IONIC CONDUCTIVITY AND RELATED STUDIES ON CHITOSAN-BASED ELECTROLYTES WITH APPLICATION IN SOLAR CELLS

MOHD HAMDI BIN ALI@BURAIDAH

FACULTY OF SCIENCE UNIVERSITY OF MALAYA KUALA LUMPUR

2012

IONIC CONDUCTIVITY AND RELATED STUDIES ON CHITOSAN-BASED ELECTROLYTES WITH APPLICATION IN SOLAR CELLS

MOHD HAMDI BIN ALI@BURAIDAH

THESIS SUBMITTED IN FULFILLMENT OF THE REQUIREMENT FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF PHYSICS FACULTY OF SCIENCE UNIVERSITY OF MALAYA KUALA LUMPUR

2012

DECLARATION

I hereby declare that the work reported in this thesis is my own unless specified and duly acknowledged by quotation.

(MOHD HAMDI BIN ALI@BURAIDAH)

August 2012

UNIVERSITI MALAYA ORIGINAL LITERARY WORK DECLARATION

Name of Candidate : Mohd Hamdi Ali@Buraidah (I.C No: 830515-71-5025)

Registration/Matric No. : SHC080046

Name of Degree : Doctor of Philosophy

Title of Project Paper/Research Report/Dissertation/Thesis ("this Work")

Ionic conductivity and related studies on chitosan-based electrolytes with application in solar cells

Field of Study : Advanced Materials

I do solemnly and sincerely declare that:

- (1) I am the sole author/writer of this Work;
- (2) This Work is original;
- (3) Any use of any work which copyright exists was done by way of fair dealing and for permitted purposes and any excerpt or extract form, or reference to or reproduction of any copyright work has been disclosed expressly and sufficiently and the title of the Work and its authorship have been acknowledges in this Work;
- (4) I do not have any actual knowledge nor do I ought reasonably to know that the making of this work constitutes and infringement of any copyright work;
- (5) I hereby assign all and every rights in the copyright to this Work to the University of Malaya ("UM"), who henceforth shall be owner of the copyright in this Work and that any reproduction or use in any form or any means whatsoever is prohibited without the written consent of UM having been first had and obtained;
- (6) I am fully aware that if in the course of making this Work I have infringes any copyright whether intentionally or otherwise, I may be subject to legal action or any other action as may be determined by UM.

Candidate's Signature	Date
Subscribed and solemnly declared before,	
Witness's Signature	Date
Name: Designation:	

ABSTRACT

The motivation in this work is to ensure that the chitosan biopolymer can be used as a host for ion conduction and used as an electrolyte in dye-sensitized solar cells (DSSCs). The conductivity of the chitosan-NH₄I electrolytes was optimized by varying the NH₄I concentration, blending chitosan with PVA and PEO and also by incorporating of ionic liquid (IL). The electrolytes were prepared by solution cast technique. FTIR results confirm complexation between polymer, NH₄I and IL. Hydrogen bonding between chitosan and PVA and between chitosan and PEO are observed in the respective spectrum. XRD indicates that the amorphousness of pure chitosan, chitosan-PVA and chitosan-PEO films changes with NH₄I concentration. The 55 wt.% chitosan-45 wt.% NH₄I (Ch9) sample exhibits the highest room temperature conductivity of 3.73×10^{-7} S cm⁻¹. Blending chitosan with PVA and PEO further increased conductivity. The 27.5 wt.% chitosan-27.5 wt.% PVA-45 wt.% NH₄I (CV5) sample exhibits the highest conductivity of $1.77 \times 10^{-7} \text{ S cm}^{-1}$ at room temperature and the highest conducting sample in (chitosan-PEO)-NH₄I system is 3.66×10^{-6} S cm⁻¹ for sample containing 16.5 wt.% chitosan-38.5 wt.% PEO-45 wt.% NH₄I (CEO7) electrolyte. Incorporating 50 wt.% IL into Ch9, the electrolyte CIL5 exhibits the highest room temperature conductivity of 3.43×10^{-5} S cm⁻¹. The activation energy, E_A for the highest conducting samples follows the order Ch9 (0.45 eV) < CV5 (0.38 eV) < CEO7 (0.31 eV) < CIL5(0.25 eV). DSSCs were fabricated using natural dyes extracted from black rice, blueberry and red cabbage. The highest conducting samples from each system have been chosen in the fabrication DSSCs. Some iodine crystals were added to the electrolytes to produce the redox-mediator. Red cabbage DSSCs using CIL5(+I₂) gel electrolyte exhibits the highest efficiency of 0.2 % compared to using CEO7(+I₂) and $CV5(+I_2)$ gel electrolytes.

