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CHAPTER 7 

 

DISCUSSION 

 

Understanding the properties of matter from first principles is a central problem in 

condensed matter physics. The properties are, in principle, described by the many-body 

Hamiltonian [Imada and Miyake, 2010] 
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where the first term on the right hand side of the equation represents the kinetic energy 

of electrons. The second, third and fourth terms are interactions between electrons, 

electron and nucleus, and nuclei, respectively. Electron positions are noted by real space 

coordinate r with suffices consisting of lower case i and j. Nuclei positions are denoted 

by coordinate R with upper case suffices I and J. The electronic bare mass and charge 

are m and e respectively, while the atomic number is denoted by Z. The spin degrees of 

freedom, relativistic effects and quantum effects of nuclei are neglected for simplicity. 

The Hamiltonian is solved exactly only in very limited cases. Developing a practical 

procedure for the treatment of many-electron systems has long been an important issue. 

DFT gives an approximate but reasonably accurate and practical method for this 

problem. Local density function used to determine the exchange correlation energy 

function εXC appears in Eqn. (2.36) is approximated to be that of a uniform electron gas 

of the density at a particular position. The explicit formula for εXC has been proposed 
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based on a perturbation theory. The LDA is by construction exact in the limit of a 

uniform electron density.  

 

Typically the lattice constant of solids and bond lengths between atoms are 

computed to be within 2 to 3% experimental error. The accuracy of the ionization 

energy in molecules and cohesive energy in solids is within 10 to 20% error. The high 

accuracy is partially rationalized by the fact that the LDA satisfies a sum rule for the 

exchange-correlation hole. 

  

 The solution of the Kohn-Sham equation given in Eqn. (2.37) gives the total 

energy for the DOS n(r) if the self-consistent method is satisfied. Otherwise, the total 

energy is again generated and the solving of the equation is repeated. This continues 

until the value of total energy is consistent. The density of states near the conduction 

band edge is given as 
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and the DOS at the HOMO can be given as  
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It is obvious that from Eqn. (7.2) and (7.3), the energy on the conduction band and the 

energy on the valence band, can be calculated and hence the energy band gap Eg can be 

expressed as 



132 

 

                                        
 

 

 

 

2 2

2
2 3

3 3
2

2 2

c v

c v

n E n E
Eg

m m


         
 
 

                                             (7.4) 

 

In Chapter 3, ZnS and ZnSe were modeled following zinc-blend (ZB) structure, 

ZnS0.125Se0.875, ZnS0.25Se0.75, ZnS0.375Se0.625, ZnS0.75Se0.25, ZnS0.875Se0.125 following 

Luzonite structure and ZnS0.5Se0.5 were modeled CuAu-I structure. Numerical 

calculations were carried out by CASTEP in Material Studio 5.0 based on first 

principles [Payne et al., 1992].  

 

The energy cutoff of plane wave functions was set at 310 eV. All atomic positions 

in the ZnS [Fischer and Almöf, 1992], and ZnSe unit cells, ZnS0.125Se0.875, ZnS0.25Se0.75, 

ZnS0.375Se0.625, ZnS0.5Se0.5, ZnS0.625Se0.375, ZnS0.755Se0.25, ZnS0.875Se0.125 supercells have 

been relaxed according to the total energy. The calculation of total energy is followed 

by cell optimization with self-consistent field method [Perdew et al., 1996].  

        

The Fermi level of the band structure is at zero energy as shown by the dotted 

lines in Figures 3.2, 3.5, 3.8, 3.11, 3.14, 3.17, 3.20, 3.23, and 3.26. The bottom of 

conduction band and top of valence band are both located at the G point (corresponding 

to the Г point), for direct transition semiconductors. The energy gap calculated by 

CASTEP based on LDA is 10 to 20% lower than the experimental value [Xie et al.; 

2010]. In local density functional theory, the excited states are neglected during solving 

the Kohn-Sham equation. Due to this, the computed Eg value obtained for each space 

group is multiplied by the correction factor 1.7, and comparing these results with the 

results given by multiplication of the 1.66 correction factor reported by Tang et al. 

