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CHAPTER 5 

 

Results on Energy Gap for ZnSxSe1-x: The Effect of Spin-Orbit 

Interaction 

 

5.1    INTRODUCTION  

 

Solutions to the energy-eigenvalue problem of a semiconductor crystal yields the 

band structure in the form of "E−k" diagram, or the ‗dispersion‘-curve of the 

semiconductor. Electronic, optical, and magnetic phenomena in semiconductors can be 

understood by looking at a small portion of the band structure. These portions of the 

band structure are the lowest level in the conduction band and the highest level in the 

valence band. The highest point of the valence bands are known as the  -point, and 

constitute the (kx = 0, ky = 0, kz = 0) point in the k-space. In most compound 

semiconductors, the maximum of the valence band and the minimum of the conduction 

band occur at the same point in the k-space i.e. at the  -point. Such semiconductors are 

called direct band gap semiconductors and form the core of most optical devices.  

 

Spin-orbit splitting occurs in semiconductors in the valence band, because the 

valence electrons are very close to the nucleus. In quantum-mechanical description, the 

wave equation depends on the spin of the particles. The usual Schrödinger equation 

applies to the spin-0 particles in the non-relativistic domain, while the Klein–Gordon 

equation is the relativistic equation appropriate for spin-0 particles. The spin-1/2 

particles are governed by the relativistic Dirac equation which, in the non-relativistic 

limit, leads to the Schrödinger–Pauli equation [Bjorken and Drell, 1964; Davydov, 
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1965; Messiah, 1968]. In the case of particles with spin 1 (i.e., bosons), only relativistic 

equations are considered [Berestetskii, 1989]. A charged particle with non-zero spins 

couples to an external magnetic field as if, in addition to its electric charge, it had a 

magnetic dipole moment. In the case of a spin-1/2 charged particle, the relation between 

the magnitudes of the magnetic dipole moment and of the intrinsic angular momentum 

given by the Dirac or the Schrödinger–Pauli equation does not coincide with that of a 

uniformly charged rotating body given by classical physics, but somewhat surprisingly 

it does coincide with that of a rotating charged black hole in the Einstein–Maxwell 

theory [Debney et al., 1969; Newman, 2002]. The k.p perturbation method [Nag, 1980; 

Kane, 1966] is based on the fact that the cell periodic functions for the electrons for any 

wave number k in different bands form a complete set and the expression of the wave 

functions for electrons are in terms of the functions for the minima and maxima (i.e. 

HOMO-LUMO bands).  

 

The calculation of Eg by solving the Schrödinger-Pauli equation with the effect of 

spin-orbit interaction will be obtained.  

 

5.2    COUPLING OF SPIN AND ORBITAL ANGULAR MOMENTUM 

 

The energy of an electron due to coupling between its spin (s) and orbital angular 

momentum (l) can be derived as follows. The magnetic field B generated by an electron 

travelling with momentum p in the electrostatic field Ẽ created by nucleus plus core 

electrons is given as [Cohen-Tannodji et al., 1977] 

                                                            
2

0

1
B p

m c
                                                  (5.1) 

where m0 is the free electron mass and c is the velocity of light. Since e V   so 
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2

0

1
B V p

em c
                                               (5.2) 

 

where e is the charge of an electron, and V  is the effective potential. The intrinsic 

magnetic moment of the electron  
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                                               (5.3) 

 

interacts with B. This interaction energy is given by 

 

                                                  2 2

0

. .
2

SO sH M B V p
m c

                                  (5.4) 

 

where σ = 2s/ћ  is the Pauli spin matrices. 

 

Another relativistic correction due to the precession of the spin angular 

momentum vector relative to the laboratory frame gives an additional factor of 1/2 

[McGlynn et al., 1969]. Including this correction factor, the total relativistic 

contribution to the Hamiltonian due to the spin-orbit coupling is given by [Herman et 

al., 1963] 
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                                            (5.5) 

In a central field potential, ( )V V r and  
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                                                    (5.6) 
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Consequently, Eqn. (5.5) can be written as 
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                                   (5.7) 

 

where
2 2

0

1

2

dV

m c r dr
  ,and 

2
s  . 

 

HSO is the one-electron spin-orbit coupling operator for one atom. In a solid this 

operator is summed over all atoms. 

 

5.3 THE k.p PERTURBATION THEORY WITH THE EFFECT OF SPIN-ORBIT    

      INTERACTION 

 

 
Let as assume that the conduction band minimum and the valence band maximum 

are at the zone center and that the valence band is triply degenerate. Define  

 

                                                           
2 2

0
' 2E E k m                                                 (5.8) 

 

where E is the energy eigenvalue,  is Plank‘s constant divided by 2π, and m0 is the free 

electron mass. On the basis on this consideration and including the spin vector we may 

choose iS↑, (X+iY)↓, Z↑, (X-iY)↓, iS↓, Z↓, (X+iY)↑ as the base vectors for ψ. Here X, 