ABSTRAK

Objektif utama kajian ini adalah untuk memastikan bahawa biopolimer chitosan boleh digunakan sebagai perumah untuk mengkonduksi ion dan digunakan sebagai elektrolit di dalam "dye-sensitized solar cells" (DSSCs). Kekonduksian chitosan-NH₄I elektrolit telah dioptimumkan dengan mengubah kepekatan NH₄I, mencampurkan chitosan dengan PVA dan PEO dan dengan cecair ionik. Teknik penuangan di dalam piring Petri digunakan dalam penyediaan elektrolit. FTIR mengesahkan bahawa berlakunya interaksi diantara polimer dengan NH₄I dan cecair ionik. Ikatan hidrogen di antara chitosan dengan PVA dan chitosan dengan PEO dapat dilihat dalam spektrum FTIR. XRD menunjukkan sifat amorphous di dalam chitosan tulen, chitosan-PVA dan chitosan-PEO berubah dengan kepekatan NH₄I. Sample berkomposisi 55% chitosan-45% NH₄I (Ch9) menunjukkan kekonduksian tertinggi pada suhu bilik sebanyak 3.73 × 10⁻⁷ S cm⁻¹. Kekonduksian elektrolit meningkat dengan mencampurkan chitosan dengan PVA dan PEO. Sampel berkomposisi 27.5% chitosan-27.5% PVA-45% NH₄I (CV5) menunjukkan kekonduksian tertinggi pada suhu bilik sebanyak $1.77 \times 10^{-7} \text{ S cm}^{-1}$ dan 3.66×10^{-6} S cm⁻¹ untuk sampel berkomposisi 16.5% chitosan-38.5% PEO-45% NH₄I (CEO7). CIL5 elektrolit memberikan kekonduksian tertinggi pada suhu bilik sebanyak 3.43 × 10⁻⁵ S cm⁻¹ apabila 50% cecair ionik dimasukkan ke dalam Ch9. Tenaga pengaktifan, E_A tertinggi bagi setiap sistem adalah mengikut aturan Ch9 (0.45 eV) < CV5 (0.38 eV) < CEO7 (0.31 eV) < CIL5 (0.25 eV). Pewarna semula jadi yang diekstrak daripada pulut hitam, kubis merah dan blueberry digunakan dalam pemfabrikatan DSSCs. Iodin ditambah kepada elektrolit bagi menghasilkan pengantara redoks. DSSCs kubis merah yang menggunakan CIL5(+I₂) elektrolit gel mempamerkan kecekapan tertinggi sebanyak 0.2% berbanding dengan CEO7(+I₂) dan CV5(+I₂) elektrolit gel.

LIST OF PUBLICATIONS

- M.H. Buraidah, L.P. Teo, S.R. Majid & A.K. Arof, Ionic conductivity by correlated barrier hopping in NH₄I doped chitosan solid electrolyte. Physica B: Condensed Matter 404 (2009) 1373-1379.
- M.H. Buraidah, L.P. Teo, S.R. Majid, R. Yahya, R.M. Taha & A.K. Arof, Characterizations of chitosan-based polymer electrolyte photovoltaic cells. International Journal Photoenergy 2010, art. no. 805836.
- M.H. Buraidah, L.P. Teo, S.R. Majid & A.K. Arof, Characteristics of TiO₂/solid electrolyte junction solar cells with Γ/I₃ redox couple. Optical Materials 32 (2010) 723-728.
- M.H. Buraidah & A.K. Arof, Characterization of chitosan/PVA blended electrolyte doped with NH₄I. Journal of Non-Crystalline Solids 357 (2011) 3261-3266
- M. H. Buraidah, L. P. Teo, S. N. F. Yusuf, M. M. Noor, M. Z. Kufian, M. A. Careem, S. R. Majid, R. M. Taha, A. K. Arof, TiO₂/Chitosan-NH₄I(+I₂)-BMII-Based Dye-Sensitized Solar Cells with Anthocyanin Dyes Extracted from Black Rice and Red Cabbage, International Journal Photoenergy 2011, Article ID 273683.
- M. M. Noor, M. H. Buraidah, S. N. F. Yusuf, M. A. Careem, S. R. Majid, and A. K. Arof, Performance of Dye-Sensitized Solar Cells with (PVDF-HFP)-KI-EC-PC Electrolyte and Different Dye Materials, International Journal Photoenergy 2011, Article ID 960487

CONTENTS

Declaration Abstract Abstrak List of Publications Acknowledgement Contents Abbreviations List of Figures List of Tables	i iii
Abstrak List of Publications Acknowledgement Contents Abbreviations List of Figures List of Tables	iii
List of Publications Acknowledgement Contents Abbreviations List of Figures List of Tables	
Acknowledgement Contents Abbreviations List of Figures List of Tables	iv
Contents Abbreviations List of Figures List of Tables	v
Abbreviations List of Figures List of Tables	vi
List of Figures List of Tables	viii
List of Tables	xiii
	xiv
	xxii
CHAPTER 1: INTRODUCTION TO THE THESIS	
1.1 Introduction	1
1.2 Objectives of the thesis	4
1.3 Scope of the thesis	5
CHAPTER 2: LITERATURE REVIEW	
2.1 Introduction	6
2.2 Working principle of DSSC	7
2.3 Indium-tin-oxide (ITO) substrate	9
2.4 Titanium Dioxide (TiO ₂) Photoelectrode	9
2.5 Underlayer	10
2.6 Dye	11
2.6.1 Synthetic dyes	12
2.6.2 Natural dyes	14
2.6.2.1 Chlorophyll	14

