Y |=|-sing cosd 0 Y |,
Z singdcosg sindsing cosé || Z
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besides, the spin vector can be written as S= g& [Ghatak et al., 2008].

The angles 6 and ¢ are the usual polar angles of the k vector referred to the crystal
symmetry axes X, y, and z: with 6 measured from z and ¢ measured from Xx. This
transformation would be obvious if the functions X, Y, Z transformed like the spherical
harmonics X, y, z under the full spherical group rather than just under the tetrahedral

group.

From the above, it can be written

P =—i(#/my)(s|p,|Z) =i (7/my) p(K)

{fslolis) (¢ 1) =2 pioc v ) (v V)]

o {{[plz (¢ 1)) B (e el )]

{loe el (T ) 22 (o= lelz ) (T 1)
({2 i) (¥ 1)} == {(z ol (v 1)
{(Zoiz )V 1))

+C.a,_

%l

+C.C_

Hence, we introduce
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b k‘{(( —iy" ‘p||s <T‘T>} {Z|p||s< ‘T>}
{ >}+ak+ck {|s|p|Z <HT>}
+ bk:/%k {(( X'-iY")|p|z ><T \T}} _GeBe {{z p|(X +iY ')><¢' M}

(5.21)

<|s|p‘ X '+iY" <~L‘J«

N

Since we are interested for the effect of spin orbit, the last two terms on Eqn. (5.21) may

be neglected since there are no spin term, is. Hence from Eqn. (5.21), we can write

((x=iv ) plis) =((x )| plis) ~((~iv ") plis)
:iju;‘(.ps—j—iuj.piuX
=i{X [ pls)=(YIpls)

and for X”, Y’ and Z’, we get

| X"} =cos@cosg| X )+cos@sing|Y)—sin6|Z)
[Y") ==sing|X)+cosg|Y)
|Z") =sin@cosg|X)+sinOsing|Y)+cosd|Z)

Then
(X1 pls) =cos&cosg(X]| pls)+cosOsing(Y| pls) —sin&(Z|p|s) = pf
where
f, =1 cos@cosp+ jcosdsing—ksina,,
and
(Y1pls)==sing(X|pls)+cos4(¥| pls) = pf,,
where
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so that

Thus

Since

we can write

Similarly,

where

Thus

and

Therefore

f, =—Ising+ jcosg,
(X*=iY")p[s)=p(if~F,)

ai/-; (x=iv ) pls) (1] 1) = af/_5b+ (it -5) (1)

<is| p|(X +iY ')>:i<s‘p|X '>—<s‘p|Y >
= p(ifl_fz)

A1) -

N

(2l 2108
= ip{sin 0cosgi +sinOsin g j+cos€l€}

= ipf,
f, =isin@cosg+ jsinsing+kcosd
Ce, 8 <Z | p|is> =c,.a, ipf, <JX ‘T>

C.a,, <is| p|Z > =c,_a,ipf, <~l! ‘T>
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a, b, .
ke —iy" ‘p|s T T is p‘ X +iY VN
Al )4 {< vy
- P (rat (4t (1))
Similarly
C.a, <Z | p|is><¢' ‘T'>+ck7ak+ <is‘ p|z > <¢' ‘T> 523
=ip(c,.a_ +C, . )f <¢' ‘T>
Combining, Eqgn. (5.22) and (5.23), we can write
pCV(E):%(iﬁ—fZ){( DM =(b a) (VI >}+|pr —ca (V)
(5.24)
From the above relations, we can write
T=e"2cos(6/2) T +e*?sin(6/2) ¥ 5 25
V=—e"?2sin(9/2) T +e¥? cos(6/2) ¥ 529
Therefore,
<¢' ‘T> =—sin(¢9/2)cos(0/2)<ﬂ’l‘> +e7 cosz(0/2)<¢ T>
g X X (5.26)

