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CHAPTER 1 

Introduction  

 

1.1 Introduction 

Since early 1860s, there are considerable amount of research work related to 

panel data analysis that are available in the literature. There are a few terms used to 

describe panel data analysis. Woolridge (2003) and Hsiao (2005) defined panel data as 

at least two-dimensional data with a combination of time series and cross section 

analysis. Gujarati (2003) however categorised the following as panel data: (1) pooled 

data (pooling time series and cross sectional observations), (2) combination of time 

series and cross section data, (3) micro panel data, (4) longitudinal data (a study of a 

variable or group of subjects over time), (5) event history analysis and (6) cohort 

analysis. On the other hand, Arellano and Honoré (2001) defined a panel data set as a 

group of observations in which such groups consist of individuals belonging to the same 

family; a situation in which there is a ‘homogeneous’ grouping of the data. Thus, in 

general, panel data analysis refers to the study of observations on many individual units 

over a specific time interval (Franses, 2002; Nerlove, 2002; Hsiao, 2003 and Yafee, 

2003). The individual units can be countries, states, firms, commodities and groups of 

people or even individuals.  

Since the availability of data sources have been greatly raised nowadays, the 

interest to study a cross-sections of individuals observed over time have been increased 

among researchers and econometricians (Hsiao, 2003). Panel data can be used to 

describe the cross sectional behavior by pooling all information together rather than a 

single time series or cross-section. Panel data can enhance the quality and quantity of 

data: more informative data, more variability, less collinearity among variables, more 
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degree of freedom and more efficiency rather than using either cross section or time 

series dimensions (Gujarati, 2003). In other words, if one is willing to consider both 

these two dimensions, panel analysis can provide a wealthy and powerful study of set of 

people. Panel data techniques consider fewer time series observations (Breitung and 

Candelon, 2005). This condition has challenged the traditional time series approach 

which requires more time spans to study the economics activities over a period of time. 

This is simply because, the short time span enable researchers to observe the units 

which are having similar characteristics before it becomes unstable if  too long time 

spans are taken. Therefore, with continual observations of cross-section, panel analysis 

allows the researcher to study the dynamics of change of cross sectional units with short 

time series (Gujarati, 2003). The use of panel data in economics enables us to analyze 

the complex economic phenomena (Kapetonis et. al, 2006). That is why there are vast 

literatures on this panel analysis in economics. The attractions to obtain the parameter of 

interest which is assumed to have common values across panels units caused the huge 

development in this area.  

 To set the idea, the following panel data is considered: ity , for 

TtNi ,,2,1   ;,,2,1   , be the  i
th

  unit observed at a particular point in time, t .  

Thus, a typical data set will consist of TN   data. As an illustration, the United States 

(US) oil consumption trend data for the periods 1949 - 2004 is utilized (see Figure 1.1).  

In Figure 1.1, the use of the US oil for several sectors for over more than 50 years is 

studied.  The sectors (panels) considered are transportation, industrial, residential and 

commercial lots. Here, ity  refers to the US petroleum consumption (measured in 

million barrels) for the sector i
 
at year t, and thus we have 4N  sectors and 55T  

years which gives a total of 220554  observations in this study.  Since these sectors 

are of interest, the characteristics of the petroleum used in each sector over a specified 

time period can be observed by plotting them together.   
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                       Figure 1.1: Panel Time Series Plots of the US Oil Use 

 

There are two common models in the panel: first is the purely static model and 

second is the dynamic model.  In the pure static case, several independent variables may 

be used to explain the model.  For the simple pure static case, the following linear 

heterogeneous panel model is considered:  

;itit

T

iiit exy  
   

TtNi ,,2,1  and  ,,2,1               (1.1)  

where ity  is the response variable, itx  is the independent (predictor) variable, ii  ,   

are unknown parameters which varies across i  and ite are the random errors. In the 

dynamic panel model, there is the lagged dependent variable in the model which 

commonly takes the form as follows: 

;1 itit

T

iiit eyy  
   

TtNi ,,2,1  and  ,,2,1                               (1.2)
 

where itii e,,   are as in (1.1) while 1ity    is the first lagged value of  ity . To estimate 

the parameters of interest, the standard Ordinary Least Squares (OLS) estimation is 

commonly used in the static case,    while the standard Generalized Methods of 
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Moments
1
 (GMM) is used in the dynamic model (Ahn et al., 2001; Wansbeek, 2001; 

Bond, 2002; Hsiao and Tahmiscioglu, 2008).   

In the pure static model, two models that are usually considered: (1) fixed effects 

(FE) and (2) random effects (RE). In the FE model, all regressors and individual effects 

are allowed for endogeneity ( ;itit

T

iit exy   ),0(~ 2iideit ) while RE model 

assumes exogeneity of all regressors and the random individual effects 

( ,; iiitit

T

iiit vexy    where ),0(~ 2iideit  and ),0(~ iv ) (Baltagi et al., 

2003). The choice between these models can be investigated using the Hausman and 

Taylor (1981) test.   

For the dynamic case, the investigation of the stationary data in the panel data 

has received a great attention in this area.  This is because one of the main 

characteristics of panel model is that they show nonstationary patterns, although there 

may be occasions on which linear combinations of the series are stationary. This can be 

achieved via the unit root test. Due to these interests, this study will focus on the 

estimation for the pure static case, where we limit our study to the FE model
2
 and 

testing for the unit root in the dynamic model. 

 

1.2 Related Issues  

1.2.1 Cross Sectional Dependence (CD) 

Panel data analysis has attracted a lot of attention among researchers for some 

reasonable motivations; one issue that is often addressed in many of the literature is the 

appropriateness of pooling the units in the sample which results in a pooled model 

(Davidson and MacKinnon, 1993; Baltagi, 2001; and Green, 2003). In the pooled 

model, the parameters are assumed to be constant, that are   ii   , , and the 

residuals are identically and independently (iid) distributed with mean zero and a 

                                                 
1 The GMM estimator is based on method of moments to estimate the model. 
2 The RE model is beyond the scope of the study. 
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constant variance. Here, the OLS is appropriate, yielding the estimators that are 

consistent, efficient and unbiased (Coekley et al., 2006).  

The pooled model ignores parameter heterogeneity (Coekley et al. 2006). 

Ignoring such heterogeneity could lead to inconsistent or meaningless estimates of 

interesting parameter estimates. Therefore, in order to tackle the problem with 

heterogeneity in parameters (refer model (1.1), two common approaches are usually 

employed: (1) FE (2) RE. Such models (pooled, FE and RE) however ignore the 

structure of the data since each observation is treated as independently among the 

others, 0)( jtiteeE . In general such restriction is invalid since most of the economic 

data are correlated between cross sectional units; this may arise from a common 

influence which affects all cross section units.  

The cross sectional dependence (CD) is defined when the residuals are 

correlated across units (test for 0)( jtiteeE  for ji  ). The CD among cross sectional 

units may occur due to the presence of unobserved factors and global shocks that are 

common to all members.  This shock can be correlated with other regressors, whose 

effects are captured by the disturbances and thus give rise to non-zero off-diagonal 

elements of the variance covariance matrix.  In economic applications, these unobserved 

factors may be explained by social norms and neighbourhood effects which imply 

strong interdependencies between cross sectional units.   

There are a number of studies that have used an unobserved common factor 

structure to explain cross dependency (see Pesaran, 2004, 2006; Bai and Ng, 2002; 

Moon and Perron, 2004; and Philips and Sul, 2003). The common factor structures have 

several advantages:  firstly, the procedure of statistical estimation and inferences are in 

general well-understood, and secondly, using common factors to explain cross 

dependency leads to no dimensionality problem which has been found to work well in 

many empirical studies (Gengenbach et al., 2010).  
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When the assumption of the independence among residuals is violated, the 

pooled and other estimators which assume cross sectional independence are inadequate, 

and could lead to significant size distortions in the presence of neglected CD.  To 

illustrate this, consider model in (1.1). For the pooled model which restricted to 

independent assumption among the residuals, we have the estimates 

(1)    )(ˆ,ˆˆ 1
yXXXβb

TT
T

  ; with bb )ˆ(E  and 21)()ˆ(  XXb
TVar . In the 

presence of CD, the estimates of b  takes the form of (2) 

   )(ˆ,ˆˆ 1
ΩyXΩXXβb

TT
T

  ; with bb )ˆ(E  and 21)()ˆ(  ΩXXb
TVar , with non-

zero off diagonal of Ω . It is observed that, the parameter estimates in both cases, (1) 

and (2) are unbiased but )ˆ(bVar  in (2) is inefficient due to the effect of the CD on the 

standard error. This could leads to incorrect inferences to the model and subsequently 

results in the wrong decision making. 

Moreover, with CD, the model becomes more complicated and the limitations of 

software language for modeling the panel in the presence of cross dependency hinder 

reliable modeling.  By ignoring the cross dependency problem and assuming 

uncorrelated errors among the cross sectional units (Philips and Sul, 2003), a 

misspecified model is obtained.  

 

1.2.2 Outliers  

Outlier is an observation that is very peculiar and differs from the entire 

observed data. In many cases, some data points will be deflected away from their 

expected values than what are deemed reasonable. This can be due to a systematic error, 

faults in the theory that generated the expected values, or it can simply arise from the 

cases where some observations are a long way from the centre of the data. Outlying 

points can therefore indicate faulty data, erroneous procedures, or areas where a certain 

http://en.wikipedia.org/wiki/Systematic_error
http://en.wikipedia.org/wiki/Theory
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theory is perhaps not valid. In practice, a small number of outliers are expected in 

normal distributions. 

There are several types of outliers that are commonly handled in statistics 

applications; namely (1) Additive outliers (AO), (2) Innovation outliers (IO), (3) Level 

Shift (LS), (4) Temporary Change (TC) and (5) Leverage Point (LP). The AO only 

affect the level but leave the variance unaffected. The presence of the AO will not be 

reflected in the values of the adjacent observations but its manifestation can be dramatic 

and obvious. The IO arises from an inherent form of contamination and can be reflected 

through the correlation structure of the process in neighbouring observations. The 

potential IO conspires to conceal itself and the detection of it may become more 

problematic. On the other hand, the LS will produce an abrupt and permanent step in the 

series while TC dies out gradually in time. The LP refers to outlying values that are 

present in the independent (predictor) variables. A large LP value influences the 

parameter, thus pulling the fitted model towards it and resulting in a bad fit.   

The existence of multiple outliers (MO) in the dataset adds to the complexity of 

identifying and detecting outliers.  The time series analysis with MO is hindered by two 

problems:  masking and swamping.  While swamping occurs when the observation is 

not an outlier but is misjudged as an outlier, masking occurs when an outlier is being 

masked by other observations. These two problems are typically caused by the other 

adjacent outliers. To illustrate this phenomenon, a linear regression model is considered.  

Let HyyXXXXβXy   TT 1)(ˆˆ .   Specifically, for  the  i
th

  observation,  

  







n

k

kikk

T

k

T
n

k

ii yhyxxy
1

1

1

ˆ XX . In particular, consider an outlier at point .ji   

iii yyy ' , is replaced, where iy takes the form of 


 


otherwise     0

 ,    1 ji
yi .  It can be 

seen that at point ,ji    jjj

n

k

kjkjjj

n

jk

kjkj yhyhyhyhy  
 1

'ˆ ; thus jjjj yhy ˆ . 

http://en.wikipedia.org/wiki/Normal_distribution
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This is the impact on jŷ  of a change in jy  equals that changes multiplied by jjh . Thus, 

the regression line will rotate or shift, causing some of the original observations to 

appear as outliers (swamping). If the additional outliers (say at point )mi   are added to 

the original outlier closely, these outliers may not be picked up as outliers because of 

the more pronounced rotation or shift of the regression line towards these outliers 

(masking). 

