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CHAPTER 6 

 

Results on the Density of States for ZnSxSe1-x in the Presence 

of Quantizing Magnetic Field 

 
 

6.1    INTRODUCTION 

  

Physical properties e.g. optical transitions, charge transport etc., require 

information about the density of states (DOS) [Pankove, 1971]. The density of states 

depends on dimensionality of the system and energy-wave vector dispersion relation 

[Bӧer, 1990]. When a semiconductor absorbs light for example, electrons can be 

promoted from occupied valence states to empty conduction states. The energy of the 

photons must match the energy difference between the occupied and the empty states. 

Without the empty states, the transitions cannot occur. More occupied valence states 

and more unoccupied conduction states means that the possibility of greater transition 

rates and therefore higher levels of absorption. The same reasoning applies to thermal 

transitions. In other words, DOS determines the basic characteristics of semiconductors 

and reflects important information regarding the transport properties under different 

physical conditions [Shum, 1984].The importance of DOS was pointed out by 

Landsberg [1986]. 

 

The analytical formulations of various quantum processes in semiconductors 

having different band structures are based on the DOS of such materials. The DOS has 

been investigated extensively [Nag, 1980; Ghatak et al., 2005; Mitra and K.P. Ghatak, 

1989; Biswas and K.P. Ghatak, 1992]. 
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The definition of density of states uses ―per unit crystal volume‖ in order to 

remove geometrical considerations from the measure of the type of state. If each unit 

volume has Nv traps given by 

                                 
0

( ) ( )
*

v

states states
N dE g E d energy

energy vol vol



                     (6.1) 

 

then the volume V must have  N = Nv V traps. 

 

The band structure may be altered by applying a magnetic field. The effect of the 

magnetic field on the band structure is easily observed in experiments [Uhlenbeck and 

Young, 1930].  A number of transport phenomena arise when the band structure is 

altered by magnetic fields. These have been extensively studied and serve as diagnostic 

tools for characterizing the materials. The basic theory developed by Landau [1930] 

explains the diamagnetic behavior of quasi-free electrons in a solid, which cannot be 

explained by classical theory.  

 

In the presence of magnetic field, the electrons experience the transverse Lorentz 

force and curl around the magnetic field and are expected to contribute to the magnetic 

moment of the system. However, for confined electron systems, the total sum when 

worked out classically turns out to be zero. Landau‘s theory, which is based on the 

solution of Schrödinger equation, shows that the energy of the electrons corresponding 

to the transverse components of the wave vector is quantized. These quantized levels are 

called the Landau levels. 

 

Chakrabortya et al. [2007] studied the DOS function in the case of external 

electric field for the III-V, ternary and quaternary semiconductors whose unperturbed 

energy band structures are defined by the non-parabolic bands. We shall derive the DOS 

http://publish.aps.org/search/field/author/Uhlenbeck_G_E
http://publish.aps.org/search/field/author/Young_L_A


119 

 

for the ZnSxSe1-x materials with unperturbed energy band structure as defined by the 

parabolic band in the presence of a quantizing magnetic field. Finally we calculate the 

results for ZnSxSe1-x materials. 

 

6.2  THE FORMULATION OF THE DOS FOR THE ZnSxSe1-x ALLOYS IN 

THE PRESENCE OF A QUANTIZING MAGNETIC FIELD  

 

 
The Schrödinger equation, in the presence of a magnetic field has the form [Nag, 

1980], 

 

                                                    
1 2*2 0m i eA E 


                                    (6.2) 

 

where i   is the momentum operator, A is the vector potential due to the magnetic 

field, and m
*
 is the effective mass of the electrons at the edge of the conduction band, 

which takes into account the effect of the periodic crystal potential. 

 

The magnetic vector potential A is related to the magnetic induction by the equation  

                                                                      B A                                                 (6.3) 

 

In the problem under consideration B is specified and assumed it to be in the z direction. 