6.5	Conductivity-Temperature Relationship of (Chitosan-PVA)-NH ₄ l Electrolytes	I 117
6.6	Dielectric Studies of (Chitosan-PVA)-NH ₄ I electrolytes	122
6.7	Conductivity-Temperature Relationship of (Chitosan-PEO)-NH ₄ l Electrolytes	I 125
6.8	Dielectric Studies of (Chitosan-PEO)-NH ₄ I electrolytes	129
6.9	Conductivity-Temperature Relationship of Chitosan-NH ₄ I-IL Electrolytes	131
6.10	Dielectric Studies of Chitosan-NH ₄ I-IL electrolytes	135
6.11	Transference number measurements	137
6.12	Summary	140
CHAF CELL	PTER 7: FABRICATION OF DYE-SENSITIZED SOLAR	
7.1	Introduction	141
7.2	Characteristics of DSSCs using dye extracted from black rice	141
	7.2.1 UV-Vis studies of black rice	141
	7.2.2 DSSCs utilizing black rice anthocyanin	143
	7.2.2.1 Effect of electrolyte conductivity	143
	7.2.2.2 Effect of dye pH	144
	7.2.2.3 Effect of compact layer between TiO ₂ and ITC surface	145
7.3	Characteristics of DSSCs using dye extracted from blueberry	146
	7.3.1 UV-Vis studies of blueberry	146
	7.3.2 DSSCs utilizing blueberry	148
7.4	Characteristics of DSSCs using dye extracted from red cabbage	151
	7.4.1 UV-Vis studies of red cabbage	151
	7.4.2 DSSCs utilizing red cabbage	153
7.5	Characteristics of DSSCs using Ruthenizer (N3) dye	155
7.6	Summary	157

				Contents
CHAPTER 8: DISCUSSION				158
CHAPTER 9: CONCLUSIONS FURTHER WORK	AND	SUGGESTION	FOR	175
REFERENCES				178

ABBREVIATIONS

DEC $(NCS)_2$ Diisothiocyanate Diethylene carbonate Bismuth sodium fluoride Sodium iodide NaI NaBiF₄ ΚI Potassium iodide LiClO₄ Lithium perchlorate Iodine MC Methyl cellulose I_2 LiI Lithium iodide **PVAc** Polyvinyl acetate Poly(methyl methacrylate) Pr₄NI Tetrapropylammonium iodide **PMMA** AgNO₃ Silver nitrate PA Palmitic acid TBP 4-tert-butyl pyridine OA Oleic acid PC propylene carbonate Short-circuit current density $J_{
m sc}$ LiCF₃SO₃ Lithium triflate Open-circuit voltage $V_{\rm oc}$ EC Ethylene carbonate Fill factor ffNaClO₄ Sodium perchlorate Efficiency (%) η LiOAc Lithium acetate NH₄NO₃ Ammonium nitrate PEG Poly(ethylene glycol) LiNO₃ Lithium nitrate H_2SO_4 Sulfuric acid