To overcome masking, several proposals are made and this includes those of 

Atkinson and Marco (2000). These methods however, typically involve removing the 

'masking' outliers from the data set before the 'masked' outliers can be identified. The 

misidentification of outliers may result in biasness to parameter estimates and thus 

provide an inappropriate model in the panel analysis. Many other useful references for 

the detection of outliers in the time series model are discussed in the following section. 

Chang et al. (1989) introduced the iterative procedures by using the intervention 

models discussed in Box and Tiao (1975) to determine the outliers’ effects for the 

detections of the AO and IO. Chen and Liu (1993) extended the study by Chang et al. 

(1989) to other two types of outliers: (i) LS and (ii) TC. Sachez et al. (2000) improved 

the performance of the previous method of Chen and Liu (1993) by using two tools to 

distinguish the IO from the LS with the presence of outliers. The first is a better initial 

parameter estimate that is obtained by cleaning the series of patches of jointly 

influential observations that are treated as LS. The second is a better significance level 

that prevents the confusion of LS with IO. Franses and Ghijsels (1999), who extended 

the study of Chen and Liu (1993) in forecasting stock market volatility in generalized 

Autoregressive Conditional Heteroskedasticity (GARCH) models, focused on 
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forecasting performance of GARCH models for AO-corrected returns
3
. As a result, they 

found that the models for the AO-corrected data yielded substantial improvement over 

GARCH and GARCH-t (when for t  is conditionally t-distributed) for the original 

returns. Pena (1990) suggested a statistics based on the Mahalanobis distance to 

measure the influence of outliers on the model parameters and the techniques were 

shown to be very useful for indicating the robustness of the fitted model. Bidarkota 

(2003) used different approaches whereby he suggested multi-process mixture models 

as an alternative model in capturing LS in the presence of outliers.  

In the economic and financial data, for example, some observed values may be 

inconsistent from other observations in a sample of heterogeneous economic units.  

These isolated or extreme observed values are termed outliers and often have a large 

impact on the results of the statistical analyses on which the conclusion based on a 

sample with and without these units may differ drastically (Verardi and Wagner, 2010).  

 

1.3 Problem Statement and Objectives of the Study 

Over the years, the interest in the panel data models focused on the issue of cross 

sectional dependence. However, limited literature can be found on the presence of 

outliers in the panel. Bramati and Croux (2007) studied the robust regression technique 

with the fixed effects in contaminated panel. They investigated the robustness of the 

procedure by means of breakdown point computations with simulated data.  

  In empirical studies, CD among cross sectional units may occur due to the 

presence of unobserved factors and global shocks that are common to all panel 

members. In addition, each cross sectional may have local shocks (outliers) which affect 

                                                 
3 AO-corrected returns, *

tr , that is formulated from; “Let’s consider the GARCH (1,1) model; 
2/1

ttt hr  , where; 

1
2

10   ttttt hrh  , )1,0(~ Nt . Thus, the AO-corrected returns is constructed as tt rr *  for t  , with the formula 

2/12** )).(( ttt rrsignr   for t .” 
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only these respective individual units. With the presence of outliers, the effect of cross 

dependency can be more severe. In view of these, it is necessary to assess whether:  

 In the presence of outliers, does cross sectional dependence really exists? 

The standard cross sectional dependence tests rely on the estimated OLS residuals 

and it is subjected to the influence of outliers. The presence of multiple outliers may 

worsen the situation due to masking, and this will affect the presence or absence of 

CD. Thus, robust versions of CD tests are proposed to overcome such problem. 

 Are the standard approach of estimation and inference employed in the literature 

remains appropriate in dealing with cross correlated error? 

Even though there are a number of available approaches (Coakley et al., 2002, 2006; 

Philips and Sul, 2003; Kapetonis and Pesaran, 2004; Pesaran, 2006) that take into 

consideration the presence of CD in modeling the panel, the methods may provide 

inconsistent parameter estimates and inferences when outliers occur in the panel. As 

such, one needs to filter the effect of this cross section dependence and outliers to 

the model. Based on this interest, some robust approaches are proposed to deal with 

the cross sectional problem in the presence of contaminations in the panel data. The 

properties, test of hypothesis and construction of the confidence intervals for the 

parameter are also considered. 

 Does the presence of outliers affect the finite sample behavior of the standard 

estimator? 

The finite sample behaviors of estimator are commonly evaluated via simulation 

experiment. The statistical measures obtained from the experiment, for example; 

bias, MSE; may affected in the presence of outliers. The bias of the parameter 

estimates may become huge and subsequently result in large MSE. This will lead to 

inconsistent in parameter estimates as well as its standard error. This problem can be 

avoided using an appropriate estimation procedure and this can be achieved using 
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robust estimator. Due to that, the performance and robustness of the proposed 

estimator in parameter estimation is discussed and comparisons are made to some 

existing approaches in the literatures. 

 Do the standard unit root tests provide reliable result in detecting the presence of a 

unit root in the presence of outliers and cross dependency?  

The presence of cross dependency and outliers may affect the stationary of the 

model in the dynamic model.  The CD and outliers’ effect may biases the OLS 

estimator subsequently result in stationary of the model where as it is nonstationary. 

Based on this issue, a modification of existing unit root test is discussed with the 

aim to correct for CD, reduce the outliers’ effect and yield a reliable result for a unit 

root test. 

 

1.4 The Contribution of the Thesis  

The main contributions of the thesis are listed as follows. Firstly, robust cross 

dependency tests which are less sensitive to the influence of outliers are proposed. The 

presence of cross sectional tests reviewed includes the Breusch and Pagan (1980) 

Lagrange Multiplier Test (LM) and the Pesaran (2004) Cross Dependency Test (PCD).  

The LM and PCD tests as in Pesaran (2004) are sensitive to outliers in both pure static 

and dynamic models especially for the case of mild CD effect. These tests produce both 

type I
4
 and type II

5
 error in the presence of outliers.  Thus, as an alternative to these 

tests, robust tests which filter the effects of outliers on cross section correction are 

proposed. Our tests incorporate the robust methods with some modifications to the 

existing approaches in both types of models. The properties of the tests are derived in 

terms of asymptotic distribution of the respective proposed tests, while the finite sample 

behaviour of the proposed tests is examined by means of Monte Carlo experiments. 

                                                 
4 The test rejects a true null hypothesis (no CD).  
5 The test fails to reject a false null hypothesis (no CD). 
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 Secondly, a robust estimation procedure is proposed to estimate the parameter 

of interest in pure static model. The objective function of the proposed procedure aims 

at minimizing overall error yet is robust to influence outliers as well as cross correlated 

errors.  The proxy (the average of dependent variable and the observed regressor) of 

Pesaran (2006) approach is modified with the aim of computing a robust variance 

covariance matrix of residuals which yield consistent and unbiased estimators. Since 

Pesaran’s (2006) approach provide inconsistency in parameter estimates in the presence 

of outliers, an alternative approach that allows for cross sectional dependence in the 

presence of outliers is introduced.  

 Thirdly, the properties of the proposed model in terms of the limiting 

distribution of the proposed estimator are derived. This will provide a new test statistics 

for hypothesis testing, confidence interval of parameter of interest and overall goodness 

of fit of the model. To understand the finite sample behavior of the proposed estimator, 

a Monte Carlo simulation study is conducted. The performance of the proposed method 

will be measured in terms of bias and consistency. 

Fourthly, in coping the presence of outliers and CD in dynamic panels, a 

modification of Pesaran (2007) unit root test (namely, CIPS) is proposed. The CIPS unit 

root test seems to provide a good size and power of study when no outlier is present. 

Because the poor performance of CIPS in the presence of outliers, we modify the CIPS 

approach and Monte Carlo evidence support a better result of a proposed test in terms of 

size and power.  

For illustration purposes, all proposed procedures are applied to the real data set. 

The gasoline data of 18 organizations for Economic Co-operation and Development 

(OECD) countries will be used to estimate the parameter of the model in purely static 

model while; The Purchasing Power Parity (PPP) data will be used as an empirical 

application for testing a unit root in dynamic framework. Here, the aim is to illustrate 
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how those approaches solve the real situations of economic dataset and provide a good 

explanation and discussion based on the output obtained. 

 

1.5 Organization of the Study  

The remainder of this study is organized as follows: Chapter 2 will discuss cross 

dependency tests of Breusch and Pagan (1980) (LM) and Pesaran (2004) (PCD).   The 

details about the proposed cross dependency tests based on the robust tools are also 

presented in this chapter. The properties of the proposed tests are studied and the 

performances of these tests are illustrated via the Monte Carlo simulation study. The 

results of the simulation study of these CD tests are also discussed in this chapter.  

Chapter 3 discusses the techniques of the estimation procedures used to estimate 

the parameter in panel. The pooled model which is restricted to independence 

assumption of residuals is reviewed.  The Common Correlated Effects Mean Group 

(CMG) of Pesaran (2006) which relaxes such assumption is also discussed. The robust 

version of the CMG is proposed where the details of this procedure are discussed. The 

method to evaluate the fit of the model is also discussed further.  In inferential statistics, 

the asymptotic distribution of the RCMG is revised: the test statistics, hypothesis tests 

as well as the confidence interval of parameter estimates based on the asymptotic 

distribution are also developed in this chapter. 

Chapter 4 will focus on the simulation studies with the aim of illustrating the 

respective estimation procedures.  Several simulation experiments are conducted to 

study the behaviour of these procedures in terms of the parameter estimates itself. In the 

presence of outliers, the estimation procedure is illustrated by introducing a small 

percentage of the contaminated data to the original series. Here, the size and the power 

of the respective procedures as discussed in the previous chapter are measured. For CI 
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estimation, the quartiles of the parameter estimates using Monte Carlo simulation study 

are estimated. 

Chapter 5 discusses the unit root tests in the panel data in the presence of the 

cross-sectional dependence. The beginning of the chapter discusses the standard 

Augmented Dickey-Fuller (ADF) unit root test with the assumption of cross sectional 

independence within the residuals.  With CD, the Common Correlated ADF (CADF) 

proposed by Pesaran (2007) which uses the simple average of the individual CADF-

tests is reviewed and this is subjected to the influence of outliers. A robust unit root test 

as an alternative to the ADF is introduced while Pesaran’s unit root tests and the 

properties of these tests are discussed. The small sample performance is examined via 

the Monte Carlo simulation study and the results are given at the end of this chapter. 

Chapter 6 presents the analyses using real data with the aim of determining the 

appropriate procedure and reliable model. Finally, Chapter 7 provides some concluding 

remarks of this study. 
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CHAPTER 2 

Cross Sectional Dependence Tests 

 

2.1 Introduction 

Several statistical procedures have been developed to diagnose the CD in panels. 