[1998] and the results reported in the literature. 
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Figure 3.1 shows the Brillouin zone for ZnS unit cell,  given G as a center of 

crystal which is shown in CASTEP, g1, g2, and g3 corresponding to the coordinates x, y, 

z respectively. The unit cell vectors are a1 = (2.7, -2.7,0), a2 = (2.7, 2.7, 0), a3 = 

(0,0,5.4) where a = 5.4 A
0
, and η =1, and the atomic positions are τA = (0,0,0), τB = 

(2.7,0,2.7), τC1 = (1.35,1.35,1.35), τC2 = (4.05,1.35,4.05),   u= 0.25, and RAC = RBC = 

6.6136 A
0
. Lattice constant a = 5.3 A

0
 as reported by Mesri et al., [2007]. For ZnSe the 

energy gap calculated by CASTEP shown in Figure 3.2 is Eg= 3.96 eV whereas 1.26 eV 

before correction which is close to theoretical results Eg = 3.85 eV given by Swarnker 

et al. [2009] with little different from theoretical results Eg = 3.78 eV given bu Van de 

Wall [1989] and using LCAO Eg = 3.68 eV given by Homann et al. [2006]. 

 

From Figure 3.3 the total DOS of ZnS is separated to three regions, higher energy 

region from 2.2 to 11.1 eV, lower energy region from 0 to -6.9 eV and the energy region 

below -13.5 eV. For the higher energy region, the bonding electrons are mainly 

contributed by the valence electrons of Zn (4s) and S (3p) orbits. The bonding electrons 

in the lower energy are mainly contributed by the valence electron of Zn (3d) and S (3p) 

orbits. The bonding electrons below -13.5 eV are mainly contributed by valence 

electron of Zn (3p), (3d), (4s) and S (3p) orbits. 

 

Figure 3.4 shows the Brillouin zone for ZnSe, and the notations are the same 

notations as that given in Figure 3.1. For ZnSe the energy gap calculated  by CASTEP 

shown in Figure 3.5 is Eg= 2.27 eV whereas 1.26 eV before correction and also 

computed at the G-vector on the k-space as shown in Figure 3.6, which is lower than 

experimental results Eg=2.58 eV [Homann et al. 2006],  and 2.72 eV [Ebina et 

al.,1974]. From Figure 3.5 the total DOS is separated to three regions, higher energy 

region from 1.26 to 11 eV, lower energy region from 0 to -6.9 eV and the energy region 
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below -13.6 eV.  For the higher energy region, the bonding electrons are mainly 

contributed by the valence electrons of Zn (4s) and Se (4p) orbits. The bonding electrons 

in the lower energy are mainly contributed by the valence electron of Zn (3d) and Se 

(4p) orbits. The bonding electrons below -13.6 eV are mainly contributed of valence 

electrons of Zn (3p), (3d), (4s) and Se (4p) orbits.  

 

Figure 3.7 shows the Brillouin zone for ZnS0.125Se0.875 where notations G denotes 

the center of crystal structure and B, Z and F are centers of faces and Q is the center of 

an edge. 

Figure 3.8 shows the calculated energy band structure for ZnS0.125Se0.875 crystal 

structure. The energy gap calculated using CASTEP shown in Figure 3.9 is Eg = 2.83 

eV after making correction. Computation over the G-vector in the k-space is lower than 

the experimental results Eg =2.78 eV given by [Larach et al., 1957] and greater than the 

experimental results 2.58 eV given by [Abo Hassan et a.l, 2005a]. From Figure 3.9 the 

total DOS is separated to three regions, higher energy region from 1.57 to 6 eV, lower 

energy region from 0 to -7.2 eV and the energy region below -14.2 eV.  For the higher 

energy region, the bonding electrons are mainly contributed by the valence electron of 

Zn (4s) and Se (4p) orbits. The bonding electrons in the lower energy region are mainly 

contributed by the valence electrons of Zn (3d), S (3p), and Se (4p) orbits. The bonding 

electrons below -14.2 eV are mainly contributed of valence electrons of Zn (3p) (3d) 

(4s), S (3p) and Se (4p) orbits.   