Y and Z represent the x, y and z axis of the Brillouin zone. The periodic wave function 

can be written as  

                                                        ., ,ik r

nk nkr e u r                                    (5.9) 
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where u is periodic. α = ± 1 is a (pseudo)spin index; σ represents a vector of the Pauli 

spin matrices
0 1 0 1 0

, ,
1 0 0 0 1

x y z

i

i
  

     
       

     
, and 1i   . Using nk  from 

Eqn. (5.9) in the Schrödinger-Pauli equation gives 
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               (5.10) 

 

Substituting Eqn. (5.9) into Eqn. (5.10) gives 
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    (5.11) 

 

that finally leads to 
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                                                                                                                              (5.12) 

After factoring the term .ik re and replacing p k we get 
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                                                                                                                                   (5.13) 
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Note that the total Hamiltonian is given by  
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                                          (5.14) 

 

Taking the k vector in the z direction and consider the Hamiltonian corresponding to the 

terms of Eqn. (5.13), the mutual interaction of the conduction and valence bands leaves 

the band doubly degenerate. We take as a basis  

 

                                
   

   

, 2 , , 2 ,

2 , , 2

iS X iY Z X iY iS

X iY Z X iY

      

     
              (5.15) 

 

The first four functions are respectively degenerate with the last four. The 8   8 

interaction matrix may be written as 
0

0

H

H

 
 
 

 where 
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                                 (5.16) 

 

The positive constant ∆ which is the spin-orbit splitting of the valence band, and the real 

quantity P is defined by [Kane, 1957] as 

 

                                                                       0 zP i m S p Z                                             (5.17) 
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and  

                                                          
2 2

0

3

4
y x

i V V
X p p Y

m c x y

 
  

 
                                  (5.18) 

 

Ec and Ev refer to the eigenvalues of the Hamiltonian H0. Ec corresponds to the 

conduction band and Ev to the valence band. Symmetry properties have been used.  We 

should note that  H E   and H given by Eq. (5.16). 

 

The doubly degenerate wave functions which result from the diagonalization of 

the Hamiltonian of Eqn. (5.16) may be written as 
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' '
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X iY
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                     (5.19) 

and  

 

                                       ' ' '

2

' '
, '

2
k k k

X iY
u k r a is b c Z  

 
      

 
                    (5.20) 

 

where the coefficients ak,, bk,, ck are obtained by applying the normalization condition 

(i.e. 2 2 2 1
k k k

a b c   ), and are given by [Haga and Kimura, 1964]   
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s is the s-type atomic orbital (i.e. in conduction band)  in both unprimed and primed 

coordinates (i.e. X, X', Y, Y', and Z, Z')  and 
' , 

'  indicates the spin-up and spin-down 

function in the primed coordinates, ', 'X Y and 'Z  are the p-type atomic orbital‘s in the 

primed coordinates. 

If the k vector is not in the z direction, the Hamiltonian is more complicated but it can 

be transformed to the form of Eq. (5.14) by a rotation of the basis function.  
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besides, the spin vector can be written as 
2

s   [Ghatak et al., 2008]. 

 

The angles θ and   are the usual polar angles of the k vector referred to the crystal 

symmetry axes x, y, and z: with θ measured from z and   measured from x. This 

transformation would be obvious if the functions X, Y, Z transformed like the spherical 

harmonics x, y, z under the full spherical group rather than just under the tetrahedral 

group. 

From the above, it can be written 
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Hence, we introduce 
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                                                                                                                            (5.21) 

 

Since we are interested for the effect of spin orbit, the last two terms on Eqn. (5.21) may 

be neglected since there are no spin term, is. Hence from Eqn. (5.21), we can write  
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and for X’, Y’ and Z’, we get 
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                     ˆ' cos cos cos sin sinX p s X p s Y p s Z p s pr       
 

where 

                                                    1 1
ˆˆ ˆˆ cos cos cos sin sinr i j k       , 

and  

                                              
2̂' sin cosY p s X p s Y p s pr     ,  

where 
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                                   2
ˆ ˆˆ sin cosr i j    ,  

so that  

                                     1 2
ˆ ˆ' 'X iY p s p ir r    
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     (5.22) 

Similarly  
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Combining, Eqn. (5.22) and (5.23), we can write 
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                                                                                                                                    (5.24) 

From the above relations, we can write 
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Therefore, 
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      , so from Eqn. (5.26) we get 
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Similarly 
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Similarly, we write 
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Using the above results and following Eqn. (5.24) we can write 
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Hence, 

                                3 1 2
ˆ ˆ ˆ

2 2 2

k k
cv k k k k

b bp
p k r ir r a c a c 

   

    
        

    
            (5.30) 

 

We can write 1 2 3
ˆ ˆ ˆ 1r r r   , also 

3
ˆˆ ˆˆ sin cos sin sin cosx y zpr p i p j p k       , 

where  

                     

   

 

 

* 3

,

0, 0,

0 ,

0

c vX

cvX

cvY

p s p X

s p Y

s p Z

s p X u r pu r d r

p

s p Y p














 

and     0cvZs p Z p . 

 

Then from Eqn. (5.30) 
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where ‗.‘ is the dot product.  