Moran (1948) was the first to provide a test of spatial independence in the context of a 

pure cross section model. This test is however based on spatial matrix which is 

inappropriate for finance and economics modeling.  Thus, the residuals correlated 

across units (test for 0)( jtiteeE  for ji  ) is analysed based on the average of pair-

wise correlation of the residuals
ij̂  . The Lagrange Multiplier (hereafter LM) test of 

Breusch and Pagan (1980) is based on the squared sample pair-wise correlations 2ˆ
ij

  of 

residuals. It has been shown that the test has the correct size only if the number of cross 

sectional units ( N ) is less than or equals to the length of the time period (T ), which is 

TN  . This is due to the fact that   1ˆ 2 
ij

E   by the central limit theorem and is non-

centered at zero for large N (see Pesaran, 2004). As such, the size of the test will be 

distorted as N . Pesaran (2004) examined the normal approximation version of the 

LM test resulting in a modified CD test (hereafter PCD) which uses 
ij

̂ and is 

applicable for any values of N and T . The PCD test is very similar to Friedmen’s 

(1937) test which is based on Spearman’s rank correlation coefficient aveR
6
. 

Frees (1995) however modified the version of Friedmen to 2

aveR  in order to 

obtain a better power and size of the CD test in his paper. Meanwhile, Pesaran et al. 

(2008) proposed a bias-adjusted normal approximation version of the LM test for the 

                                                 
6 The formula of Friedmen’s test is given as  



 


1

1 1

ˆ
)1(

2 N

i

N

ij
ijave

r
NN

R , where 
ij

r̂ is the sample estimate of the rank correlation 

coefficient of the residuals. 
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panel data models with strictly exogenous regressors and normal errors. This method 

uses the exact mean and variance of the LM test and provides consistency in size and 

power when the cross section mean of factor loadings
7
 is near zero. However, the bias-

adjusted LM test is not as robust as the PCD test for the non-normal residuals and/or in 

the presence of weakly exogenous regressors.   

In a recent study, Godfrey and Yamagata (2010) proposed the bootstrap methods 

for testing H0 of the cross section independence in the panel. They relaxed the 

assumption of normality and homoskedasticity of the residuals as described in Pesaran 

et al. (2008) and the Monte Carlo results indicate that the proposed test give comparable 

results under classical assumptions and is well-behaved under heteroskedasticity. 

Moscone and Tosetti (2009) reviewed and compared the performance of several 

possible CD tests based on the sample pair-wise correlation coefficient and spacing. The 

Monte Carlo results show that the tests based on spacing are powerful (reject the null 

hypothesis correctly) under various forms of strong CD.  However, these tests have low 

power (inability to detect the presence of CD) in capturing weak dependency among the 

residuals
8
.  

A small fraction of spurious observations can sometimes seriously distort the 

results of CD due to the estimated residuals obtained from OLS.  However, it is more 

severe when there are bad leverage points (that is, outliers in X-direction). This situation 

arises in the dynamic panel model. For example, consider model in (2.3): 

.1 itit

T

iiit eyy   If outlier occurs at st  , it creates two outliers in the regression. 

Say that ),( 1 isis yy   is a vertical outlier referring only to the outlyingness in isy , while 

),( 1isis yy  is the leverage point because their isy  value is outlying. If ),( 1isis yy is far 

from the plane corresponding to the majority of the data, it is said to be a bad leverage 

                                                 
7
 Refer to equation (2.4) to see what factor loading is.  

8 Also known as spatial correlation (see Moscone and Tosetti, 2009). 



17 

 

point. If this point is large enough, the OLS estimator will be biased towards zero 

(Rousseeuw and Van Zomeren, 1990).
 

The cross sectional dependence tests of the LM and PCD rely on the OLS 

residuals, and it is well known that these estimates are sensitive to the presence of 

outliers. The presence of multiple outliers may worsen the situation due to masking, and 

this will subsequently affect the OLS fit and the corresponding residuals. The estimated 

residuals are affected by the outliers’ effects which subsequently result in an incorrect 

value of pair-wise correlation of the residuals ij̂  and provide incorrect results for the 

test statistics. For example, when the panel is free from CD, the presence of outliers will 

tend to favour the alternative hypothesis that CD is present. Likewise, if CD is observed 

in the panel, the presence of outliers may lead to the acceptance of the null hypothesis 

of cross section independence. This phenomenon is shown in the simulation results of 

the LM and PCD tests when outliers are present in the panel. 

In this chapter, robust methods for testing the presence of CD in uncontaminated 

and contaminated panels are developed.  Here, the potential outliers are estimated using 

robust tools which subsequently reduce the effects of outliers. The properties of the 

proposed tests are studied and the finite sample behaviour of the tests will be 

investigated by means of Monte Carlo experiments.   

 

2.2 Model  

Consider the panel model given by 

itiiititit eyxfy  ),;,(  ;   TtNi ,,2,1   and ,,2,1      (2.1) 

where ),;,( iiitit yxf   is a function of  itx and  ity  with  itx denotes the observed 

regressor (independent variable), ity    is the dependent variable, ii  ,
  

are parameters 

which are  allowed to vary across each panel member i  and ite 
 
is the random errors 
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component.  The function ),( yxf  can be expressed in the form of linear regression 

model with  itx as the explanatory variable:  

;itit

T

iiit exy  
           

(2.2) 

or, in the form of a dynamic model:  

 ;1 itit

T

iiit eyy             (2.3) 

where 1ity  is the first lagged value of  ity and ite are random errors.  

 In the presence of CD, ite takes the form 

itt

T

iit fe   ;  TtNi ,,2,1  and  ,,2,1         (2.4) 

where tf
 
is the latent factors, i  

are factor loadings that are common across cross-

sectional units ,i
 
and it  is the random errors of  ite .  

The objective of the tests is to ‘measure’ CD, that is to decide whether in reality 

we have a cross section independence (null hypothesis H0) or the process is indeed cross 

sectional dependence (alternative hypothesis H1).  Specifically, H0 and H1 are defined as 

follows: 

H0:  0)( jtiteeE  for all ,,,2,1, Nji  ji  ; ;,,2,1 Tt      

H1:  0)( jtiteeE  for at least a pair of ),,( ji ,,,2,1, Nji   ji  ; .,,2,1 Tt   

Under H0, there is cross section independence between the ),( ji th
 residuals at time t  

while the H1 states that at least a pair of cross sectional units is dependent. To test for 

H0, the following usual assumptions are required: 

A2.1:  The disturbances 
it

e are serially uncorrelated random variables (rv), that is 

0)( isiteeE  for all ,,,2,1, Tst   st  ; ;,,2,1 Ni  each with mean 0 and the finite 

variance, .0 2 
i

  

A2.2: Under the null hypothesis of cross section independence, 
itiit

e   for all i and t  

and with ).1,0(~ iidit   
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2.3 Existing Approaches of CD tests 

2.3.1 The LM test of Breusch and Pagan (1980) 

The most common method used to detect CD in the panel data model is the 

Lagrange Multiplier of Breusch and Pagan test and this test is given as 

 


 


1

1 1

2ˆLM
N

i

N

ij
ij

T            (2.5) 

where 
ij

̂ is the sample pair-wise correlation of the residuals with 

2/1

1

2

2/1

1

2

1
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ˆˆ
ˆˆ



























T

t

T

t

T

t
jtit

jiij

jtit
ee

ee
         (2.6) 

and itê  is the fitted residual obtained from the OLS estimator of model (2.1). 

Specifically, ititit yye ˆˆ  , where itit yy ˆ  and  are the observed and fitted values 

respectively of the dependent variable. Under the null hypothesis, LM   tends to a chi-

square distribution with   
2

)1( NN
 degrees of freedom when N  is fixed and  T tends 

to infinity
9
. 

 

2.3.2 The PCD test of Pesaran (2004) 

As an alternative to the LM test, Pesaran (2004) proposed a new cross 

dependency test (PCD) to test for cross sectional dependence in the panel model. This 

test is applicable to both the pure static and dynamic models and is also robust to 

structural breaks
10

.  The test is then given by 

 


 


1

1 1

ˆ
)1(

2
PCD

N

i

N

ij

ij
NN

T
          (2.7) 

                                                 
9 See Breusch and Pagan (1980) for details of the test properties. 
10 Pesaran has shown both theoretically and empirically that his test is robust to multiple structural breaks and can also be applied to 

skewed data. 
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with 
ij

̂  as in (2.6) and that the PCD test is distributed as the )1,0(N under the null 

hypothesis. A major drawback of the PCD test as argued by Hoyos and Sarafidis (2006) 

is that it is likely that the sum of negative and positive correlations will cancel out even 

though ij̂ is close to 1 which is indicative of the presence of CD. The PCD test lacks 

power in situations where the average population pair-wise correlations are zero, 

although the underlying individual population pair-wise correlations are non-zero. This 

could arise under the alternative hypothesis cross sectional dependence where cross 

sectional dependence can be characterised as a factor model with a mean of zero factor 

loadings (see Pesaran, 2004). In addition, it is only applicable for residuals distributed 

from any symmetric distributions. 

 

2.4 Robust Regression 

An OLS estimator is not applicable in models where the fundamental 

assumptions are violated. Although some analysts adopt ‘data transformation’ to ensure 

that the assumptions of the model hold, this approach may not totally eliminate the 

effect of outliers (Yafee, 2003). While the Box-Cox transformation is successful for the 

weak CD in many cases, it will fail in the strong CD effect. For this, a small simulation 

is conducted to support this finding
11

. 

Inaccurate value of the parameter estimates may distort the results or 

information wanted. Thus, an alternative is to replace the OLS by robust regression 

(RREG) (Maronna et al., 2006).   

  The main purpose of the RREG is to find a reliable fit for a model by limiting 

the influence of outliers. Chen (2002) addresses the following problems which may 

occur in regression models: 

 

                                                 
11 The result of this analysis is given in Appendix A. 
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 Outliers occur in Y- direction (dependent variable) 

 Outliers occur in X-direction (called leverage observation) 

 Outliers occur in both X and Y-directions. 

As a first step towards robustness, the OLS estimator is replaced with two 

techniques of the RREG in order to reduce the influence of outliers in the estimation 

process: (1) An M-estimator for the pure static model, and (2) a Least Trimmed Squares 

(LTS) in the dynamic case. The spin-off from the robust fit allows the identification of 

outliers. Once outliers are detected, these observations can be corrected or ‘re-

estimated’. In general, this procedure is used for exploratory purposes to (1) identify 

potential outliers, and (2) compute robust ij̂ . 

 

Case 1: Pure Static Model 

In the pure static panel, a robust M-estimation is applied to obtain  Tiii  ˆ,ˆˆ b  

in model (2.2) which, typically ‘handles’ outliers in the dependent variable and 

assuming that there is no outlier in vertical direction (independent variables). The 

general M-estimator is defined as  the value ib  which minimizes the following criterion:  


























  T

t i

it
i

T

t i

it

T

iit
i

ey

11 ˆ

ˆ
min

ˆ

ˆ
min







xb
   for TtNi ,,2,1  and ,,2,1      (2.8) 

with a bounded  - function and a high breakdown point preliminary scale i̂  given in 

(2.17), for each individual units, i  .  

For the M-estimator, the i  in (2.8) is a filter function constructed subject to the 

following properties:  

For each    ,,,2,1 Ni   

A2.3: 0
ˆ

ˆ












i

it
i

e


   

A2.4: 0)0( i         



22 

 

A2.5: 





















i

it
i

i

it
i

ee







ˆ

ˆ

ˆ

ˆ
                                               

A2.6:   1i  if i  is bounded.        (2.9) 

with a  -function defined as the derivative of a  -function such that   is an odd 

function with 0
ˆ

ˆ












i

ite


 for 0

ˆ

ˆ


i

ite


  (Maronna et al., 2006). 