—e"sin’? (0/2)<T MX +sin (0/2)cos(6?/2)<¢ MX

Since<T ‘T>X = <»L ‘~L>X =0, and <¢ ‘T> <T M ==, so from Eqn. (5.26) we get
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(VIM), =5 [e™ cos? (0/2) - sin (6/2)
:%[(cos;ﬁ—isin #)cos? (6/2) - (cosg+isin g)sin’ (6/2)]
=%[(cos¢—isin $)cos’ (6/2) - (cos g +isin ¢)(1-cos? (6/2))
=%[2cos¢(cose+1)—cos¢—isin 4]
=%[cos¢cose—isin¢]
(5.27)

Similarly

<~L' ‘T'>y = %[I cos¢-+singcos o]

and <~L' ‘T'>Z = —%sin 0.
Therefore,

<¢' \T} = f<¢' \T} + j<¢' \T’}y + |2<¢' \T}
:%{(cosqﬁcose—isin @)1 +(icosg+singcos ) j—sin HR}
=%[{(cos¢cos€)f+(sin $cos0) ]—sin@R}Jr i {—fsin¢+ icos¢}}

(5.28)

Similarly, we write

<T' ‘T> =%[fsin 6cosg+ jsin@sin ¢+I2cos¢9] =%f3

and <¢' ‘¢> =—%f3.
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Using the above results and following Eqn. (5.24) we can write

—_
ey
|
oY
S~
—_——
—~
QD
T
iey
3
~
—
-
-
\/
|
—~
O
ol
QD
=~
¥
~
—
<~
<
\/
—_—
+
©
v
—~
(@]
=
n
QD
T
|
(@]
ol
QD
x~
n
S~
—
<
-
~—

“240-0) {((ak_bu;(bk_am)}(%ak_ )}

(5.29)

Hence,

where

and <s| p|Z> = Pq (0).

Then from Eqn. (5.30)
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where ‘.’ is the dot product.

Thus

oo o]

(5.32)

~ 2
So, the average value of ‘k. Pey (k) over the entire angle 4 is

A

2
—\|2 1 b b_ 1 T 1”
k.pcv(k) >av=zp§ {ak_(%+Ck+j+ak+(%+Ck_j:| {EJ'O d0+§!00329d9}

=Zpla (b"—*+c )+a [bL+c jz
8 z k— ﬁ k+ K+ \/5 k— :

<

(5.33)

Now the equations that gives the energy eigenvalues may be obtained from Eqn. (5.14),
keeping only the terms corresponding to conduction band and the degenerate valence

bands and neglecting all other terms [Nag, 1980],

a,(E-E,)—c,pk=0,

b (E'—E, +2A/3)—c, v2A/3=0,

a, pk +b \2A/3—¢c (E'-E, +A/3) =0,
d (E-E,) =0,

(5.34)

The energy eigenvalues are given by equating the determinant of the coefficient of

ay by, cto zero i.e.
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(E-E.) 0 ~pk

0  (E-E, +24/3) 203 |=0 (5.35)
pk J2A/3 ~(E'-E, +4/3)

and the equation giving the values is

(E-E)(E"-E,)E-E, +A)~ pk*(E'-E, +24/3)=0 (5.36)

Solving Egn. (5.36) we get

p’k?(E'-E, + Eg +2A/3)

E“E =
° (E'-E,+EQ)(E'-E, +Eg+A)
. (E'-E, +Eg +2A/3) (5.37)
© (E'-E, +EQ)(E'-E, +Eg+A)
p2k2

WhenE'— E,, we may neglect E'—E_ in comparison to E; where Eg=E-E,. Egn.
(5.37) can be simplified to

(Eg+24/3)

E =E- F3(Eg+0) (5.38)
S

In a similar way, to get E,

p?k? (E'—E, +24/3)
(E-E,-Eg)(E-E,+4)