A cannot be uniquely expressed in terms of B, 

 

                                                                  0B                                                     (6.4) 

 

so we may take for A, ( see Appendix B) 
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                                                                   ˆA yBx                                                   (6.5) 

 

Replacing A in Eqn. (6.2) by Eqn. (6.5) and try the solution by the form  

 

                                              1 exp y zx i k y k z    
                                                     (6.6)    

      

then upon rearranging the terms we get 
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0

i m
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

     
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                    (6.7) 

 

It is seen that the magnetic field introduces only an additional x-dependent term, so that 

y and z dependence of the ψ function is unaltered. Eqn. (6.7) can be written as 

 

                                                 
2 *

2 21
12

2
0y z

d i m
eBx E k k

dx




  
       

   
                      (6.8) 

 

Putting  
1

1 yx x k eB


  , we can write 

 

                                    
2 22 2 2 2

2

1 1 1 1 1* 2 * *

12 2 2

zkd e B
x x E x

m dx m m
 

   
      

  
                 (6.9) 

 

The energy eigenvalue is given by [Nag, 1972] as 

 

                                                       *1 2lE l eB m                                              (6.10) 
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where l  is an integer. From Eqn. (6.9) it can be conclude that the energy is independent 

of ky but varies continuously with kz. 

 

The energy eigenvalues of quasi-free electrons in the presence of a magnetic field 

can be expressed as [Nag, 1980] 

                                                   
2 2

, * *
1 2 .

2z

z
l k

k eB
E l

m m

 
    

 
                                  (6.11) 

 

In the case of parabolic bands we may use m
*
= mc [Ghatak et al., 2007].  Hence Eqn. 

(6.11) can be expressed as 

 

                                              
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1 2 .
2 c c
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                                     (6.12) 

From Eqn. (6.12) we get 
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                        (6.13) 

 

From Eqn. (6.6) it can be seen that the wave function is not periodic in the x direction; 

so that the periodic boundary condition cannot be applied. The wave function is periodic 

in the direction of the applied magnetic field, the y-direction, and in the z-direction. The 

number of states in these two directions are L2/2π and L3/2π per unit lengths of ky and kz 

where L2, L3 are the dimensions of the crystal in these two directions. 
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 From the assumption  
1

1 yx x k eB


  , the wave function is localized around

yx k eB , the extent being of the order  
1 2

2l eB [McKelvey, 1966]. The boundary 

condition that may apply for the x-direction is that ћky /eB should lie within 0 and L1, 

where L1 is the dimension of the crystal in the x-direction. The maximum length of ky is 

thus L1eB/ћ and the degeneracy of the level (L2/2π)  (L1eB/ћ). The number of values of 

ky per unit length of k-space along the y-direction is (L2/2π). 

 

The number of states per unit volume of the crystal surface associated with each 

cylindrical surface of length dkz, lying between kz and kz+dkz is given as [Nag, 1980], 

 

                                             
 

1
2( ) 4z zdg k eB dk



                                                (6.14) 

 

which means that Eqn. (6.13) should be represented in terms of kz, and it should be  

noted that the magnetic field does not affect the total number of states but only alters the 

distribution of the states. Substituting Eqn. (6.13) into Eqn. (6.14) we get 

 

                            
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1 23 2

2 2
0

21 1

4 2 2

l

c
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m eB eB
g E dE E l dE
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

    
     

    
             (6.15) 

 

where g(E)dE gives the number of states lying between E and E+dE, and lmax is defined 

by [Nag, 1980], 

                                      max max

3 1

2 2c c

eB eB
l E l

m m

   
      

   
                                   (6.16) 

 

Inserting the maximum value of l into Eqn. (6.15) we get  
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                                    
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              (6.17) 

 

This gives the expression of DOS for the II-VI materials in the presence of a quantizing 

magnetic field. 

After integrating Eqn. (6.17) can be written as 

 

                             

 
1 23 2

2 2

1 23 2 *

2 2 *

21 1
( )

4 2

21 1
( )

4 2

c

c c

c

c c

m eB eB
N E E l

m m

m eB eB
E l

m m





 

  
    

   

   
     

    

                             (6.18) 

 

after using the assumption 

 

                                                                       
*

1.76

00.124
c

Eg
m


                                                   (6.19) 

we can write the DOS for the ZnSxSe1-x  alloys in the presence of quantizing magnetic 

field as 

                         
1 23 2

1.76

02 2 *

21 1
0.124 ( )

4 2

c

c

m eB eB
N E E Eg l

m 

  
     

   
                (6.20) 

 

Eqn. (6.20) written in terms of 0Eg . 