ZnCF₃SO₃ Zinc triflate

NMP

KOH

DOP dioctyl phthalate
H₃PO₄ Phosphoric acid

DMPImI 1-propyl-2,3 dimethylimidazolium

N-methyl pyrrolidone

Potassium hydroxide

iodide

LiCAC lithium complexed acetylated

chitosan

LIST OF FIGURES

Figure	Caption	Page
Figure 2.1	Schematic diagram of the DSSC structure	6
Figure 2.2	Schematic diagram of the DSSC structure and operating principle [adapted from Grätzel, 2003]	8
Figure 2.3	N3 ruthenium complex structure [Grätzel, 2003]	12
Figure 2.4	Chlorophyll structure [Hao et al., 2006]	15
Figure 2.5	β, $β$ -carotene structure [Hao <i>et al.</i> , 2006]	16
Figure 2.6	Betalain structure [Zhang et al., 2008a]	17
Figure 2.7	Anthocyanin structure from red cabbage [Furukawa et al., 2009]	19
Figure 2.8	Structure of two major anthocyanin in black rice [Ryu et al., 1998]	20
Figure 2.9	Structure of six most common anthocyanins in blueberry [Lohachoompol <i>et al.</i> , 2008]	20
Figure 2.10	Chitin structure [Yahya and Arof, 2003]	25
Figure 2.11	Chitosan structure [Majid and Arof, 2005]	25
Figure 2.12	PVA structure [Praptowidodo, 2005]	27
Figure 2.13	Structure of PEO	29
Figure 3.1	XRD patterns of (a) pure PVA, (b) 90 PVA:10 NH ₄ NO ₃ and (c) 80 PVA:20 NH ₄ NO ₃ [Selvasekarapandian <i>et al.</i> , 2010]	42
Figure 3.2	XRD patterns of (a) pure chitosan, (b) pure carrageenan, (c) 0.5 g chitosan+0.5 g κ-carrageenan (CCPA) film and (d) 0.5 g chitosan+0.5 g κ-carrageenan + 0.1765 g ammonium nitrate (CCPAAN) [Shuhaimi <i>et al.</i> , 2008]	42
Figure 3.3	X-ray diffraction patterns of (a) LiClO ₄ , (b) pure PMMA, (c) pure PVAc, (d) PVAc(6.5)–PMMA(18.5)–LiClO ₄ (8)–PC(67), (e) PVAc(6.5)–PMMA(18.5)–LiClO ₄ (8)–EC(67), (f) PVAc(6.5)–PMMA(18.5)–LiClO ₄ (8)–MC(67), (g) PVAc(6.5)–PMMA(18.5)–LiClO ₄ (8)–DEC(67) [Rajendran and Bama, 2010]	43

Figure 3.4	FTIR spectra of (a) chitosan, (b) iota-carrageenan, (c) 37.50 wt.% chitosan–37.50 wt.% iota-carrageenan–12.50 wt.% H ₃ PO ₄ –12.50 wt.% PEG, (d) 37.50 wt.% chitosan–37.50 wt.% iota-carrageenan–6.25 wt.% H ₃ PO ₄ –18.75 wt.% PEG, and (e) 37.50 wt.% chitosan–37.50 wt.% iota-carrageenan–18.75 wt.% H ₃ PO ₄ –6.25 wt.% PEG in wavenumber range of 2000–650 cm ⁻¹ [Arof <i>et al.</i> , 2010]	44
Figure 3.5	FTIR spectra of (a) pure chitosan (b) chitosan acetate (c) chitosan acetate+palmitic acid (d) chitosan acetate+lithium acetate (e) chitosan acetate+lithium acetate+palmitic acid [Yahya <i>et al.</i> , 2002].	45
Figure 3.6	Figure 3.6: Cole-Cole plot of poly(ε-caprolactone) (PCL) incorporated with 5 wt.% ammonium thiocyanate (NH ₄ SCN) at room temperature [Woo <i>et al.</i> , 2011]	47
Figure 3.7	Impedance plot and its equivalent circuit	47
Figure 3.8	Polarization current versus time graph of PEO+NaBiF ₄ (90:10), PEO+NaBiF ₄ (80:20) and PEO+NaBiF ₄ (70:30) [Mohan <i>et al.</i> , 2005].	50
Figure 3.9	Diagram of DSSC cell	52
Figure 4.1	FTIR spectra of (a) pure chitosan powder and (b) pure chitosan film in the region between 800 to 1800 cm ⁻¹ . Focus is on the amine and carboxamide bands at 1561-1591 and 1652-1654 cm ⁻¹ respectively	55
Figure 4.2	FTIR spectra of (a) pure chitosan powder and (b) pure chitosan film in the region between 3000 to 4000 cm ⁻¹	57
Figure 4.3	FTIR spectra of Chitosan-NH $_4$ I electrolytes in the region of 1400 cm $^{\text{-1}}$ to 1800 cm $^{\text{-1}}$	59
Figure 4.4	FTIR spectra of Chitosan-NH ₄ I electrolytes in the region of $3100~\text{cm}^{-1}$ to $3700~\text{cm}^{-1}$	60
Figure 4.5	Schematic diagram of complexation for chitosan-NH ₄ I electrolyte	62
Figure 4.6	FTIR spectra of pure (chitosan-PVA) films in the region of 1400 cm ⁻¹ to 1800 cm ⁻¹ for several chitosan:PVA ratios.	63
Figure 4.7	FTIR spectra of pure (chitosan-PVA) films in the region of 3000 cm ⁻¹ to 3800 cm ⁻¹ for several chitosan:PVA ratios.	64