Examples of the  - function include the family of M-estimation (such as Huber, 

Tukeys biweight, and Hampel), Generalized M-estimation (such as Schweppes) and 

high-breakdown estimation (such as Least Median Squares (LMS) and LTS). Next, how 

the ib̂  in (2.8) is obtained, is shown.   

Let 
i

it
it

e
u

̂

ˆ
ˆ  ,  minimizing (2.8) can be achieved by differentiating (2.8) w.r.t. ib  thus 

solving  

  0ˆ
1




it

T

t

iti u x ,         (2.10) 

where    itiiti uu ˆˆ    and  i̂  is computed from initial L1
12

 scale estimate of  ib̂  based 

on Median Absolute Deviation  formula given in (2.17)
13

 .           

Using     itiit

T

t

iti uwuu ˆˆˆ
1




 ,   (2.10) can be written as follows: 

  0ˆˆ
1




T

t

ititiit uwu x  for  .,.....,2,1  and ,.....,2,1 TtNi       (2.11) 

Rewriting  
i

it
it

e
u

̂

ˆ
ˆ  ,   the following is obtained: 

  0ˆ
ˆ

ˆ

1




T

t

ititi

i

it uw
e

x


 

                                                 

12 The L1 estimator minimize objective function of   



T

t

ite
1

minˆ
ib . 

13 Here, itx  is the combination of vector of independent variable and vector of ones.  
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 
  0ˆ

ˆ

ˆ

1







T

t
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i

it

T

iit uw
y

x
xb


                                    (2.12)                    

 
 




T

t ititi

ititiit
i
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uwy

1
2ˆ

ˆˆ
x

x
b          (2.13)  

In the matrix form, ib̂  is computed as follows: 

       iiti

T

iiiti

T

i

T

iii uuβ yWXXWXb ˆˆˆ,ˆˆ 1
        (2.14) 


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
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


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T
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y

y

   

2

1

1 
y  

  matrix. weight ofmatrix   is ˆ  and TTuiti W . 

This estimating equation is solved using iteratively reweighted least squares with 

the initial estimates  )0(ˆ
i

b  from OLS. The weights  )1(ˆ h

i it
uW  are computed from the 

previous estimates using  )1(ˆ h

it
e  at iteration h . Thus, a new weighted least squares 

estimation is given as follows: 

     i

h

i

T

iii

h

i

T

i

h

ititi
uu yWXXWXb

)1(1)1()( ˆˆˆ         (2.15) 

and this  procedure is repeated until the convergence is observed. For a homogeneous 

estimate for all i ( bbbb  N...21 ),  Tiii  ,b where  the estimate of b  is 

computed as 



N

i

i
N 1

ˆ1ˆ bb . 

  

Case 2: Dynamic Model 

In the dynamic model however, the Least Trimmed Squares (LTS) estimator is 

employed with a high breakdown point. The motivation for choosing the LTS instead of 

other robust estimators is to detect outliers and bad leverage points. According to 

Rousseeuw (1984), the LTS estimator is more efficient than other procedures in RREG 
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and he advocates trimming the distribution to eliminate the outliers’ effects. Besides, the 

LTS method has better statistical efficiency and local stability than the LMS (Wang and 

Suter, 2002).  

The LTS estimator is defined through the following criterions: 





m

t

tit

T

iit xy
1

)(

2
ˆmin b                  (2.16) 

that is, minimizing the sum of the absolute squared residuals to obtain a coefficient of 

interest.  Here, m  takes the value of      2/22/  kT  with  .  denoting the integer 

value and 
)(t

Z representing the  Z  order statistics for Tt ,,2,1  .  

Once outliers are detected from the robust fit, two different approaches are 

applied to reduce the outliers’ effect and consequently results in the correct value of .ˆ
ij

   

The details of the procedures are given in the next section. 

 

2.4.1 Robust Standard Deviation (Scale) 

The standard deviation of the residual process in (2.1) is commonly computed as 

2/1

1

2

1
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ˆ
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


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






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
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kT

e
T

t

it

i , where itê   is the estimated residual obtained from OLS procedure. 

In the presence of outliers, the OLS residuals are affected result in a larger value of  i̂ . 

As i̂  may be overestimated in the presence of outliers, we may need an alternative 

estimate of the standard deviation. A very robust choice of scale estimate is the Median 

Absolute Deviation (MAD) with the tuning constant 4825.1c , chosen so that i̂  is 

consistent for  i  at the normal distribution, which yields 

 it
t

it
t

i eec ˆmedianˆmedian ˆ  for TtNi ,,2,1   and ,,2,1   .             (2.17) 
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Therefore, the MAD is employed in (2.8) as a robust scale estimates since it is more 

robust than other scale estimates. 

 

2.4.2 Robust CD tests 

The following simple alternative is proposed by replacing ij̂  in (2.6) with  ij̂  

where: 
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      (2.18) 

and  it.  represents either  it1   or   it2  , where  it1  and   it2  are the robust 

standardized residuals using  a robust and diagnostic tools, respectively, and  this is 

described in Sections 2.4.2.1 and 2.4.2.2. 

  

2.4.2.1 Robust  CD test using a robust tool 

Some commonly used methods for ‘reducing’ the outliers’ effects can be found 

in Huber (1981), Rousseeuw and Leroy (1987), Chen (2002), and Maronna et al. (2006).  

The following method is based on Huber  -function:  
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(2.19) 

where itu  is standardized by 

 

MAD

ît
it

e
u




         

(2.20) 

Here, the standardized residual itu  is computed using iteˆ  as the fitted residual 

obtained from a RREG
 
divided by an estimate of their robust scale, MAD given in 

Equation (2.17).  
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The  it1  is the derivative of (2.19) w.r.t. itu  

 


 


otherwise        )(sign 

;                  
1

it

itit

it
u

uu




       (2.21) 

By setting 345.1  to achieve a 95% efficiency at normal distribution, any 

observation with 345.1
ˆ

ˆ




i

ite


 will be flagged as outliers. While most standardized 

residuals remain unchanged, those flagged outliers will be replaced by a constant  

)(sign itu . Notice that as   , itit u]1[ . In general, this procedure is used for 

exploratory purposes to identify the potential outliers prior to computing the robust 

correlation coefficient  ij[.]
ˆ
 .  

  By substituting (2.21) into (2.18), two robust versions of the CD test are 

obtained based on the Huber function, namely: 

i) Robust LM Test 1, denoted by RLM1: 
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(2.22) 

ii) Robust PCD Test 1, denoted by RPCD1: 
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The behaviour of these tests is discussed in Section 2.4.3. 

 

2.4.2.2 Robust CD test with diagnostic tool 

In the second approach, the outliers’ effects are detected using the benchmark of 

standardized residuals itu .  Here,  it2  is used in (2.18) and it is given as follows: 

 
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(2.24) 
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where i̂
 
is a robust scale computed as in (2.17) , itu  is computed as in (2.20) and d  is 

chosen from the simulation study reported in Tables 2.1 to 2.2 for the pure static and 

dynamic models, respectively. The value of d  represents the critical value of this 

procedure and the effect of outliers is removed when the absolute standardized residuals 

duit   . Notice that as d , itit u]2[ . 

 

Substituting (2.24) in (2.18), yields other sets of robust CD tests as follows:  

i) Robust LM Test 2, denoted by RLM2: 
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(2.25) 

ii) Robust PCD Test 2, denoted by RPCD2: 
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For the case of the unbalanced panel,  ij
̂   in (2.18) is computed as (see Pesaran, 2004) 
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2.4.3 The Properties of the Proposed CD tests 

The following theorem is needed in Theorem 2.1 and Theorem 2.2. 

 

Central Limit Theorem (CLT) 

This theorem states that the sum of a large number of random variable (rv) will 

have an approximately normal distribution if the sequences of those rv are identically 
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and independently distributed (iid), with some mean and variances. For example, in the 

panel data model described in (2.1), if  ),,,( 21 Nttt   for TtNi ,,2,1   .,,2,1    

are iid with mean   and variances 2 , the central limit theorem states that:  

 2

1 1
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
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 TN  and   as . 

Theorem 2.1: Under assumptions A2.1- A2.6, and assuming that  it1 is monotone 

nondecreasing function
14

, 

               0ˆ
)(1
ijE    

and  

    0RPCD1 E  

where 
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 and the RPCD1 are defined in (2.23) . 

 

Proof  of  Theorem 2.1
15

:  

Assuming that assumptions A2.1-A2.2 is true for robust residuals
16

, itê  and under 

assumption   A2.3- A2.5 for the proposed procedure, we have  

   0
ˆ

ˆ
11 
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


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
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


 
it

i

it uE
e

E 


   .                            (2.28) 

Equation (2.28) holds if iteˆ  is symmetric, where iteˆ  is the estimated residuals obtained 

from M-estimator ( ite  in model (2.1)) and i̂  is the robust scale estimate, MAD and 

computed as in (2.17).  

                                                 
14 1 is monotone nondecreasing with ).(0)( 11    
15 The references of this proof are based on Maronna et al. (2006) and Pesaran (2004). 
16 Robust M-residuals coincides with the OLS residuals when  it1  in (2.21) is identity function (McKean et al. (1993)). Thus, the 

properties of this M-residual will follow OLS properties that result in the assumption of A2.1-A2.2. See details in McKean et al. 

(1993). 
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Let it  and jt be the scaled standardized residuals defined by  
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                (2.29) 

and rewrite 
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Using the properties of (2.28) in (2.29), we have   0itE   for all ti   and .  

Assuming that assumptions of A2.1-A2.2 are true for iteˆ  , and then  ij1
ˆ
  and  is1

ˆ
  are 

cross sectional independences for sji ,,  such that sji  .  Specifically,  

               0ˆˆ
''

1 1'1 1'

''11
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Thus,    ,0ˆ
1

ijE   which in turn leads to   0RPCD1 E  for any N  and all  .1 kT
 

End of proof of Theorem 2.1. 

 

Proposition 2.1: Under Theorem 2.1, and assumptions A2.1-A2.6, the asymptotic 

distribution of RPCD1 is given as follows 
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as  NT  and , where 2

FZ  is given in (2.30). 

 

Proof  of  Proposition 2.1
17

:  

Under H0,  let   

 
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1 1
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ˆ
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F  .       

                                                 
17 The references of this proof are based on Maronna et al. (2006) and Pesaran (2004). 
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Using the result in Theorem 2.1 where  is1
ˆ
  are cross sectional independences for 

sji ,,  such that sji  .  Specifically,  

               0ˆˆ
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Using the CLT, for all 1 kT  where k  is the number of independent variables, the 

following is obtained.  
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Hence,  
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where 2

FZ  is given in  (2.30)  and depends on 1 used. 

Note that (2.18) can be rewritten as follows: 
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End of proof of Proposition 2.1
18

.

  

Corollary 2.1
19

: Using result in Theorem 2.1 and Proposition 2.1:  
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 TN  and   as .

 

 

Corollary 2.2: When   tends to infinity, RLM1 coincides with LM and RPCD1 

coincides with PCD.  

Corollary 2.3: When d  tends to infinity, RLM2 coincides with LM and RPCD2 

coincides with PCD.  