 

Figure 3.10 shows the Brillouin zone for ZnS0.25Se0.75 crystal structure. The energy 

gap calculated using CASTEP shown in Figure 3.11 is Eg = 2.81 eV after using 

correction factor which is close to experimental results Eg = 2.85 eV [Ebina et al., 

1974], but is near to the results given by [Homann et al., 2006]. From Figure 3.12 the 
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total DOS is separated to three regions, higher energy region from 1.64 to 6 eV, lower 

energy region from 0 to -7.2 eV and the energy region below -14 eV.  For the higher 

energy region, the bonding electrons are mainly contributed by the valence electrons of 

Zn (4s) and Se (4p) orbits. The bonding electrons in the lower energy region are mainly 

contributed by the valence electrons of Zn (3d), S (3p), and Se (4p) orbits. The bonding 

electrons below -13.6 eV are mainly contributed of valence electrons of Zn (3p) (3d) 

(4s), S (3p), and Se (4p) orbits.  

 

Figure 3.13 shows the Brillouin zone for ZnS0.375Se0.625 crystal structure. The 

energy gap calculated using CASTEP given in Figure 3.14 is Eg = 3.15 eV after using 

the correction factor whereas the energy gap Eg = 3.01 eV from [Larach et al., 1957] 

and Eg=2.96 eV from [Abo Hassan et al., 2005a]. From Figure 3.15 the total DOS is 

separated to three regions, higher energy region from 1.75 to 6 eV, lower energy region 

from 0 to -7.2 eV, and the energy region below -14 eV.  For the higher energy region, 

the bonding electrons are mainly contributed by the valence electrons of Zn (4s) and Se 

(4p) orbits. The bonding electrons in the lower energy region are mainly contributed by 

the valence electrons of Zn (3d), S (3p), and Se (4p) orbits. The bonding electrons below 

-14 eV are mainly contributed by valence electrons of Zn (3p) (3d) (4s), S (3p), and Se 

(4p) orbits.  

 

Figure 3.16 shows the Brillouin zone for ZnS0.5Se0.5 crystal structure. The energy 

gap calculated using CASTEP shown in Figure 3.17, and the band gap is Eg = 3.19 eV 

after using correction factor which is near to the experimental results Eg = 3.08 eV from 

[Ebina et al., 1974] and 2.92 eV from [Homann et al. 2006]. From Figure 3.18 the total 

DOS is separated to three regions, higher energy region from 1.78 to 6 eV, lower energy 

region from 0 to -7eV, and the energy region below -13.9 eV. For the higher energy 
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region, the bonding electrons are mainly contributed by the valence electrons of Zn (4s) 

and Se (4p) orbits. The bonding electrons in the lower energy are mainly contributed by 

the valence electrons of Zn (3d), S (3p), and Se (4p) orbits. The bonding electrons below 

-13.9 eV are mainly contributed by valence electron of Zn (3p) (3d) (4s), S (3p), and Se 

(4p) orbits.  

 

 Figure 3.19 shows the Brillouin zone for ZnS0.625Se0.375 crystal structure. The 

energy gap calculated by using CASTEP shown in Figure 3.20 is Eg = 3.29 eV after 

using the correction factor 1.8, but there is no experimental data available for 

comparison upon experimental results given by Larach et al. [1957] and Abo Hassan et 

al. [2005a]. As shown in Figure 3.21 the total DOS is separated to three regions, higher 

energy region from 1.82 to 6 eV, lower energy region from 0 to -7 eV, and the energy 

region below -13.8 eV.  For the higher energy region, the bonding electrons are mainly 

contributed by the valence electrons of Zn (4s) and Se (4p) orbits. The bonding electrons 

in the lower energy region are mainly contributed by the valence electrons of Zn (3d), S 

(3p), and Se (4p) orbits. The bonding electrons below -13.8 eV are mainly contributed 

of valence electron of Zn (3p) (3d) (4s), S (3p), and Se (4p) orbits.  

 

Figure 3.22 shows the Brillouin zone for ZnS0.75Se0.25 crystal structure. The energy 

gap calculated using CASTEP simulation shown in Figure 3.23 is Eg = 3.28 eV after 

using correction factor, and it is s clear that the value is close to the experimental results 

Eg = 3.34eV from [Ebina et al., 1974] and 3.17 eV from [Homann et al. 2006]. From 

Figure 3.24 the total DOS is separated to three regions, higher energy region from 1.82 

to 6 eV, lower energy region from 0 to -7eV, and the energy region below -13.8 eV. For 

the higher energy region, the bonding electrons are mainly contributed by the valence 

electrons of Zn (4s) and Se (4p) orbits. The bonding electrons in the lower energy region 
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are mainly contributed by the valence electrons of Zn (3d), S (3p), and Se (4p) orbits. 