Vv

and hence

2,2 (E
e —go_Pk (E'-E,+24/3) (539)
(E-E,—Eg)(E-E, +A)
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When E' = E,, the dispersion relation for two valence band having wave functions
(X+1Y) and (X-1Y) is

21,2
E_g 2K (5.40)
Y2m

When E. = 0 this leads as to Eq = -E,, hence we can write Eqn. (5.36) as

21,2 1
E'VE, - p’k*(E'+Eg +2A/3).
E'(E+Eg+A)

(5.41)

Consequently

E —E _E = pk? (E +Eg+2A/3)_(Eg+2A/3)

. 5.42
¢ E'(E+Eg+A) Eg(Eg+A) (5.42)

Now if the band edge effective mass is m’, so from Eqn. (5.38) we get

(E-E.)Eg(Eg+A)

2k2 —
P (Eg+24/3)

which can be written as

p:

2

21,2
Eg (E E—thEg+A
5 2m
(Eg+24/3)k
2
E[hK_hk(m+M
2m  2m,

- (Eg+2A/3)k? 64)

_ (E9+A) #? i_i E
m

(Eg+24/3) my) 2"
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From Eqn. (5.42) we have

(E'+EQ)E'(E'+Eg+A)

Pk’ = (E'+Eg+24/3) (.44)
Hence from Eqgn. (5.42) and Eqgn. (5.43) we have
nk? (i*_ijz (E+Eg)(E+Eg+A)(Eg +2A/3). (5.45)
2 {m m (E'+Eg+2A/3) Eg(Eg+A)
If E is small in comparison to Eg, the relation can be simplified to the following
hzkj =E(l+E) (5.46)
2m
where
“ Z%gil_%;jx(l_ 3(Eg +2E/g3A)(Eg +A)j il

as given by Cohen-Tannodji et al., [1977].

Now near a characteristic point k = 0 with n=Il, the energy eigenvalues may be

expressed as

wke w2 kP, (o)

E, (k)=E,(0)+ 2m, " m: E, (0)—E, (0)

(5.48)
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and near a characteristic point ko can be expressed as

2

~ 12 (k—k,)’ h_Z\(k—ko).av(kO)\
En(k)_En(kO)+ 2m0 +m§ Ec(ko)_Ev(ko) (549)

Using Eqn. (5.49), the deviations of E(k) near a critical point ko can be written as

2(k—k,)’ an% (k—k, )’ [P, (ko )[
E(k—k0)=_Eg°+h (k—k) il\/Eg§+ ( 0)2 a (ko) (5.50)
2 2m, 2 my

in terms of the band gap Ego. The effective mass m” can be expressed as

1 1 2 pcv(ko)\Z(Eg+2A/3)

m  m,  mEg(Eg+A)

(5.51)

which is concluded from Eqgn. (5.43) and Eqn. (5.45). Note that in case of A=0 we can
reach the expression for the effective mass in the absence of spin-orbit as in chapter 4.

Now following Eqgn. (5.50) we can estimate

2 _ Z]j Ego(E902+A) (5:52)
H [Eg0+3Aj

Using Eqgn. (5.51) in Eq. (5.49) we obtain

110



Assuming that the conduction band minimum and the valence band maximum are at the

zone center, then we can write

_Eg,  °K*  Egy |, MK (Egy,+A)

E.(k)= - (5.54)
2 2m, 2 ,uEgO(Eg +2Aj
°°3
and
21,2 21,2 E A
£ (k)= E9 MK EGy y, WK (EG*A) (5.55)
2 2m, 2 ,uEgO(Eg +2A)
°° 3
From Eqgn. (5.54) and (5.55),
h*k? (Eg,+A
£, (), () =g, frok (B0 2)
#H o (E90+Aj
1
2
4’ r? Eg, +A
=F0\ 1t 5 7:5 ( 02)
9 (Eg0 +Aj
2n?7® (Eg,+A
= EgO D2 - ( 0 2 )
(EgO+A)
(5.56)
This can be written as
2_2 E A
Eg = E, (k) E, (k)= Egy + — 2 ( go+2 )
Dz(ﬂ]mc (Ego +3Aj
M. (5.57)
2n° 7 (Eg,+A)
_E90+ 2 1.76 2
D?((0.124Eg, )" | m, (Eg0+3A)
using the assumption
,u* 1.76
F:(0.124Ego) (5.58)

111



Eqgn. (5.57) represents the energy gap for alloys with the effect of spin orbit interaction.