Figure 4.8	FTIR spectra of (chitosan-PVA)-NH ₄ I electrolyte in the region of 1400 cm ⁻¹ to 1800 cm ⁻¹ for several chitosan:PVA ratios	66
Figure 4.9	FTIR spectra of (chitosan-PVA)-NH ₄ I electrolyte in the region of 3000 cm ⁻¹ to 3800 cm ⁻¹ for several chitosan:PVA ratios	67
Figure 4.10	Schematic diagram of complexation for (chitosan-PVA)-NH ₄ I electrolyte	68
Figure 4.11	FTIR spectra of (a) pure PEO film (b) pure chitosan film in the region between 900 cm ⁻¹ and 1300 cm ⁻¹	69
Figure 4.12	FTIR spectra of pure (chitosan-PEO) film in the region of 900 cm ⁻¹ to 1300 cm ⁻¹ for several chitosan:PEO ratios	70
Figure 4.13	FTIR spectra of pure (chitosan-PEO) films in the region of 1500 cm ⁻¹ to 1700 cm ⁻¹ for several chitosan:PEO ratios	71
Figure 4.14	FTIR spectra of pure (chitosan-PEO) films in the region of 3000 cm ⁻¹ to 3800 cm ⁻¹ for several chitosan:PEO ratios	73
Figure 4.15	FTIR spectra of (chitosan-PEO)-NH ₄ I in the region of 900 cm ⁻¹ to 1300 cm ⁻¹ for several chitosan:PEO ratios	74
Figure 4.16	FTIR spectra of (chitosan-PEO)-NH ₄ I in the region of 1400 cm ⁻¹ to 1700 cm ⁻¹ for several chitosan:PEO ratios	75
Figure 4.17	FTIR spectra of (a) pure PEO film (b) 30 wt.% chitosan-70 wt.% PEO film and (c) (16.5 wt.% Chitosan-38.5 wt.% PEO)-45 wt.% NH ₄ I electrolyte in the region of 1300 cm ⁻¹ to 1400 cm ⁻¹	77
Figure 4.18	FTIR spectra of (chitosan-PEO)-NH ₄ I in the region of 3000 cm ⁻¹ to 3600 cm ⁻¹ for several chitosan:PEO ratios	78
Figure 4.19	Schematic diagram of complexation for (chitosan-PEO)-NH ₄ I electrolyte	79
Figure 4.20	FTIR spectra of (a) Ch9 electrolyte (b) Ch9-10 wt.% IL (c) Ch9-20 wt.% IL (d) Ch9-30 wt.% IL and (e) Ch9-40 wt.% IL and (f) Ch9-50 wt.% IL in the region of 1480 cm ⁻¹ to 1680 cm ⁻¹	80
Figure 4.21	FTIR spectra of (a) Ch9 electrolyte (b) Ch9-10 wt.% IL (c) Ch9-20 wt.% IL (d) Ch9-30 wt.% IL (e) Ch9-40 wt.% IL and (f) Ch9-50 wt.% IL in the region of 3200 cm ⁻¹ to 3600 cm ⁻¹	81

Figure 4.22	Schematic diagram of complexation for chitosan-NH ₄ I-IL electrolyte	82
Figure 5.1	X-ray diffraction patterns for (a) pure chitosan film and electrolytes containing (b) 90 wt.% chitosan-10wt.% NH ₄ I (c) 80 wt.% chitosan-20wt.% NH ₄ I (d) 55 wt.% chitosan-45wt.% NH ₄ I and (e) 50 wt.% chitosan-50wt.% NH ₄ I	85
Figure 5.2	Gaussian fitting of XRD for (a) pure chitosan film and electrolytes containing (b) 90 wt.% chitosan-10wt.% NH ₄ I (Ch2) (c) 80 wt.% chitosan-20wt.% NH ₄ I (Ch4) and (d) 55 wt.% chitosan-45wt.% NH ₄ I (Ch9)	87
Figure 5.3	X-ray diffraction patterns of (a) pure PVA and (b) (50 wt.% chitosan-50 wt.% PVA) films	90
Figure 5.4	X-ray diffraction patterns of (chitosan-PVA)-NH ₄ I electrolytes containing (44.0 wt.% chitosan-11.0 wt.% PVA)-45 wt.% NH ₄ I (CV2), (33.0 wt.% chitosan-22 wt.% PVA)-45 wt.% NH ₄ I (CV4), (27.5 wt.% chitosan-27.5 wt.% PVA)-45 wt.% NH ₄ I (CV5), (22 wt.% chitosan-33 wt.% PVA)-45 wt.% NH ₄ I (CV6), (11 wt.% chitosan-44 wt.% PVA)-45 wt.% NH ₄ I (CV8) and NH ₄ I salt	91
Figure 5.5	Gaussian fitting of XRD for (chitosan-PVA)-NH ₄ I electrolytes containing (a) (44.0 wt.% chitosan-11.0 wt.% PVA)-45 wt.% NH ₄ I (CV2), (b) (33.0 wt.% chitosan-22 wt.% PVA)-45 wt.% NH ₄ I (CV4), (c) (27.5 wt.% chitosan-27.5 wt.% PVA)-45 wt.% NH ₄ I (CV5) and (d) (11 wt.% chitosan-44 wt.% PVA)-45 wt.% NH ₄ I (CV8)	93
Figure 5.6	X-ray diffraction patterns of (a) pure PEO and (b) (30 wt.% chitosan-70 wt.% PEO) films	95
Figure 5.7	X-ray diffraction patterns of (chitosan-PEO)-NH ₄ I electrolytes containing (44 wt.% chitosan-11 wt.% PEO)-45 wt.% NH ₄ I (CEO2), (38.5 wt.% chitosan-16.5 wt.% PEO)-45 wt.% NH ₄ I (CEO3), (33 wt.% chitosan-22 wt.% PEO)-45 wt.% NH ₄ I (CEO4), and (16.5 wt.% chitosan-38.5 wt.% PEO)-45 wt.% NH ₄ I (CEO7)	96
Figure 5.8	Gaussian fitting of XRD for (chitosan-PEO)-NH ₄ I electrolytes containing (a) (44.0 wt.% chitosan-11.0 wt.% PEO)-45 wt.% NH ₄ I (CEO2) (b) (38.5 wt.% chitosan-16.5 wt.% PEO)-45 wt.% NH ₄ I (CEO3), (c) (30 wt.% chitosan-22 wt.% PEO)-45 wt.% NH ₄ I (CEO4) and (d) (16.5 wt.% chitosan-38.5 wt.% PEO)-45 wt.% NH ₄ I (CEO7)	98