 

Thus 
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So, the average value of  
2

ˆ. cvk p k  over the entire angle θ is  
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Now the equations that gives the energy eigenvalues may be  obtained from Eqn. (5.14), 

keeping only the terms corresponding to conduction band and the degenerate valence 

bands and neglecting all other terms [Nag, 1980], 
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The energy eigenvalues are given by equating the determinant of the coefficient of 

ak ,bk , ck to zero i.e. 
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and the equation giving the values is 
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Solving Eqn. (5.36) we get 
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When ' cE E , we may neglect ' cE E  in comparison to Eg where Eg=Ec-Ev.   Egn. 

(5.37) can be simplified to 
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In a similar way, to get Ev  
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When E' = Ev, the dispersion relation for two valence band having wave functions 

(X+iY) and (X-iY) is  

                                                            
2 2
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When Ec = 0 this leads as to Eg = -Ev, hence we can write Eqn. (5.36) as 
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Now if the band edge effective mass is m
*
, so from Eqn. (5.38) we get   
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From Eqn. (5.42) we have 
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Hence from Eqn. (5.42) and Eqn. (5.43) we have 
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If E is small in comparison to Eg, the relation can be simplified to the following 
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as given by Cohen-Tannodji et al., [1977]. 

 

Now near a characteristic point k = 0 with n=l, the energy eigenvalues may be 

expressed as 
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and near a characteristic point k0 can be expressed as 
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Using Eqn. (5.49), the deviations of E(k) near a critical point k0 can be written as  
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in terms of the band gap Eg0. The effective mass m
*
 can be expressed as 
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which is concluded from Eqn. (5.43) and Eqn. (5.45). Note that in case of ∆=0 we can 

reach the expression for the effective mass in the absence of spin-orbit as in chapter 4. 

Now following Eqn. (5.50) we can estimate  
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Using Eqn. (5.51) in Eq. (5.49) we obtain 
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Assuming that the conduction band minimum and the valence band maximum are at the 

zone center, then we can write 
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From Eqn. (5.54) and (5.55),  
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This can be written as 
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using the assumption     
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Eqn. (5.57) represents the energy gap for alloys with the effect of spin orbit interaction.  

 

5.4    RESULTS  

 

We exploit Newton interpolation relation to estimate  the values of spin orbit 

constant ∆ for the crystal structures in the ZnSxSe1-x  system, which can be expressed by 

∆=0.16 x+0.27 for sphalerite crystal structure (Figure 5.1), and ∆=0.328 x+0.092 for 

wurtzite crystal structure (Figure 5.2). When x=0 we find out that ∆=0.27 eV which 

gives the spin orbit constant for ZnS in case of sphalerite structure and ∆=0.092 eV in 

case of wurtzite structure which is given in [Nag, 1980]. We find that the values for spin 

orbit constant increases with x. From these relationships when x=1, the spin orbit 

constant ∆=0.43 eV for ZnSe in case sphalerite structure and ∆=0.42 eV in case of 

wurtzite structure for ZnSe. 

 

 

 

Figure 5.1: Spin orbit splitting constant with various x for ZnSxSe1-x for sphalerite crystal structure. 
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Figure 5.2: Spin orbit splitting constant with various x for ZnSxSe1-x for wurtzite crystal structure. 

 

 

 

Figure 5.3, 5.4 shows the effect of spin-orbit splitting constant upon applying the 

1.7 and 1.66 correction factors in the case of sphalerite and wurtzite crystal structures 

comparing with the case of energy gap without spin respectively. The effect of spin-

orbit increases the value of energy gap and the values of energy gap upon applying the 

1.7 correction factor are greater than the values of energy gap upon applying the 1.66 

correction factor. 
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Figure 5.3: Eg as a function of a concentration x for ZnSxSe1-x upon applying the 1.7 correction 

factor in case of wurtzite crystal structure, sphalerite crystal structure, and Eg without spin. 

 

 

 

 

 
 

Figure 5.4: Eg as a function of a concentration x for ZnSxSe1-x upon applying the 1.66 correction 

factor in case of wurtzite crystal structure, sphalerite crystal structure, and Eg without spin. 

 

 

 

In Figure 5.5 shows the energy band gap Eg with the effect of spin-orbit which is  
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factors in the case of sphalerite and wurtzite crystal structures comparing with the 

experimental results reported by Larach et al. [1957] and Abo Hassan et al. [2005a].   
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Figure 5.5: Eg  as a function of a concentration x for ZnSxSe1-x  upon applying the 1.7 and 1.66 

correction factors in case of  wurtzite crystal structure, sphalerite crystal structure, Eg without 

spin, experimental results reported by Larach et al. [1957] and Abo Hassan et al. [2005a]. 

 

 

 

 

 

5.5    SUMMARY 

 

The theoretical results for the energy gap for ZnSxSe1-x alloys with the effect of 

spin orbit interaction were represented in Eqn. (5.56) 
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and Eqn. (5.57) 
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by using the empirical relationship given in Eqn. (5.58) 
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