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ABSTRACT 

This work is focused on the study of hydrogenated silicon (Si:H) thin films and 
nanostructures grown by layer-by-layer (LBL) deposition technique using a home-built 
radio-frequency (rf) plasma enhanced chemical vapour deposition (PECVD) system. 
The initial phase of this work involved preparation and characterization of hydrogenated 
silicon (Si:H) thin films by continuous (CD) and LBL deposition techniques on crystal 
silicon (c-Si) and glass substrates at different rf powers, substrate temperatures and 
hydrogen to silane flow-rate ratios. The effects of the deposition conditions on the 
optical and structural properties of the films are studied by optical transmission 
spectroscopy, Fourier transform infrared (FTIR) spectroscopy and X-Ray diffraction 
(XRD). The influence of substrates on these properties is also investigated. The second 
phase is focused on the study of the morphology, crystallinity, crystallite size, silicon-
oxygen bonding and photoluminescence (PL) properties of the Si:H films grown on c-Si 
substrates by LBL deposition technique at the same deposition conditions in the first 
phase. These properties of the films are characterized by Micro-Raman scattering 
spectroscopy, field emission scanning electron microscopy (FESEM), high resolution 
transmission electron microscopy (HRTEM) and Micro-photoluminescence 
spectroscopy including further analysis done on the characterization results obtained 
from XRD and FTIR measurements done in the first phase in this work. 

The results of this work demonstrated that rf power and substrate temperature 
produced significant changes to the optical and structural properties of the LBL films 
compared to the CD films. Increase in rf power increased the deposition rate of the LBL 
and vice-versa for the CD films. Also, increase in rf power increased the disorder of the 
CD films however suppressed the disorder in the LBL films. The preferred crystalline 
orientation was also changed from Si (311) to Si (111) plane with increase in rf power. 
Increase in substrate temperature increased the deposition rate, refractive index and 
structural order in the LBL films. The substrate temperature showed significant effects 
on optical band gap and hydrogen content in the LBL films. The LBL films deposited at 
substrate temperatures of 100 and 200°C showed large optical energy gaps suggesting 
that broadening of the band gap was due to quantum confinement effects. The LBL 
films deposited on c-Si substrates showed highly crystalline structure as compare to the 
other deposited films. The periodic hydrogen plasma treatment on the growth surface of 
the film during the LBL deposition processes showed effectively enhances the electro-
optical properties of these LBL films. 

The LBL deposition produced silicon nanostructures with Si nano-crystallites 
embedded in either amorphous silicon (a-Si) or mixed phases of a-Si and amorphous 
silicon oxide (a-SiO) matrix for the films deposited on c-Si substrates. These 
nanostructures of nanocrystalline silicon (nc-Si) grains produced high intensity of PL 
emission due to enhancement of quantum confinement effects by the presence of high 
crystalline volume fraction (XC ~ 41-54 %) of Si nano-crystallites (~ 2 nm) in the 
matrix. The intensity of the PL emissions was strongly dependent on crystalline volume 
fraction, crystallite size and oxygen content in the a-SiO matrix. These parameters were 
significantly controlled by the rf power and substrate temperature. Based on these 
results, the growth kinetics and structural configuration of the LBL grown nc-Si grains 
were proposed. It was shown that high intensity of PL emission was emitted by these 
clusters of nc-Si grains. 
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ABSTRAK 