 

2.5 Finite Sample Behaviours of the Tests of Cross Sectional Dependence 

In this section, the Monte Carlo simulation study is used to investigate the finite 

sample behaviour of the CD tests in the presence of contaminations. In the first part of 

this experiment, the mean and standard deviation, size and power of the test based on 

500 replications for 100,20  TN  are computed to investigate the performance of the 

CD tests under the various degrees of CD and various types of outliers. In testing the 

                                                 
18 Figure 2.1 supports the result that RPCD1 approximate the normal distribution. 
19 Figure 2.2 supports the result that RLM1 approximate the normal distribution. 
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null hypothesis of the cross sectional independence, the size of the test is defined as the 

probability of rejecting the null hypothesis of cross sectional independence when no 

contemporaneous correlated errors exist in the model, that is, 

  The size of the test =   trueis  H|Hreject  00P  

We say that the size of the test is reasonable if it is fairly close to 0.05 (at 5% level of 

significant). The power measures the probability of correctly rejecting the null when the 

alternative hypothesis is true (there is cross correlated errors in the model), that is,  

  The power of the test =  false is  H|Hreject  00P  

and if the power more than 90% (at 5% level of significant), than the test is considered  

has high power . 

Next, 500 runs are performed for each pair of cross sectional units and times 

with )100,50,30,20,10(N  and  )100,50,30,20,10(T  to investigate the size and 

power of the tests in uncontaminated and contaminated panels with 5% contamination
20

. 

For the LM, RLM1 and RLM2 tests, only the performance of the tests for TN   is 

studied because these tests experience size distortion when .TN 
 

 

2.5.1 The Pure Static Panel Model 

Following Pesaran (2004), data generating process (DGP) is considered as 

specified by: 

itit

T

iiit exy   ; and ititt

T

iit fe   ; for TtNi ,,2,1,0,,49   ,,,2,1    

with )5.0,5.0(~ iidUi ; 1it ; );1,0(~ iidNxit )1,0(~ iidNit ; )1,0(~ iidNf
t

.  

i
  is set as follows: 

1. Homogeneous slope: ;1 i  

2. Heterogeneous slope: ].1,0[~ Ui                                                                           (2.31)
 

                                                 
20 All of the computations are conducted using S-PLUS 
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Under various degrees of CD, the value of i  takes the following forms
21

: 

 (i)  0
i
  for cross-sectional independence, 

 (ii) )3.0,1.0(~ iidUi for mild cross dependency and , 

(iii) )5.1,5.0(~ iidU
i

  for strong effect of cross dependency. 

In the presence of contaminations ( itm ) at time it  , for each cross-sectional unit i , 

the residual has the following form: 
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
       (2.33) 

and in the presence of structural breaks  (changes in slope):  
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and for changes in variances:  
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(2.34) 

 

2.5.1.1 Results and Discussion 

 Tables 2.1 and 2.2 provide the cut-off point, d  in (2.24) based on three different 

nominal levels, 10%, 5% and 1% for the pure static and dynamic models, respectively. 

As expected, when T  large, RLM2 and RPCD2 follow a normal distribution and hence 

2.58 ,96.1 ,64.1d  at 10%, 5% and 1% nominal level, respectively. These values 

however, are subjected to the small sample size as shown in the table. This cut-off point 

d  is used in computing the test statistics in investigating the size and power of the tests. 

Tables 2.3 to 2.4 summarize the results of the CD test in the regression panel for 

the case of the homogeneous slope. For uncontaminated data and cross sectional 

independence (column 1), the average values of test statistics for LM and PCD are 

                                                 
21 The forms of CD are set to be close to Pesaran (2007) and Coakley et al. (2006). 

        (2.32) 
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relatively small, suggesting that the null hypothesis of 0i  should not be rejected.  

The size of these tests is around 5%.  The proposed tests (i.e. RLM1, RLM2, RPCD1 

and RPCD2) provide the same conclusion, and are comparable with those results 

obtained from the standard LM and PCD tests. For the case of mild CD 

effect )3.0,1.0(~ iidUi , it is observed that only the PCD, RPCD1 and RPCD2 tests 

reject the null of the cross section independence while the LM, RLM1 and RLM2 do 

not. When the effect of the CD is stronger ),5.1,5.0(~ iidUi  all tests reject the null of 

cross section independence with a high probability.  

In the presence of 5% contamination (see columns 2 to 5 of Table 2.3), it is 

observed that the LM test is over-sized when no CD is present in the panel.  The RLM1, 

RLM2 and RPCD2 however provide the correct size for the study. Similar results are 

obtained for the RPCD1 test, except in the presence of contamination from 2
)30( .  

Notice that both the LM
 
and PCD tests fail to detect the present of mild CD in the 

contaminated panel. By contrast, the RPCD1 and RPCD2 tests perform well with 

reasonably good power. For the stronger CD effect, the power of the proposed methods 

(RLM1, RLM2, RPCD1 and RPCD2) continue to perform well compared to the LM 

and PCD tests in both the uncontaminated and contaminated panels.  Similar results are 

obtained as the percentage of contaminations increases to 10% (Table 2.4).  For the 

heterogeneous panel, the similar findings are observed and these are reported in Tables 

2.5 to 2.6. 

In the presence of the structural breaks, all tests attain the correct size for the 

case of the pure static model (Table 2.11). The PCD, RPCD1 and RPCD2 tests 

outperform the LM, RLM1 and RLM2 tests in term of power for the case of mild CD 

effect. 

 



35 

 

2.5.2 Dynamic Panel Model 

The DGP for the first order dynamic panel model is considered as follows:  

;1 itit

T

iiit eyy    with )1( iii    and itt

T

iit fe     for 

TtNi ,,2,1,0,,49   .,,2,1   . ]02.0,0[~ iidUi  
is set

 
with )1,0(~, Nftit  

and
i

  are given as in (2.32). In investigating the power and size of the tests, the degrees 

of the cross sectional dependence in the DGP for this model will be similar with (2.32).  

In the presence of contaminations in the dynamic case, only the additive outliers (AO)
22

 

type that affects only ity
 
is considered. Thus, the notation of this will take the form of: 

.,,2,1for    
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





     (2.35) 

Based on 500 simulation runs
23

, the mean and standard error of the test statistics 

are computed for a pair of sample size 100,20  TN  in the first experiment, together 

with the respective power and size of study under five conditions namely, in which the 

residuals ite  are distributed as (i) )1,0(N ; (ii)   2

30)1,0(1   N ; 

(iii)   )4,4()1,0(1 NN   ; (iv)   )2,1()1,0(1 LNN   ; (v)     )1,0(1 N Cauchy 

(0,16) , where  is the percentage of contamination chosen as 0.05 and 0.10, 

respectively. In the second experiment, in order to provide insight on the effect of N  

cross sectional units and time T  on the size and power of the test, residuals ite  are 

simulated from )1,0(N  for the uncontaminated and     )1,0(1 N Cauchy (0,16) for 

the contaminated panels, respectively with 05.0 . The pair of sample size chosen 

is ),100,50,30,20,10(N  and )100,50,30,20,10(T . The performance is investigated 

when  i  (that is when the slope is homogeneous across cross sectional units) and 

                                                 
22 AO affect the level but leave the variance unaffected. 
23 Only 500 runs are used due to time consuming especially when sample size are large, for example when )100,100(),( TN which 

equivalent to 10000 samples. Besides that, with 500 runs, the results slightly consistent if we take larger replications, and due to the 

time constraint, we fix to this number. 
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when
i


 

differs across i
 

(heterogeneous case) under the various levels of cross 

dependency in the panel: no CD, mild CD effects and strong CD effects.  

 

2.5.2.1 Results and Discussion 

The results of the dynamic panel are summarized in Tables 2.7 to 2.8, and 2.9 to 

2.10 for the homogeneous and heterogeneous slopes, respectively. In the case of the 

homogeneous slope and no contaminations, all tests have the correct size when 0i  

(see column 1 Tables 2.7 and 2.8).  The power of the tests for the case of mild CD is 

reasonably well except for the RLM, RLM1 and RLM2 tests. These tests however 

provide a good power for the case of a strong CD effect, and are comparable with those 

obtained for the PCD, RPCD1 and RPCD tests in uncontaminated data.  

For the homogeneous case and in the presence of outliers, the LM, RLM1 and 

RLM2 tests suffer from size distortion (for both 5% and 10% contaminations from 2
)30(  

and Cauchy distribution (see columns 2 and 5 of Tables 2.7 and 2.8). Similar results are 

obtained for the RPCD1 and RPCD2 tests. These tests fail for a larger size and heavy 

tailed contamination. The PCD test however provides a reasonable size of the test in the 

presence of outliers (columns 2-5 of Tables 2.7 to 2.8). The proposed method, the 

RPCD1 and RPCD2
 
tests

 
have reasonably good powers when CD is observed in panel 

(that is )3.0,1.0(~ iidUi  and )5.1,5.0(~ iidUi ) and which outperform the PCD, LM, 

RLM1 and RLM2 tests for the case of mild CD in contaminated panel. Similar results 

are obtained for the size and power of the tests for the case of the heterogeneous slope 

in the uncontaminated data (see column 1 of Tables 2.9 to 2.10).  In the presence of 

outliers, the size of the LM, RLM1 and RLM2 tests suffer from size distortion as in the 

homogeneous slope case. The PCD, RPCD1, RPCD2 tests however have the correct 

size for the test
 
with values approximately 0.05 (as shown in columns 2 to 5 of Tables 

2.9 to 2.10). In the case of mild CD effect, the RPCD1 and RPCD2 tests provide good 
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results in the presence of 5% contamination while the LM, RLM1, RLM2 and PCD 

tests fail to do so (see Table 2.9). The power remains high with 10% contamination 

except for the RPCD1
 
test when AOs are from 

2

30
  distribution (see Table 2.10).  All 

tests attain high power for the case of the strong CD in the presence of 5% 

contamination (Table 2.9) but not for LM and PCD when the percentage of 

contamination increases to 10% (Table 2.10).  

In the presence of the structural breaks (Table 2.12), similar results are obtained 

as in the pure static case. The LM, RLM1 and RLM2 tests suffer from size distortion in 

the presence of structural breaks while the RPCD1 and RPCD2 outperform PCD in term 

of size of the test in the presence of structural breaks in the dynamic model. All tests 

however provide the correct detection of CD when a strong CD is observed in the panel. 

For overall performance of size and power of CD tests, the results are reported 

in Tables 2.13 to 2.14 (pure static model) and Tables 2.15 to 2.16 (dynamic), 

respectively. The results of the Monte Carlo study are summarized as follows: First, in 

the contaminated data (see Tables 2.14 and 2.16), the RLM1, RLM2, RPCD1 and 

RPCD2 tests retain similar power as in the uncontaminated version (see Tables 2.13 and 

2.15). Secondly, the RLM1 and RLM2 tests however generally have lower power in the 

presence of a mild CD except when T  for both the uncontaminated (see Tables 

2.13 and 2.15) and contaminated panels (see Tables 2.14 and 2.16). Thirdly, while the 

power of the test for the PCD and LM tests decreases as T in the presence of mild 

CD and outliers, as shown in Tables 2.14 and 2.16, the RPCD1 and RPCD2 tests 

continue to attain good power. Finally, it is concluded that the proposed method 

(RPCD1 and RPCD2) yields comparable size and power of study to those obtained in 

the PCD approach for both cases when N  large relative to is T  and when T  is large 

relative to N .   
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Table 2.1: Critical Region for d in the Pure Static Panel Model (Heterogeneous slope) 

      T / N  10 20 30 50 100 

 

            10% 

10 1.818 1.796 1.786 1.788 1.783 

20 1.707 1.707 1.707 1.697 1.700 

30 1.690 1.682 1.681 1.681 1.678 

50 1.668 1.667 1.665 1.663 1.664 

100 1.657 1.655 1.654 1.652 1.656 

 

           5% 

10 2.264 2.218 2.208 2.199 2.184 

20 2.077 2.069 2.066 2.054 2.053 

30 2.048 2.025 2.026 2.020 2.017 

50 2.003 1.997 1.996 1.994 1.993 

100 1.983 1.977 1.977 1.974 1.979 

 

            1% 

10 3.269 3.143 3.110 3.088 3.056 

20 2.878 2.814 2.814 2.788 2.785 

30 2.772 2.727 2.714 2.708 2.703 

50 2.681 2.663 2.662 2.656 2.654 

100 2.629 2.614 2.614 2.612 2.617 

      
Note: The results are the value of d  in (2.24) for three nominal levels, 1%, 5% and 10%  computed based on 5000 replications. 