Figure 5.9	X-ray diffraction patterns of chitosan-NH ₄ I-IL electrolytes containing 49.5 wt.% chitosan-40.5 wt.% NH ₄ I-10 wt.% IL (CIL1), 44.0 wt.% chitosan-36.0 wt.% NH ₄ I-20 wt.% IL (CIL2), (38.5 wt.% chitosan-31.5 wt.% NH ₄ I-30 wt.% IL (CIL3), 33 wt.% chitosan-27 wt.% NH ₄ I-40 wt.% IL (CIL4) and (d) 27.5 wt.% chitosan-22.5 wt.% NH ₄ I-50 wt.% IL (CIL5)	100
Figure 5.10	Gaussian fitting of XRD for chitosan-NH ₄ I-IL electrolytes containing (a) 49.5 wt.% chitosan-40.5 wt.% NH ₄ I-10 wt.% IL (CIL1), (b) 44.0 wt.% chitosan-36.0 wt.% NH ₄ I-20 wt.% IL (CIL2), (c) (38.5 wt.% chitosan-31.5 wt.% NH ₄ I-30 wt.% IL (CIL3) and (d) 27.5 wt.% chitosan-22.5 wt.% NH ₄ I-50 wt.% IL (CIL5)	102
Figure 6.1	Cole-Cole plot of pure chitosan film at room temperature	105
Figure 6.2	Cole-Cole plot of Ch9 electrolyte at room temperature	106
Figure 6.3	Cole-Cole plot of CV5 electrolyte at room temperature	107
Figure 6.4	Cole-Cole plot of CEO7 electrolyte at room temperature	107
Figure 6.5	Cole-Cole plot of CIL5 electrolyte at room temperature	108
Figure 6.6	Plot log σ versus $1000/T$ for chitosan-NH ₄ I electrolytes	109
Figure 6.7	Plot $\ln \sigma T^{1/2}$ versus $1000/ T-T_o $ for chitosan-NH ₄ I electrolytes	110
Figure 6.8	(a) The ionic conductivity at room temperature and activation energy dependence on NH ₄ I content (b) Conductivity and pre-exponential factor versus NH ₄ I content	112
Figure 6.9	Frequency dependence on dielectric constant at room temperature for various chitosan-NH ₄ I electrolytes	114
Figure 6.10	Frequency-dependent dielectric loss at room temperature for various chitosan-NH ₄ I electrolytes	115
Figure 6.11	Frequency dependence of dielectric constant at selected temperatures for Ch9 electrolyte	116
Figure 6.12	Frequency-dependent dielectric loss at selected temperatures for Ch9 electrolyte	117
Figure 6.13	Plot $\log \sigma$ versus $1000/T$ for (chitosan-PVA)-NH ₄ I electrolytes	118
Figure 6.14	Plot $\log \sigma T^{1/2}$ versus $1000/ T-T_0 $ for (chitosan-PVA)-NH ₄ I electrolytes	119