The bonding electrons below -13.8 eV are mainly contributed by valence electrons of 

Zn (3p)(3d)(4s), S (3p), and Se (4p) orbits.   

 

Figure 3.25 shows the Brillouin zone for ZnS0.875Se0.125 crystal structure. The 

energy gap calculated using CASTEP shown in Figure 3.26 is Eg = 3.42 eV after using 

the correction factor 1.8. No experimental data available, but comparison with the 

experimental results given by Larach et al. [1957] and Abo Hassan et al. [2005a] the 

nearest value for energy gap when x = 0.9. Figure 3.27 shows that the total DOS 

separated into three regions, higher energy region from 1.9 to 6 eV, lower energy region 

from 0 to -6.8 eV, and the energy region below -13.2 eV. For the higher energy region, 

the bonding electrons are mainly contributed by the valence electrons of Zn (4s) and Se 

(4p) orbits. The bonding electrons in the lower energy are mainly contributed by the 

valence electrons of Zn (3d), S (3p), and Se (4p) orbits. The bonding electrons below -

13.2 eV are mainly contributed of valence electrons of Zn (3p)(3d)(4s), S (3p), and Se 

(4p) orbits.  

 

The energy band gap Eg from CASTEP calculation was plotted as a function of 

concentration x and shown in Figure 3.28 using two multiplicative correction factor 1.7 

that was suggested and 1.66 that was reported by Tang et al. [1998]. It is realized that 

the energy gap increases with x. The value for energy gap when x = 0.125 is 2.84 eV 

upon applying the multiplicative correction factor 1.7 whereas the energy gap is 2.77 eV 

upon applying the 1.66 multiplicative correction factor which is close to the value for 

energy gap when x= 0.25 (2.82 eV) when apply the 1.7 multiplicative correction factor 

and 2.74 eV when apply the 1.66 multiplicative correction factor. The value of energy 

gap when x = 0.625 is 3.11 eV when apply the 1.7 multiplicative correction factor 
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which is close to the value of energy gap when x = 0.75 which is 3.1, and the energy 

band gap value when x = 0.625 upon apply the 1.66 multiplicative correction factor is 

3.04 eV which is close to the value for the energy gap when x = 0.75 as given 3.02 eV. 

 

In Chapter 4, the theoretical technique considered the time independent 

Schrödinger equation given in Eqn. (4.1), and the wave function given in Eqn. (4.2), it 

was shown that, at the zone centre, the two expressions for the energy on the conduction 

band and the valence band can lead to the new expression  
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for the energy band gap for the materials ZnSxSe1-x which is written in terms of energy 

gap 0Eg of the stress-free crystal  depending on the ratio (μ
*
 / mc). This ratio seems to 

play an important role in the calculations for energy band gap. 

 

In the derivations given in section 4.1, the approximation  
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given in Eqn. (4.18) which is concluded from the experimental results given by Abo 

Hassan et al. [2005a] and the values  for the effective mass given in Table 2.2 for ZnS 

and ZnSe are used in the calculations.  

 

The approximation substituted in the energy equation Eqn. (4.15)  
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formulated the equations for the energies on the conduction band Ec  
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and on the valence band Ev, 
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which leads to the formulation of the energy band equation  
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shown in Eqn. (4.19). Using the empirical relationship given in Eqn. (4.20) gives the 

energy gap Eg expression is related to the energy gap 0Eg for stress free crystal shown 

in Eqn. (4.22). Eg0 values are taken from CASTEP computation. Figure 4.1 shows the 

energy gap using the theory given in this work.  