The model for the purely static panel is itit
T
iiit exy   ; and itittiit fe   ; with )5.0,5.0(~ iidUi ; 1it ; )1,0(~ iidNxit )1,0(~ iidNit ; )1,0(~ iidNf t ; ]1,0[~ Ui

. 
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Table 2.2: Critical Region for d in the Dynamic Panel Model (Heterogeneous slope) 

      T / N  10 20 30 50 100 

 

               10% 

10 1.968 1.946 1.940 1.937 1.940 

20 1.780 1.775 1.783 1.770 1.774 

30 1.739 1.739 1.736 1.730 1.733 

50 1.701 1.697 1.702 1.701 1.701 

100 1.676 1.674 1.673 1.673 1.674 

 

              5% 

10 2.552 2.522 2.513 2.502 2.503 

20 2.246 2.244 2.245 2.232 2.238 

30 2.169 2.162 2.166 2.157 2.155 

50 2.092 2.083 2.089 2.089 2.088 

100 2.032 2.032 2.029 2.027 2.029 

 

             1% 

10 3.676 3.571 3.565 3.546 3.533 

20 3.078 3.048 3.056 3.035 3.034 

30 2.915 2.890 2.889 2.877 2.883 

50 2.770 2.755 2.763 2.761 2.765 

100 2.677 2.669 2.668 2.671 2.669 

      
Note: The results are the value of d  in (2.24) for three nominal levels, 1%, 5% and 10%  computed based on 5000 replications.  

The model for the dynamic panel is ;1 itit
T
iiit eyy    with )1( iii    and ittiit fe   ; iii   0 with )1,0(~,, Nf tiit  ; ]1,0[~ Ui

.
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Table 2.3: CD Test in the Pure Static Model (Homogeneous slope) (5% contamination) 

Test  CD case/ ite  N (0,1) 
0.95 N (0,1)+ 

2
3005.0   

0.95 N (0,1)+ 

0.05N(4,4) 

0.95 N (0,1) + 

)2,1(05.0 LN  

0.95 N(0,1)+ 

0.05 Cauchy 

(0,16) 

LM 

No CD 

0i  

191.696 193.203 192.487 193.137 192.161 

 
(18.679) (39.209) (48.081) (65.059) (82.285) 

 
0.048 0.212 0.260 0.296 0.302 

RLM1 191.778 189.139 191.755 191.208 192.117 

 
(19.215) (19.551) (20.182) (19.793) (18.528) 

 
0.056 0.048 0.064 0.056 0.048 

RLM2 191.645  191.064 191.631 191.603 191.551 

 
(19.312) (19.220) (19.361) (19.150) (19.101) 

 
0.054 0.050 0.058 0.054 0.044 

PCD -0.010 0.043 -0.030 -0.020 0.072 

 
(0.999) (1.039) (0.979) (0.974) (1.003) 

 
0.050 0.056 0.046 0.042 0.044 

RPCD1 -0.002 0.763 0.010 0.126 -0.030 

 
(1.010) (1.020) (0.963) (0.986) (1.003) 

 
0.050 0.134 0.048 0.050 0.042 

RPCD2 0.017 0.061 0.002 0.022 0.062 

 
(1.034) (1.025) (1.007) (1.011) (0.949) 

 
0.056 0.052 0.060 0.062 0.038 

LM 

Mild CD 

)3.0,1.0(~ Ui  

221.866 192.555 192.796 194.370 189.078 

 
(26.609) (38.005) (48.830) (67.681) (74.700) 

 
0.450 0.200 0.240 0.278 0.296 

RLM1 218.010 216.869 213.530 215.813 212.000 

 
(25.779) (26.749) (23.328) (24.677) (24.036) 

 
0.400 0.354 0.312 0.372 0.298 

RLM2 205.551  205.393  207.392  206.680  206.910  

 
(22.146) (23.018) (22.370) (22.420) (22.306) 

 
0.202 0.202 0.234 0.220 0.220 

PCD 5.174* 0.157 0.521 0.920 0.166 

 
(1.757) (1.056) (1.123) (1.217) (1.060) 

 
0.984 0.062 0.114 0.196 0.076 

RPCD1 4.910* 4.907* 4.218* 4.578* 4.283* 

 
(1.741) (1.614) (1.558) (1.595) (1.649) 

 
0.964 0.966 0.932 0.962 0.924 

RPCD2 3.739*  3.480*  3.738*  3.602*  3.895*  

 
(1.584) (1.523) (1.418) (1.457) (1.570) 

 
0.878 0.858 0.902 0.878 0.896 

LM 

Strong CD 

)5.1,5.0(~ U
i

  

4373.464* 210.470 404.418* 728.332* 234.439* 

 
(885.003) (43.692) (122.165) (283.102) (84.262) 

 
1.000 0.340 0.972 0.992 0.524 

RLM1 4023.240* 2993.436* 3037.903* 3388.093* 3076.213* 

 
(859.100) (597.366) (605.708) (665.294) (645.163) 

 
1.000 1.000 1.000 1.000 1.000 

RLM2 2504.035*  2160.785*  2403.561*  2305.680*  2518.730*  

 
(666.212) (529.390) (563.367) (551.954) (605.188) 

 
1.000 1.000 1.000 1.000 1.000 

PCD 65.558* 3.845* 12.128* 15.923* 3.476* 

 
(7.111) (1.671) (3.378) (5.241) (2.119) 

 
1.000 0.824 1.000 1.000 0.764 

RPCD1 60.857* 52.023* 52.328* 55.535* 52..679* 

 
(7.156) (5.850) (5.888) (6.108) (6.190) 

 
1.000 1.000 1.000 1.000 1.000 

RPCD2 47.639*  44.115*  46.678*  45.629*  47.859*  

 

(6.965) (6.004) (6.119) (6.136) (6.407) 

 
1.000 1.000 1.000 1.000 1.000 

Note: The results are the sample mean, standard deviation (parentheses) and rejection rates (bold) of the tests based on 500 

replications. The H0 is rejected (marked with *) if   160.223RLM2RLM1,,LM 2

2/)1(


NN
 and 

96.1)1,0(RPCD2, RPCD1,PCD  N  at 5% significant levels. 
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Table 2.4: CD Test in the Pure Static Model (Homogeneous slope) (10% contamination) 

Test  CD case/ ite  N (0,1) 
0.90 N (0,1)+ 

2
3010.0   

0.90 N (0,1)+ 

0.10N(4,4) 

0.90 N (0,1) + 

)2,1(10.0 LN  

0.90 N(0,1)+ 

0.10Cauchy 

(0,16) 

LM 

No CD 

0i  

191.696  192.392  190.536  186.813  190.862  

 
(18.679) (23.090) (33.318) (71.063) (76.327) 

 
0.048 0.104 0.154 0.274 0.288 

RLM1 191.778  191.904  191.190  189.909  192.059  

 
(19.215) (20.223) (19.899) (19.862) (19.453) 

 
0.056 0.062 0.072 0.052 0.044 

RLM2 191.645  192.448  192.394  191.976  191.820  

 
(19.312) (18.938) (19.857) (19.827) (19.969) 

 
0.054 0.056 0.068 0.048 0.060 

PCD -0.010 0.050  -0.073 -0.079 -0.004 

 
(0.999) (1.033) (1.052) (0.974) (0.968) 

 
0.050 0.054 0.050 0.038 0.036 

RPCD1 -0.002 2.763*  0.106 0.532  -0.030 

 
(1.010) (1.019) (0.990) (1.038) (0.955) 

 
0.050 0.774 0.044 0.100 0.042 

RPCD2 0.017 -0.017 0.014 0.067  -0.028 

 
(1.034) (0.983) (0.998) (1.050) (0.956) 

 
0.056 0.046 0.040 0.072 0048 

LM 

Mild CD 

)3.0,1.0(~ Ui

 

221.866  192.392  191.439 195.228  189.858  

 
(26.609) (22.162) (34.942) (79.600) (76.777) 

 
0.450 0.104 0.176 0.302 0276 

RLM1 218.010  226.475* 207.771 213.367  206.137  

 
(25.779) (27.622) (22.967) (23.913) (22.214) 

 
0.400 0.540 0.244 0.330 0.200 

RLM2 205.551  202.969  206.529 205.159  207.428  

 
(22.146) (21.530) (21.969) (21.937) (23.127) 

 
0.202 0.160 0.218 0.208 0..228 

PCD 5.174*  0.135  0.171  0.280  0.027  

 
(1.757) (0.985) (1.027) (1.058) (0.937) 

 
0.984 0.052 0.058 0.074 0.046 

RPCD1 4.910*  6.269*  3.624*  4.478*  3.541*  

 
(1.741) (1.481) (1.504) (1.535) (1.557) 

 
0.964 0.996 0.874 0.962 0.844 

RPCD2 3.739*  3.154*  3.698* 3.464*  3.851*  

 
(1.584) (1.478) (1.445) (1.430) (1.567) 

 
0.878 0.788 0.890 0.876 0.904 

LM 

Strong CD 

)5.1,5.0(~ U
i



 

4373.464*  195.876  233.448*  291.731*  192.135  

 
(885.003) (24.065) (45.549) (110.697) (75.803) 

 
1.000 0.148 0.540 0.714 0.286 

RLM1 4023.240*  2379.144*  2246.318*  2844.122*  2236.337*  

 
(859.100) (469.926) (464.425) (573.148) (479.913) 

 
1.000 1.000 1.000 1.000 1.000 

RLM2 2504.035*  1834.594*  2245.567*  2093.207*  2414.202*  

 
(666.212) (458.405) (504.123) (503.889) (550.847) 

 
1.000 1.000 1.000 1.000 1.000 

PCD 63.558*  1.669  5.560*  5.735*  0.738  

 
(7.111) (1.199) (2.038) (2.837) (1.104) 

 1.000 0.386 0.982 0.934 0.180 

RPCD1 60.857*  46.006*  44.263*  50.487*  44.160*  

 (7.156) (5.139) (5.268) (5.743) (5.431) 

 1.000 1.000 1.000 1.000 1.000 

RPCD2 47.639*  40.339*  44.943*  43.238*  46.749*  

 (6.965) (5.692) (5.710) (5.895) (5.978) 

 1.000 1.000 1.000 1.000 1.000 
Note: The results are the sample mean, standard deviation (parentheses) and rejection rates (bold) of the tests based on 500 replications. The 