Figure 6.15	(a) The ionic conductivity at room temperature and the activation energy of chitosan-PVA-NH ₄ I electrolytes with various concentrations of PVA (expressed as wt.% of chitosan) (b) Conductivity and pre-exponential factor versus PVA concentration	121
Figure 6.16	Frequency dependence on dielectric constant at room temperature for various (chitosan-PVA)-NH ₄ I electrolytes	123
Figure 6.17	Frequency dependence on dielectric loss at room temperature for various (chitosan-PVA)-NH ₄ I electrolytes	123
Figure 6.18	Frequency dependence on dielectric constant at selected temperatures for CV5 electrolyte	124
Figure 6.19	Frequency dependence on dielectric loss at selected temperatures for CV5 electrolyte	124
Figure 6.20	Plot log σ versus $1000/T$ for (chitosan-PEO)-NH ₄ I electrolytes	125
Figure 6.21	Plot $\log \sigma T^{1/2}$ versus $1000/ T-T_0 $ for (chitosan-PEO)-NH ₄ I electrolytes	126
Figure 6.22	(a) The ionic conductivity at room temperature and the activation energy of chitosan-PEO-NH ₄ I electrolytes with various concentrations of PEO (expressed as wt.% of chitosan) (b) Conductivity and pre-exponential factor versus PEO concentration	128
Figure 6.23	Frequency dependence on dielectric constant at room temperature for different (chitosan-PEO)-NH ₄ I electrolytes	129
Figure 6.24	Frequency dependence on dielectric loss at room temperature for different (chitosan-PEO)-NH ₄ I electrolytes	130
Figure 6.25	Frequency dependence on dielectric constant at selected temperatures for CEO7 electrolyte	130
Figure 6.26	Frequency dependence on dielectric loss at selected temperatures for CEO7 electrolyte	131
Figure 6.27	Plot $\log \sigma$ versus $1000/T$ for chitosan-NH ₄ I-IL electrolytes	132
Figure 6.28	Plot $\ln \sigma T^{1/2}$ versus $1000/ T-T_0 $ for chitosan-NH ₄ I-IL electrolytes	133

Figure 6.29	(a)The ionic conductivity at room temperature and the activation energy of chitosan-NH ₄ I-IL electrolytes with various concentrations of IL (b) Conductivity and pre-exponential factor versus IL concentration	134
Figure 6.30	Frequency dependence on dielectric constant at room temperature for different chitosan-NH ₄ I-IL electrolytes	135
Figure 6.31	Frequency dependence on dielectric loss at room temperature for different chitosan-NH ₄ I-IL electrolytes	136
Figure 6.32	Frequency dependence on dielectric constant at selected temperatures for CIL5 electrolyte	136
Figure 6.33	Frequency dependence on dielectric loss at selected temperatures for CIL5 electrolyte	137
Figure 6.34	dc polarization measurement for SS/55 wt.% chitosan-45 wt.% NH ₄ I electrolyte/SS at room temperature	138
Figure 6.35	dc polarization measurement for SS/(27.5 wt.% chitosan-27.5 wt.% PVA)-45 wt.% NH ₄ I electrolyte/SS at room temperature	138
Figure 6.36	dc polarization measurement for SS/(16.5 wt.% chitosan-38.5 wt.% PEO)-45 wt.% NH ₄ I electrolyte/SS at room temperature	139
Figure 6.37	dc polarization measurement for SS/(27.5 wt.% chitosan-22.5 wt.% NH ₄ I-50 wt.% IL electrolyte/SS at room temperature	139
Figure 7.1	The absorption spectra of ${\rm TiO_2}$ electrode, anthocyanin from black rice in solution and absorbed onto ${\rm TiO_2}$ electrode	142
Figure 7.2	The absorption spectrum of anthocyanin extract of black rice solutions at pH a) 1, b) 2, c) 3 and d) 4	142
Figure 7.3	The binding between anthocyanin (black rice) molecule and TiO_2 particle	143
Figure 7.4	J- V characteristics of the DSSC for CIL5 electrolyte (in gel form)	146
Figure 7.5	The absorption spectra of ${\rm TiO_2}$ electrode, anthocyanin from blueberry in solution and absorbed onto ${\rm TiO_2}$ electrode	147
Figure 7.6	The absorption spectra of anthocyanin solutions at pH 4 to pH 1 extracted from blueberry	147