 

Table 7.1 shows the differences between experimental results given by Larach et 

al. [1957], Abo Hassan et al. [2005a], and the results from this work upon applying the 

1.7 multiplicative correction factors and upon applying the 1.66 multiplicative 

correction factors. 
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Table 7.1: Comparing results for energy band gaps Eg for ZnSxSe1-x (0≤ x ≤1). 

x 
Larach et al., 

[1957] 

Abo Hassan et 

al., 

[2005a] 

This work 

(applying 

the 1.7 

correction 

factor) 

This work 

(applying 

the 1.66 

correction 

factor 

0.12 2.78 2.58 2.82 2.74 

0.34 2.96 2.95 2.9 2.85 

0.35 2.99 2.96 2.91 2.86 

0.37 3.01 2.96 2.92 2.87 

0.41 3.04 2.99 2.94 2.88 

0.48 3.10 3.05 2.98 2.92 

0.78 3.39 3.29 3.2 3.08 

0.80 3.41 3.30 3.21 3.09 

0.82 3.44 3.35 3.23 3.1 

0.96 3.56 3.51 3.37 3.15 

0.99 3.59 3.74 3.4 3.2 

 

For comparison, the results given in Table 7.1, most of results that got it upon applying 

the 1.7 multiplicative correction factor is more accurate than the results that got it upon 

applying the 1.66 multiplicative correction factor reported by Tang et al. [ 1998]. 

 

The effect of spin orbit interaction occurs in the valence band as mentioned in 

section 5.3, and the wave function given in Eqn. (5.9)  
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depends on the spin particle. The Hamiltonian of the one-electron spin-orbit coupling 

operator represented in section 5.2 given in Eqn. (5.7) 
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Applying the wave function given in Eqn. (5.9) in the Schrödinger-Pauli equation 

given in Eqn. (5.10) 
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and using the double degeneracy, leads to the formulation for Ec and Ev which can 

clearly see the spin orbit splitting constant appearing in the equations of energy in the 

conduction and valence band.  

In Eqn. (5.51) 
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 the expression for the effective mass m
*
 in the conduction or valence band represented 

by using the spin orbit splitting constant ∆. 

 

In the derivation shown in Chapter 5 the transformations for the coordinates X', 

Y', Z' and for ' , '  were used with the polar angles θ and   
[Nag, 1980]. Then polar 

angles of the k vector refer to the crystal symmetry axes x, y, and z: with θ measured 

from z and   measured from x. Besides, the expressions for the coefficients ak, bk, ck 

[Haga and Kimura, 1964] with the transformations leads to useful expression for the 

doubly degenerate wave function u1 and u2 shown in Eqn. (5.17), (5.18), and to the 

formulations of the energy band gap equation 
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The energies of the conduction and valence bands shown in Eqn. (5.54), (5.55) 
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represent the energy of the conduction and valence bands with the effect of spin orbit 

interaction. It can be recognized that the substitution of the spin orbit splitting constant 

∆=0 in these equations results in the equation of the energies of the conduction and 

valence band that was shown in Chapter 4, Eqn. (4.16), (4.17) 

 

 
2 2 2 2

0 0

*

0 0

1
2 2 2

c

Eg Egk k
E k

m Eg
    

 

 
2 2 2 2

0 0

*

0 0

1
2 2 2

v

Eg Egk k
E k

m Eg
    

 

 

The equation of the energy band gap represented in Eqn. (5.57) can be expressed 

as the equation given in Chapter 4 i.e. in Eqn. (4.18) if we substitute the value of the 

spin orbit splitting constant  ∆ = 0. For the results given in Chapter 5, using the Newton 



143 

 

interpolation technique, the unknown value for spin orbit constant ∆ for the materials 

ZnSxSe1-x  (0< x <1) was estimated. 

 

According to Eqn. (5.57)  
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the spin-orbit splitting constant ∆ increase with respect to the energy gap Eg, hence, the 

increasing of spin-orbit splitting constant ∆ based on increasing of x as shown in Figure 

5.1, and 5.2, therefore the results from this work are reasonable agreement with Nag 

[1980].    

Table 7.2 shows the values for spin-orbit constants in case of sphalerite and 

wurtzite crystal structures with the values of density of states for ZnSxSe1-x (0< x <1) 

from this work. 