H0 is rejected (marked with *) if   160.223RLM2RLM1,,LM 2

2/)1(


NN
 and 96.1)1,0(RPCD2, RPCD1,PCD  N  at 5% significant 

levels. 
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Table 2.5: CD Test in the Pure Static Model (Heterogeneous slope) (5% contamination) 

Test  CD case/ ite  N (0,1) 
0.95 N (0,1)+ 

2
3005.0   

0.95 N (0,1)+ 

0.05N(4,4) 

0.95 N (0,1) + 

)2,1(05.0 LN  

0.95 N(0,1)+ 

0.05 Cauchy 

(0,16) 

LM 

No CD 

0i  

192.030  192.581  191.581  188.421  185.691  

 
(19.234) (38.275) (45.886) (63.636) (76.961) 

 
0.056 0.180 0.242 0.252 0.272 

RLM1 191.808  189.398  191.385  190.953  191.025  

 
(19.913) (19.494) (17.848) (18.735) (19.462) 

 
0.046 0.048 0.042 0.042 0.066 

RLM2 190.944  192.186  190.513  191.287  192.215  

 
(20.511) (19.054) (18.298) (18.994) (18.619) 

 
0.050 0.054 0.040 0.048 0.050 

PCD -0.001 -0.022 0.019  0.030  -0.038 

 
(1.006) (1.031) (1.008) (1.008) (1.003) 

 
0.042 0.054 0.066 0.052 0.052 

RPCD1 0.014 0.733 0.058  0.202  -0.003 

 
(1.030) (1.009) (1.001) (1.035) (1.022) 

 
0.066 0.134 0.052 0.070 0.056 

RPCD2 -0.001 -0.013 0.026  0.018  0.011 

 
(1.047) (0.979) (1.010) (1.008) (1.046) 

 
0.062 0.042 0.058 0.050 0.056 

LM 

Mild CD 

)3.0,1.0(~ Ui  

221.247  188.415  190.858  189.204  194.555  

 
(27.763) (36.037) (43.828) (59.166) (84.603) 

 
0.428 0.162 0.226 0.244 0.328 

RLM1 218.330  215.971  214.518  216.534  213.401  

 
(26.219) (27.004) (24.075) (24.408) (25.076) 

 
0.380 0.354 0.326 0.346 0.306 

RLM2 205.936  203.596  207.463  206.771  208.202  

 
(22.291) (22.344) (22.736) (22.798) (23.160) 

 
0.212 0.176 0.216 0.212 0.250 

PCD 5.192*  0.109  0.592  0.898  0.211  

 
(1.717) (1.042) (0.994) (1.097) (1.016) 

 
0.986 0.066 0.096 0.166 0.046 

RPCD1 4.938*  4.789*  4.287*  4.634*  3.723*  

 
(1.665) (1.645) (1.564) (1.621) (1.523) 

 
0.972 0.970 0.944 0.968 0.926 

RPCD2 3.761*  3.369*  3.827*  3.723*  3.744* 

 
(1.526) (1.510) (1.541) (1.523) (1.581) 

 
0.884 0.822 0.898 0.878 0.872 

LM 

Strong CD 

)5.1,5.0(~ U
i

  

4393.100*  205.248  403.501*  712.852*  239.534*  

 
(792.487) (41.902) (122.032) (274.245) (95.069) 

 
1.000 0.270 0.980 0.994 0.548 

RLM1 4040.739* 2925.314*  3044.824*  3398.364 * 3008.858*  

 
(763.288) (598.863) (632.519) (706.001) (630.438) 

 
1.000 1.000 1.000 1.000 1.000 

RLM2 2511.355* 2088.451*  2414.057*  2321.304*  2452.455*  

 
(608.222) (523.827) (599.387) (595.814) (611.719) 

 
1.000 1.000 1.000 1.000 1.000 

PCD 63.789*  3.368*  12.095*  15.738*  3.479*  

 
(6.346) (1.587) (3.313) (5.112) (2.222) 

 
1.000 0.798 1.000 1.000 0.752 

RPCD1 61.087*  51.295*  52.355*  55.584*  52.026*  

 
(6.340) (5.858) (6.087) (6.427) (6.097) 

 
1.000 1.000 1.000 1.000 1.000 

RPCD2 47.806*  43.234*  46.776*  45.778*  47.111*  

 
(6.301) (6.034) (6.403) (6.468) (6.482) 

 
1.000 1.000 1.000 1.000 1.000 

Note: The results are the sample mean, standard deviation (parentheses) and rejection rates (bold) of the tests based on 500 

replications. The H0 is rejected (marked with *) if   160.223RLM2RLM1,,LM 2

2/)1(


NN
 and 

96.1)1,0(RPCD2, RPCD1,PCD  N  at 5% significant levels. 
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Table 2.6: CD Test in the Pure Static Model (Heterogeneous slope) (10% contaminations) 

Test  CD case/ ite  N (0,1) 
0.90 N (0,1)+ 

2
3010.0   

0.90 N (0,1)+ 

0.10N(4,4) 

0.90 N (0,1) + 

)2,1(10.0 LN  

0.90 N(0,1)+ 

0.10Cauchy 

(0,16) 

LM 

No CD 

0i  

192.030  192.392  188.826  190.376  190.769  

 
(19.234) (23.090) (34.273) (73.393) (80.260) 

 
0.056 0.104 0.154 0.282 0.290 

RLM1 191.808  191.904  191.014  190.036  191.465  

 
(19.913) (20.223) (17.830) (18.404) (19.966) 

 
0.046 0.062 0.038 0.036 0.062 

RLM2 190.944  192.448  190.925  190.759  192.289  

 
(20.511) (18.938) (18.589) (18.393) (18.577) 

 
0.050 0.056 0.046 0.048 0.054 

PCD -0.001 0.050  0.045  0.034  0.036  

 
(1.006) (1.033) (0.954) (0.984) (0.942) 

 
0.042 0.054 0.040 0.044 0.032 

RPCD1 0.014 2.763* 0.127  0.599  0.000 

 
(1.030) (1.019) (0.981) (0.995) (1.022) 

 
0.066 0.774 0.060 0.086 0.052 

RPCD2 -0.001 -0.017 0.031  0.086  0.048  

 
(1.047) (0.983) (1.020) (1.000) (1.029) 

 
0.062 0.046 0.064 0.054 0.058 

LM 

Mild CD 

)3.0,1.0(~ Ui  

221.247  190.709  191.558  185.986  191.700  

 
(27.763) (21.801) (31.546) (71.183) (78.097) 

 
0.428 0.074 0.144 0.256 0.300 

RLM1 218.330  225.516*  208.878  213.742  207.921  

 
(26.219) (27.645) (22.800) (25.387) (22.289) 

 
0.380 0.490 0.236 0.332 0.228 

RLM2 205.936  210.387  207.556  204.671  208.190  

 
(22.291) (20.563) (23.079) (22.301) (23.219) 

 
0.212 0.138 0.236 0.182 0.242 

PCD 5.192*  0.010  0.202  0.228  0.087  

 
(1.717) (0.978) (0.984) (0.981) (1.025) 

 
0.986 0.046 0.062 0.056 0.050 

RPCD1 4.938*  6.163*  3.657*  4.524*  3.569*  

 
(1.665) (1.544) (1.445) (1.570) (1.491) 

 
0.972 1.000 0.886 0.962 0.864 

RPCD2 3.761*  3.077*  3.730*  3.553*  3.734*  

 
(1.526) (1.423) (1.536) (1.505) (1.529) 

 
0.884 0.760 0.872 0.850 0.852 

LM 

Strong CD 

)5.1,5.0(~ U
i

  

4393.100*  193.285  223.171*  281.515 * 194.066  

 
(792.487) (23.379) (41.805) (108.271) (77.414) 

 
1.000 0.068 0.564 0.686 0.322 

RLM1 4040.739* 2315.331*  2247.844*  2845.936*  2192.461*  

 
(763.288) (464.728) (474.317) (597.721) (464.100) 

 
1.000 1.000 1.000 1.000 1.000 

RLM2 2511.355* 1762.913 * 2251.347*  2112.504*  2345.785*  

 
(608.222) (454.738) (535.675) (529.529) (559.377) 

 
1.000 1.000 1.000 1.000 1.000 

PCD 63.789*  1.520  5.562*  5.556*  0.804  

 
(6.346) (1.179) (1.977) (2.773) (1.183) 

 1.000 0.346 0.970 0.924 0.170 

RPCD1 61.087*  45.287*  44.305*  50.497*  43.680*  

 (6.340) (5.121) (5.321) (5.977) (5.299) 

 1.000 1.000 1.000 1.000 1.000 

RPCD2 47.806*  39.385*  45.008*  43.469*  45.950*  

 (6.301) (5.770) (5.988) (6.092) (6.098) 

 1.000 1.000 1.000 1.000 1.000 
Note: The results are the sample mean, standard deviation (parentheses) and rejection rates (bold) of the tests based on 500 

replications. The H0 is rejected (marked with *) if   160.223RLM2RLM1,,LM 2

2/)1(


NN
 and 

96.1)1,0(RPCD2, RPCD1,PCD  N  at 5% significant levels. 
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Table 2.7: CD Test in the Dynamic Model (Homogeneous slope) (5% contamination) 

Test  CD case/ ite  N (0,1) 
0.95 N (0,1)+ 

2
3005.0   

0.95 N (0,1)+ 

0.05N(4,4) 

0.95 N (0,1) + 

)2,1(05.0 LN  

0.95 N(0,1)+ 

0.05 Cauchy 

(0,16) 

LM 

No CD 

0i  

193.223  272.167* 226.788* 234.271* 222.825 

 
(19.290) (41.936) (32.166) (62.862) (69.395) 

 
0.070 0.898 0.518 0.522 0.434 

RLM1 192.070  332.084*  193.613  192.320  201.967  

 
(19.305) (100.223) (19.460) (19.629) (23.504) 

 
0.064 0.898 0.072 0.070 0.156 

RLM2 191.579  414.084*  191.714  190.842  208.911  

 
(18.962) (154.835) (18.836) (18.836) (31.331) 

 
0.054 0.946 0.074 0.044 0.264 

PCD 0.044 -0.035 0.137 0.110 0.052 

 
(1.019) (1.138) (1.126) (1.145) (1.079) 

 
0.054 0.086 0.082 0.096 0.058 

RPCD1 0.033 0.227  0.051  0.039  0.033 

 
(1.040) (1.249) (1.016) (1.016) (1.008) 

 
0.066 0.122 0.058 0.060 0.060 

RPCD2 -0.020 0.040 -0.004 -0.033 0.035  

 
(1.050) (1.395) (1.021) (1.029) (1.041) 

 
0.052 0.138 0.052 0.064 0.052 

LM 

Mild CD 

)3.0,1.0(~ Ui

 

219.169  277.042*  229.804*  234.479*  223.640*  

 
(25.296) (45.814) (32.931) (60.867) (70.986) 

 
0.390 0.894 0.556 0.542 0.448 

RLM1 215.135  335.996*  207.623  208.211  213.505  

 
(25.204) (101.654) (21.576) (22.815) (24.619) 

 
0.340 0.912 0.242 0.278 0.344 

RLM2 204.300  416.239*  202.883  203.396  220.947  

 
(23.253) (159.955) (21.628) (21.174) (31.056) 