5.4 RESULTS

We exploit Newton interpolation relation to estimate the values of spin orbit
constant A for the crystal structures in the ZnS,Se;x system, which can be expressed by
A=0.16 x+0.27 for sphalerite crystal structure (Figure 5.1), and A=0.328 x+0.092 for
wurtzite crystal structure (Figure 5.2). When x=0 we find out that A=0.27 ¢V which
gives the spin orbit constant for ZnS in case of sphalerite structure and A=0.092 eV in
case of wurtzite structure which is given in [Nag, 1980]. We find that the values for spin
orbit constant increases with x. From these relationships when x=1, the spin orbit
constant A=0.43 ¢V for ZnSe in case sphalerite structure and A=0.42 eV in case of

wurtzite structure for ZnSe.

0.44 -
0.42 - +
0.4 - ++_|_
0.38 -
0.36
A 0.34 - +
0.32 A
0.3 A

0.28 -

0.26

\_ J

Figure 5.1: Spin orbit splitting constant with various x for ZnS,Se; , for sphalerite crystal structure.
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0.45 -
0.41 - x X
0.37 -
0.33 -
0.29 -
0.25 - X
0.21 - X

0.17 -
0.13 - X

0.09 -

0.05

\_ J

Figure 5.2: Spin orbit splitting constant with various x for ZnS,Se, , for wurtzite crystal structure.

Figure 5.3, 5.4 shows the effect of spin-orbit splitting constant upon applying the
1.7 and 1.66 correction factors in the case of sphalerite and wurtzite crystal structures
comparing with the case of energy gap without spin respectively. The effect of spin-
orbit increases the value of energy gap and the values of energy gap upon applying the
1.7 correction factor are greater than the values of energy gap upon applying the 1.66

correction factor.
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Figure 5.3: Eg as a function of a concentration x for ZnS,Se;, upon applying the 1.7 correction
factor in case of wurtzite crystal structure, sphalerite crystal structure, and Eg without spin.
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Figure 5.4: Eg as a function of a concentration x for ZnS,Se;., upon applying the 1.66 correction
factor in case of wurtzite crystal structure, sphalerite crystal structure, and Eg without spin.

In Figure 5.5 shows the energy band gap Eg with the effect of spin-orbit which is

plotted as a function of the concentration x upon applying the 1.7 and 1.66 correction

factors in the case of sphalerite and wurtzite crystal structures comparing with the

experimental results reported by Larach et al. [1957] and Abo Hassan et al. [2005a].
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Figure 5.5: Eg as a function of a concentration x for ZnS,Se;., upon applying the 1.7 and 1.66
correction factors in case of wurtzite crystal structure, sphalerite crystal structure, Eg without
spin, experimental results reported by Larach et al. [1957] and Abo Hassan et al. [2005a].

5.5 SUMMARY

The theoretical results for the energy gap for ZnS,Se; alloys with the effect of

spin orbit interaction were represented in Egn. (5.56)

n’k*  (Eg,+A)
# Edq (Ego+§Aj

E.(k)~E, (k)= Eg, i+

N

2n*r®  (Egy+A)
Dzﬂ*Ego ( 2 j
Eg,+-A
Y 3
2n*z®  (Eg,+A)
= .
D u EgO(EgO+§Aj

=Eg,| 1+

=Eg, +
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and Eqgn. (5.57)

by using the empirical relationship given in Eqgn. (5.58)
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