 

Table 7.2 Spin-orbit splitting constant for sphalerite and wurtzite crystal structures with density of 

states for ZnSxSe1-x (0< x <1) 

 

 

x 

 

∆ (eV) in case of 

sphalerite crystal 

structure 

 

∆ (eV) in case of 

wurtzite crystal 

structure 

Density of states 

(electrons/eV) 

0.125 0.29 0.133 98 

0.25 0.31 0.174 97 

0.375 0.33 0.215 93 

0.5 0.35 0.256 94 

0.625 0.37 0.297 95 

0.75 0.39 0.338 95 

0.875 0.41 0.379 99 
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In Figure 5.3, 5.4 the energy band Eg  was plotted as a function of a concentration 

x for ZnSxSe1-x upon applying the 1.7 and 1.66 correction factors respectively in case of  

wurtzite and sphalerite crystals structure, and energy gap Eg without spin. It is clear that 

the values for energy gaps upon applying the 1.7 multiplicative correction factor is more 

acceptable with the results reported in the literature than the values upon applying the 

1.66 multiplicative correction factor. 

  

It is clear that the values for the energy gap for the two cases given (sphalerite and 

wurtzite), are greater than the value for the energy gap given from this work in case of 

neglecting the effect of spin-orbit. 

In Figure 5.5, the energy gap Eg with the effect of spin-orbit was plotted as a 

function of x upon applying the 1.7 and 1.66 correction factors in the case of sphalerite 

and wurtzite crystal structures comparing with the experimental results reported by 

Larach et al. [1957] and Abo Hassan et al. [2005a].  The results given by this work 

upon using the 1.7 correction factor are reasonably agreement with the results reported 

By Larach et al. and Abo Hassan et al.  

 

Theoretical analysis in Chapter 6 focused on the density of states for the II-VI 

materials in the presence of quantizing magnetic field because number of transport 

phenomena due to band structure change by the magnetic fields. The formulation of 

DOS for II-VI materials in the presence of quantizing magnetic field was mutated by 

considering the form of Schrödinger equation given in Eqn. (6.2) 
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1 2*2 0m i eA E 


     
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This equation containing the vector potential A due to the magnetic field B. Using the 

wave function given in Eqn. (6.6)  

 

   1 exp y zx i k y k z    
 

 

 

and substituting the magnetic vector potential A in the Schrödinger equation results is  

Eqn. (6.8) 

 
2 *

2 21
12

2
0y z

d i m
eBx E k k

dx




  
       

     

 

 From Eqn. (6.7) it can be recognized that the magnetic field introduces dependence only 

on the  x-axis. The energy eigenvalues of quasi-free electrons in the presence of a 

magnetic field can be expressed as [Nag, 1980] shown in Eqn. (6.11)  

 

 
2 2

, * *
1 2

2z

z
l k

k eB
E l

m m

 
    

 
 

 

which led to derivation of the wave vector k as shown in Eqn. (6.13) 

 

2
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c
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  
 


    

     
    

 

 

As seen in Eqn. (6.8) that the wave function is not periodic in the x direction; so that the 

periodic boundary condition cannot be applied, and the boundary condition that may 

apply for the x-direction is that ћky/eB should lie within 0 and L1, where L1 is the 
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dimension of the crystal in the x-direction. The number of states per unit volume of the 

crystal surface should be represented in terms of kz which is shown in Eqn. (6.14). 

Substituting Eqn. (6.13) in Eqn. (6.14) we get the number of states lying between E and 

E+dE which was given in Eqn. (6.15),  
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1 23 2

2 2
0

21 1
.

4 2 2

l

c
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m eB eB
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    
     

    


 

 

and solving this equation gives expression of DOS for the II-VI materials in the 

presence of quantizing magnetic field whose unperturbed energy band structures are 

defined Eqn. (6.17) 

 
1 23 2

2 2

21 1
.