 

6.3   THE EFFECT OF MAGNETIC FIELD ON THE FERMI LEVEL IN THE   

        CASE OF PARABOLIC BANDS  

 

 

The function giving the occupancy of the level, which is called the Fermi function, 

is [Fermi, 1926] 



124 

 

                                  
  1 1 exp F Bn g E E k T                                                 (6.21) 

 

where n is the number of electrons occupying levels of energy E; kB is the Boltzman 

constant, T is the lattice temperature, EF is the Fermi energy. Now, the relation between 

carrier concentration and Fermi level is obtained from Eqn. (6.15) and Eqn. (6.21) as 
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                                                                                                                                                                (6.22) 

 

If we express Eqn. (6.22) in terms of Fermi integral by changing the order of integration 

and summation, we introduce 
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and the Fermi integral has the form [Sommerfeld, 1928; McDougall and Stoner, 1938] 
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and  1j   is a complete gamma function for all j. 

 

Since only one band is occupied so we got only one term on the right hand side of Eqn. 

(6.24) and the relation can be simplified as 

  

                                                       1

2
2

cn N F


 


 
  

 
                                             (6.26) 

 

and with the unperturbed state l=0. 

 

 

6.4    RESULTS 

 

Figures 6.1 to 6.3 illustrate the DOS as a function of electron energy for ZnSxSe1-x 

(x=0, 0.9, and 1) in the B-field of 0.1, 0.5, 0.75 and 1 Tesla for angular momentum state 

l=1. The DOS increases with electron energy, and is higher for ZnSe compared to ZnS. 

This may be attributed to the difference in the mass of electron at the edge of 

conduction band (mc) for the three different alloys. mc = m
*
 [Ghatak et al., 2007]. 

 

It is clear from the curve of ZnS that the DOS is gradually increasing with the electron 

energy. This is also true for ZnSe and ZnSxSe1-x for x=0.9. 
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FIGURE 6.1: Density of states as a function of electron energy for ZnS (B=0.1, 0.5, 0.75, 1 Tesla and 

l=1). 

 

 

 

 

 

FIGURE 6.2: Density of states as a function of electron energy for ZnSe (B=0.1, 0.5, 0.75, 1 Tesla 

and l=1). 
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FIGURE 6.3: Density of states as a function of electron energy for ZnSxSe1-x(x=0.9) (B=0.1, 0.5, 0.75, 

1 Tesla and l=1). 

 

 

 

In Figure 6.4 we have plotted DOS as a function of x. DOS is increasing with increasing 

x and is higher with increase in magnetic field for a particular x.  

 

 

FIGURE 6.4: Density of status as a function of x. (0<x<1) for B= 0.5, 0.75, and 1 Tesla and E=1eV. 
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In Figure 6.5 we have plotted n/Nc as a function of η-ϕ/2 for l=0. The values for 

1

2
2

F





 
 

 
 was taken from Cloutman [1989]. Plugging in the values of ϕ, kB as taking 

T=300 k (room temperature), we get EF = 0.07 to 0.28 eV when (η-ϕ/2) varies from 2 to 

10. EF varies from 0.09 to 0.30 eV and EF varies from 0.11 to 0.32 eV when (η-ϕ/2) 

varies from 2 to 10. Hence it may be inferred that the carries concentration increases in 

Fermi level.   

  

 

FIGURE 6.5: n/Nc as a function of η-ϕ/2, showing the effect of magnetic field on the Fermi level for 

a constant electron concentration. 

 

 

6.5    SUMMARY 

 

The theoretical results on the Density of States for ZnSxSe1-x in the presence of 

quantizing magnetic field were presented in Eq. (6.18) 
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and Eq. (6.20) 
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after using the empirical relationship given in Eqn. (6.20) 
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The effect of magnetic field on the Fermi level in the case of parabolic bands was 

represented in Eqn. (6.24) 
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and because only one band is occupied hence Eqn. (6.24) can be simplified as Eqn. 

(6.26)  
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