Kerja penyelidikan ini menumpu kepada pengajian terhadap filem nipis silikon 
berhidrogen (Si:H) dan berstruktur nano yang dihasilkan dengan menggunakan teknik 
pemendapan lapisan-demi-lapisan (LBL) oleh sistem pemendapan wap kimia secara 
peningkatan plasma (PECVD) yang bina sendiri. Fasa awal penyelidikan ini melibatkan 
penyediaan dan pencirian filem nipis silikon berhidrogen yang dihasilkan menggunakan 
teknik pemendapan berterusan dan LBL di atas substrak hablur silikon dan kaca. 
Keadaan pemendapan yang digunakan untuk menghasilkan filem nipis ini adalah 
pembolehubah kuasa rf, suhu substrak dan nisbah kadar aliran hidrogen kepada silane. 
Kesan daripada pembolehubah keadaan pemendapan terhadap sifat-sifat optik dan 
struktur filem nipis ini dikaji melalui spektroskopi pemancaran optik, spektroskopi 
transformasi Fourier inframerah (FTIR) dan belauan sinar-X (XRD). Pengaruh substrak 
terhadap sifat-sifat tersebut juga dikaji. Fasa kedua menumpu kepada pengajian terhadap 
sifat-sifat morphologi, kehabluran, saiz hablur, pengikatan silikon-hidrogen dan 
luminasi foto (PL) untuk filem nipis silikon berhidrogen yang dihasilkan di atas substrak 
hablur silikon oleh teknik pemendapan LBL seperti fasa awal. Sifat-sifat tersebut dikaji 
oleh spektroskopi penyebaran mikro-Raman, mikroskopik pengimbasan elektron yang 
bermedan pancaran (FESEM), mikroskopik pemancaran elektron yang beresolusi tinggi 
(HRTEM) dan spektroskopi luminasi foto termasuk kajian terperinci atas keputusan 
yang diperolehi daripada XRD and FTIR dalam fasa awal. 

Keputusan penyelidikan ini menunjukkan bahawa kuasa rf dan suhu substrak 
menghasilkan perubahan yang nyata keatas sifat-sifat optik dan struktur filem nipis LBL 
berbandingkan dengan filem nipis CD. Penambahan kuasa rf meningkatkan kadar 
pemendapan untuk filem nipis LBL dan sebaliknya untuk filem nipis CD. Penambahan 
kuasa rf juga meningkatkan struktur tak tertib dalam filem nipis CD namum ia 
menghalang struktur tak tertib dalam filem nipis LBL. Keutamaan orientasi untuk 
struktur hablur juga diubah daripada satah Si (311) kepada Si (111) apabila kuasa rf 
ditingkatkan. Penambahan suhu substrak meningkatkan kadar pemendapan, indek 
biasan dan struktur tertib di dalam filem nipis LBL. Suhu substrak menunjukkan kesan 
nyata ke atas jurang tenaga optik dan kandungan hidrogen di dalam filem nipis LBL. 
Filem nipis LBL yang dimendapkan pada suhu substrak 100 dan 200°C mempunyai 
jurang tenaga optik yang tinggi. Kelebaran jurang tenaga optik ini adalah disebabkan 
oleh kesan pengurungan kuantum. Filem nipis LBL yang dimendapkan di atas substrak 
hablur silikon menunjukkan kehabluran yang tinggi berbanding dengan filem nipis yang 
lain. Rawatan hidrogen plasma secara berkala keatas permukaan pertumbuhan filem 
dalam masa process pemendapan LBL menunjukkan keberkesanan dalam 
mempertingkatkan sifat-sifat elektro-optik bagi filem nipis LBL. 

Pemendapan LBL menghasilkan silikon berstruktur nano yang mengandungi 
silikon kristalit nano terbenam sama ada dalam amorfus silikon (a-Si) atau fasa 
bercampur di antara a-Si dan amorfus silikon oxide (a-SiO) matriks untuk filem nipis 
yang dimendapkan di atas substrak hablur silikon. Bijian silikon berhablur nano (nc-Si) 
ini menghasilkan pancaran PL dengan keamatan yang tinggi disebabkan peningkatan 
kesan pengurungan kuantum oleh sebab kehadiran kristalit nano (~ 2 nm) yang 
mempunyai pecahan isipadu hablur yang tinggi (XC ~ 41-54 %) dalam matriks 
berkenaan. Keamatan untuk pancaran PL tersebut sangat bergantung kepada pecahan 
isipadu berhablur, saiz kristalit dan kandungan oxygen di dalam matriks a-SiO. 
Parameters ini dapat dikawal secara nyata oleh kuasa rf dan suhu substrak. Berdasarkan 
keputusan ini, kinetik pertumbuhan dan konfigurasi struktur untuk bijian nc-Si sudah 
dikemukakan. Ia menunjukkan bahawa pancaran PL yang tinggi adalah dihasilkan oleh 
bijian nc-Si. 
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