4 2

c

c c

m eB eB
g E dE E l
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    
     

      

 

This can be represented in terms of Eg0 as a result given in Eqn. (6.22) 

 

    
  
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4
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  
   

    

 

 

The effect of magnetic field on the DOS at different electron energies is shown in 

Figure 6.1, when B=0.1 Tesla at E=1 eV the values of DOS is 4.65E+13 cm
-3

 while for 

B=0.5 DOS is equal 1.4E+14 cm
-3

 and when B=0.75 Tesla DOS equal 2.12E+14 cm
-3

 

and DOS is equal 2.8E+14 cm
-3

 and so on for various E. The same analysis can apply 

for Figure 6.2. For ZnSe with the main observation that the DOS for ZnS is greater than 

the DOS for ZnSe and the DOS when x=0.9 which was shown in Figure 6.3.  
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In Figure 6.4 the DOS was plotted as a function of concentration x for various B and 

with electron energy E=1 eV. Eqn. (6.22) can be written in terms of reduce mass μ
*
 as 

 

    
  

1 1 23 2
* * 2
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
   

    
        

 

hence using the values of the ratio μ
*
/mc  enables the curve to be determined.  For 

details, when x = 0.12 the ratio μ
*
/mc is given by Abo Hassan et al., [2005a] as 0.14 and 

when x=0.9 the ratio is 0.23 hence the value of DOS when x=0.12 is greater than the 

value when x=0.9. 

 

The increasing of the DOS with x results is in good agreement with the number of 

electrons in ZnSe orbital which is greater than the number of electrons for ZnS orbital. 

That is the reason for the differences between the total DOS for these materials, and 

consequently for the increase of the values of x in the ZnSxSe1-x material. 

 

In Figure 6.5 the number of electrons are increased with increasing of the amount 

of  η-ϕ/2, the values of η-ϕ/2 were taken from 0.1 to 10 and the values of F-1/2 was taken 

from Cloutman [1989]. 
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CHAPTER 8 

 

CONCLUSIONS AND SUGGESTIONS FOR FUTURE 

WORK 

 

The aim of this work is to develop a theory to determine the energy band gap for 

II-VI materials by choosing ZnSxSe1-x as an example, and compare the results given by 

this work with the experimental results given in literature and the results  computed 

using CASTEP. 

 

The CASTEP simulation has been used to calculate the energy band gap and the 

density of states for ZnSxSe1-x (x=0, 0.125, 0.25, 0.375, 0.5, 0.625, 0.75, 0.875, and 1) 

and the results corrected by multiplying with the factor 1.66 and 1.7. 

 

The empirical relationship between the reduced mass μ
*
 and the unperturbed and 

stress-free crystal energy band gap Eg0 has been used in deriving the equation for band 

gap. Using the relationship in the .k p perturbation theory led to the equations for energy 

at the conduction band Ec and the energy at the valence band Ev. Finally, expressions for 

the energy band gap for the case with and without spin-orbit interaction were obtained. 

Using the values of unperturbed or stress-free crystal energy gap calculated using 

CASTEP, the energy gap Eg as a function of sulphur content were calculated for the 

spin and spinless cases. 

 

In this work, the new expression for energy gap in the case of no spin-orbit 

interaction has been obtained as 
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where the terms have been defined in Chapter 4. For the case with spin-orbit interaction 

included, the new equation is 
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Again the terms have been defined in Chapter 5. These equations have been obtained on 

the terms of the empirical relationship between the reduced mass and the unperturbed or 

stress-free crystal energy band gap Eg0 

 
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Another assumption that has been made is 

* *

0

1 1 1
2 .

m m

 
  

   

 

The values of Eg obtained in this work are within the range of experimental results 

reported in the literature.  

 

The E-k relation has been used to determine the density of states. The study on the 

density of state (DOS) function for II-VI ZnSxSe1-x semiconductor materials whose 

unperturbed energy band structure defined by the parabolic band, in the presence of a 

quantizing magnetic field, led to a new DOS  relation given by 
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Results obtained, showed that the number of electrons in the conduction band 

increases with electron energy for transport from the valence to the conduction band.  

   

We can suggest the future works as follows: 

 

1. Based on the empirical relationship suggested in this work, the mass of the 

electron at the conduction band edge and the mass of the electron at the top 

of the valence band can be studied. This can improve accuracy of the 

present theory. 

2. Using CASTEP the geometric optimization, dynamics, elastic constant, and 

the optical properties for ZnSxSe1-x can be obtained and compared with the 

experimental results.  

3. Using the theory from this work, the photoemitted current density J for 

ZnSxSe1-x materials can be calculated for the case in the presence a 

quantizing magnetic field. 

 

 

 

 

 

 