Figure 7.7	The binding between anthocyanin (blueberry) molecule and ${\rm TiO_2}$ particle	148
Figure 7.8	<i>J-V</i> curve of DSSCs using (a) CV5 electrolyte (b) CEO7 electrolyte and (c) CIL5 electrolyte. The dye solution is extracted from blueberry with pH 1	148
Figure 7.9	<i>J-V</i> curve of DSSCs using (a) CEO5 electrolyte (b) CEO6 electrolyte and (c) CEO7 electrolyte. The dye solution is extracted from blueberry with pH 1	149
Figure 7.10	<i>J-V</i> characteristics of the DSSC for CIL5 electrolyte (in gel form). The dye solution is extracted from blueberry with pH 1	150
Figure 7.11	The absorption spectra of ${\rm TiO_2}$ electrode, anthocyanin from red cabbage in solution and absorbed onto ${\rm TiO_2}$ electrode	151
Figure 7.12	The absorption spectra of anthocyanin solutions extracted from red cabbage at different pH values	152
Figure 7.13	The binding between anthocyanin (red cabbage) molecule and TiO_2 particle	152
Figure 7.14	<i>J-V</i> curve of DSSCs using (a) CV5 electrolyte (b) CEO7 electrolyte and (c) CIL5 electrolyte. The dye solution is extracted from red cabbage with pH 1	153
Figure 7.15	<i>J-V</i> curve of DSSCs using (a) CEO5 electrolyte (b) CEO6 electrolyte and (c) CEO7 electrolyte. The dye solution is extracted from red cabbage with pH 1	154
Figure 7.16	<i>J-V</i> characteristics of the DSSC for CIL5 electrolyte (in gel form). The dye solution is extracted from red cabbage with pH 1	155
Figure 7.17	J- V characteristics of the ruthenium DSSC for 26.9 wt. % chitosan-22 wt. % NH ₄ I(+ 2.2 wt. %I ₂) + 48.9 wt. % IL electrolyte (in gel form)	156
Figure 7.18	The absorption spectra of N3 dye, anthocyanin dye from black rice, blueberry and red cabbage absorbed onto TiO ₂ electrode	156
Figure 7.19	$J\text{-}V$ characteristics of the ruthenium DSSC for 11 wt. % chitosan-9 wt. % $NH_4I(+I_2)$ + 80 wt. % IL electrolyte (in gel form)	157

LIST OF TABLES

Table	Caption	Page
Table 2.1	The photovoltaic performance of DSSC using different polypyridyl ruthenium(II) complexes as sensitizers	13
Table 2.2	The photovoltaic performance of some DSSCs using liquid electrolyte and natural dye as sensitizer	22
Table 2.3	Review of earlier work on chitosan-based polymer electrolytes and their application in various electrochemical devices	26
Table 2.4	Review of earlier work on PVA-based polymer electrolytes and their application in electrochemical devices	28
Table 2.5	Review of earlier work on PEO-based polymer electrolytes and their application in DSSC	29
Table 2.6	Review of earlier work on chitosan polymer blend electrolytes and their application in electrochemical devices	31
Table 3.1	The ratio content of chitosan-salt electrolytes	38
Table 3.2	The compositions of chitosan-PVA blend electrolytes	39
Table 3.3	The compositions of chitosan-PEO blend electrolytes	39
Table 3.4	The compositions of chitosan-NH ₄ I-BMII electrolytes	40
Table 4.1	Vibrational mode of pure chitosan powder and pure chitosan film	58
Table 4.2	Carboxamide, amine and hydroxyl bands of chitosan electrolytes with different NH ₄ I concentrations	61
Table 4.3	Carboxamide, carbonyl, amine and hydroxyl bands of pure (chitosan-PVA) films with different ratios of the polymer	65
Table 5.1	FWHM, D and χ (%) for selected chitosan-NH ₄ I electrolytes	88
Table 5.2	FWHM, D and χ (%) for selected (chitosan-PVA)-NH ₄ I electrolytes	94

Table 5.3	FWHM, D and χ (%) for selected (chitosan-PEO)-NH ₄ I electrolytes	99
Table 5.4	FWHM and D for selected chitosan-NH ₄ I-IL electrolytes	103
Table 6.1	Ambient temperature conductivity, pre-exponential factor and activation energy of various chitosan-NH ₄ I electrolytes	113
Table 6.2	Ambient temperature conductivity, pre-exponential factor and activation energy of various (chitosan-PVA)-NH ₄ I electrolytes	122
Table 6.3	Ambient temperature conductivity, pre-exponential factor and activation energy of various (chitosan-PEO)-NH ₄ I electrolytes	129
Table 6.4	Ambient temperature conductivity, pre-exponential factor and activation energy of various chitosan-NH ₄ I-IL electrolytes	135
Table 7.1	Electrolyte composition, room temperature conductivity of electrolytes and their DSSCs performance. pH of dye solution is 3	144
Table 7.2	The performance of DSSC with ITO counter electrode at different pH of the dye solution. Electrolyte is 26.9 wt. % chitosan-22 wt. % $NH_4I(+\ 2.2\ wt.\ \%I_2)+48.9$ wt. % IL	144
Table 7.3	V_{oc} , J_{sc} and ff of DSSC with platinum as counter electrode for dye solution at pH 1. Electrolyte is 26.9 wt. % chitosan-22 wt. % NH ₄ I(+ 2.2 wt. %I ₂) + 48.9 wt. % IL	145
Table 7.4	List of open-circuit voltage (V_{oc}) , short-circuit current density (J_{sc}) fill factor (ff) , maximum power density (P_{max}) and efficiency $(\eta \%)$ for dye-sensitized solar cells (blueberry dye)	150
Table 7.5	List of open-circuit voltage (V_{oc}) , short-circuit current density (J_{sc}) fill factor (ff) , maximum power density (P_{max}) and efficiency $(\eta \%)$ for dye-sensitized solar cells (red cabbage dye)	154