 
0.194 0.962 0.170 0.160 0.434 

PCD 4.790*  0.690  1.700  0.959  0.414  

 
(1.545) (1.507) (1.357) (1.296) (1.265) 

 
0.970 0.188 0.384 0.212 0.108 

RPCD1 4.492*  2.629*  3.428*  3.656*  3.237*  

 
(1.535) (1.676) (1.428) (1.438) (1.423) 

 
0.966 0.612 0.848 0.872 0.778 

RPCD2 3.288*  2.614*  3.183*  3.088*  3.240*  

 
(1.423) (1.866) (1.430) (1.433) (1.504) 

 
0.818 0.614 0.802 0.820 0.784 

LM 

Strong CD 

)5.1,5.0(~ U
i



 

4094.888*  356.117*  1121.806*  576.969*  276.786*  

 
(558.689) (78.386) (275.015) (207.040) (81.992) 

 
1.000 0.986 1.000 0.998 0.746 

RLM1 3711.907*  1546.011*  2328.707*  2594.715*  1978.073*  

 
(529.526) (322.698) (404.005) (436.187) (367.426) 

 
1.000 1.000 1.000 1.000 1.000 

RLM2 2350.155*  1796.809*  1980.675*  2160.231*  2148.955*  

 
(433.641) (381.177) (362.187) (397.134) (417.062) 

 
1.000 1.000 1.000 1.000 1.000 

PCD 61.423*  9.356*  28.102*  13.873*  5.999*  

 
(4.687) (3.807) (4.562) (4.291) (2.907) 

 
1.000 0.996 1.000 1.000 1.000 

RPCD1 58.240*  33.157*  45.157*  47.950*  40.710*  

 
(4.632) (4.935) (4.532) (4.619) (4.574) 

 
1.000 1.000 1.000 1.000 1.000 

RPCD2 45.254*  35.681*  41.427*  43.378*  42.767*  

 
(4.727) (5.484) (4.383) (4.587) (4.926) 

 
1.000 1.000 1.000 1.000 1.000 

Note: The results are the sample mean, standard deviation (parentheses) and rejection rates (bold) of the tests based on 500 

replications. The H0 is rejected (marked with *) if   160.223RLM2RLM1,,LM 2

2/)1(


NN
 and 

96.1)1,0(RPCD2, RPCD1,PCD  N  at 5% significant levels 
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Table 2.8: CD Test in the Dynamic Model (Homogeneous slope) (10% contamination) 

Test  CD case/ ite  N (0,1) 
0.90 N (0,1)+ 

2
3010.0   

0.90 N (0,1)+ 

0.10N(4,4) 

0.90 N (0,1) + 

)2,1(10.0 LN  

0.90 N(0,1)+ 

0.10Cauchy 

(0,16) 

LM 

No CD 

0i  

193.223  245.432*  248.422*  235.066*  206.779  

 
(19.290) (32.611) (31.526) (63.383) (72.799) 

 
0.070 0.752 0.778 0.548 0.352 

RLM1 192.070  1151.167*  202.515  198.565 526.170* 

 
(19.305) (234.788) (20.715) (20.600) (138.780) 

 
0.064 1.000 0.158 0.128 1.000 

RLM2 191.579  1760.005*  200.742  198.763 772.479* 

 
(18.962) (394.666) (21.203) (21.626) (229.797) 

 
0.054 1.000 0.158 0.146 1.000 

PCD 0.044 0.020  -0.007 0.005  0.051  

 
(1.019) (1.095) (1.163) (1.084) (1.040) 

 
0.054 0.070 0.086 0.076 0.062 

RPCD1 0.033 1.201 -0.005 -0.010 -0.090 

 
(1.040) (2.369) (0.996) (1.003) (1.593) 

 
0.066 0.330 0.040 0.046 0.158 

RPCD2 -0.020 0.193 -0.016 -0.007 -0.070 

 
(1.050) (2.992) (1.002) (0.984) (1.915) 

 
0.052 0.458 0.046 0.042 0.230 

LM 

Mild CD 

)3.0,1.0(~ Ui

 

219.169  249.092*  247.841*  235.769* 207.658  

 
(25.296) (36.436) (32.200) (67.427) (69.264) 

 
0.390 0.774 0.770 0.504 0.366 

RLM1 215.135  1153.719*  209.053  207.695  516.953*  

 
(25.204) (244.910) (21.711) (21.918) (136.603) 

 
0.340 1.000 0.252 0.242 0.998 

RLM2 204.300  1754.184*  207.109  208.551  761.311*  

 
(23.253) (415.755) (20.550) (23.120) (220.801) 

 
0.194 1.000 0.202 0.246 1.000 

PCD 4.790*  0.530  1.080  0.479  0.282  

 
(1.545) (1.360) (1.348) (1.250) (1.117) 

 
0.970 0.156 0.224 0.126 0.086 

RPCD1 4.492*  3.356*  2.433*  2.779*  1.873  

 
(1.535) (3.543) (1.300) (1.335) (2.277) 

 
0.966 0.604 0.612 0.732 0.386 

RPCD2 3.288*  2.821*  2.725*  2.934*  2.345*  

 
(1.423) (4.328) (1.288) (1.318) (2.841) 

 
0.818 0.524 0.778 0.728 0.466 

LM 

Strong CD 

)5.1,5.0(~ U
i



 

4094.888*  325.333*  628.911*  312.730*  232.863*  

 
(558.689) (78.566) (142.346) (89.181) (74.233) 

 
1.000 0.942 1.000 0.866 0.526 

RLM1 3711.907*  1533.176*  1429.117*  1751.728*  1001.766*  

 
(529.526) (393.360) (284.475) (337.832) (200.920) 

 
1.000 1.000 1.000 1.000 1.000 

RLM2 2350.155*  2228.397*  1458.926*  1839.931*  1531.163*  

 
(433.641) (642.014) (279.526) (343.874) (343.821) 

 
1.000 1.000 1.000 1.000 1.000 

PCD 61.423*  8.127*  18.809*  7.554*  3.616*  

 
(4.687) (4.125) (3.438) (2.975) (2.538) 

 1.000 0.972 1.000 0.988 0.718 

RPCD1 58.240*  26.759*  33.966*  38.213*  24.379*  

 (4.632) (8.604) (4.105) (4.348) (4.793) 

 1.000 1.000 1.000 1.000 1.000 

RPCD2 45.254*  31.168*  34.713* 39.521*  30.814*  

 (4.727) (11.004) (4.026) (4.339) (6.463) 

 1.000 1.000 1.000 1.000 1.000 
Note: The results are the sample mean, standard deviation (parentheses) and rejection rates (bold) of the tests based on 500 

replications. The H0 is rejected (marked with *) if   160.223RLM2RLM1,,LM 2

2/)1(


NN
 and 

96.1)1,0(RPCD2, RPCD1,PCD  N  at 5% significant levels. 
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Table 2.9: CD Test in the Dynamic Model (Heterogeneous slope) (5% contamination) 

Test  CD case/ ite  N (0,1) 
0.95 N (0,1)+ 

2
3005.0   

0.95 N (0,1)+ 

0.05N(4,4) 

0.95 N (0,1) + 

)2,1(05.0 LN  

0.95 N(0,1)+ 

0.05 Cauchy 

(0,16) 

LM 

No CD 

0i  

192.801  193.619 195.131 198.096 187.042 

 
(19.270) (36.917) (24.103) (65.938) (79.281) 

 
0.072 0.180 0.130 0.292 0.270 

RLM1 191.379  201.462  191.830  191.567  193.348  

 
(18.833) (21.175) (18.855) (19.432) (19.810) 

 
0.054 0.102 0.056 0.058 0.064 

RLM2 192.449  207.159  193.169  192.652  197.640  

 
(20.027) (24.537) (19.220) (19.111) (20.385) 

 
0.076 0.106 0.072 0.048 0.100 

PCD 0.047 0.025 0.134 0.104 0.060 

 
(1.019) (1.056) (1.030) (1.025) (0.949) 

 
0.054 0.062 0.054 0.052 0.036 

RPCD1 0.023 0.433  0.181  0.119  0.041 

 
(1.016) (1.027) (1.044) (1.021) (1.061) 

 
0.050 0.086 0.050 0.058 0.064 

RPCD2 -0.045 0.020 -0.002 -0.061 0.106  

 
(1.028) (1.041) (1.070) (1.054) (1.032) 

 
0.050 0.058 0.064 0.062 0.054 

LM 

Mild CD 

)3.0,1.0(~ Ui

 

218.843  193.708  201.372  201.490  187.100  

 
(25.244) (37.075) (26.817) (67.102) (76.126) 

 
0.382 0.192 0.194 0.314 0.264 

RLM1 214.211  215.105  207.048  207.809  207.468  

 
(24.651) (25.892) (22.115) (23.211) (23.943) 

 
0.322 0.344 0.224 0.246 0.226 

RLM2 204.995  219.089  203.353  203.315  211.195  

 
(22.673) (27.303) (21.277) (21.666) (23.390) 

 
0.186 0.410 0.180 0.184 0.286 

PCD 4.806*  0.222  2.168*  0.958  0.242  

 
(1.563) (1.067) (1.297) (1.209) (0.995) 

 
0.966 0.070 0.546 0.214 0.050 

RPCD1 4.502*  3.636*  3.742*  3.862*  3.433*  

 
(1.537) (1.393) (1.457) (1.472) (1.484) 

 
0.960 0.882 0.898 0.906 0.840 

RPCD2 3.313*  3.152*  3.130*  3.176*  3.238*  

 
(1.451) (1.417) (1.428) (1.422) (1.457) 

 
0.840 0.798 0.802 0.806 0.800 

LM 

Strong CD 

)5.1,5.0(~ U
i



 

4102.829*  218.240  1511.915*  649.811*  229.897*  

 
(556.187) (44.283) (345.707) (258.493) (81.880) 

 
1.000 0.986 1.000 0.998 0.546 

RLM1 3720.083*  2073.993*  2612.715*  2785.489*  2263.177*  

 
(528.175) (369.601) (438.711) (457.294) (395.828) 

 
1.000 1.000 1.000 1.000 1.000 

RLM2 2355.418*  2031.676*  2008.971*  2166.818*  2124.033*  

 
(429.196) (423.122) (376.656) (401.229) (420.813) 

 
1.000 1.000 1.000 1.000 1.000 

PCD 61.483*  4.169*  34.478*  14.757*  3.666*  

 
(4.661) (1.722) (4.780) (5.020) (1.910) 

 
1.000 0.996 1.000 1.000 0.808 

RPCD1 58.309*  42.234*  48.233*  49.938*  44.497*  

 
(4.609) (4.336) (4.578) (4.636) (4.441) 

 
1.000 1.000 1.000 1.000 1.000 

RPCD2 45.302*  41.436*  41.702*  43.418*  42.801*  

 
(4.637) (5.000) (4.510) (4.634) (4.938) 

 
1.000 1.000 1.000 1.000 1.000 

Note: The results are the sample mean, standard deviation (parentheses) and rejection rates (bold) of the tests based on 500 

replications. The H0 is rejected (marked with *) if   160.223RLM2RLM1,,LM 2

2/)1(


NN
 and 

96.1)1,0(RPCD2, RPCD1,PCD  N  at 5% significant levels. 
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Table 2.10: CD Test in the Dynamic Model (Heterogeneous slope) (10% contamination) 

Test  CD case/ ite  N (0,1) 
0.90 N (0,1)+ 

2
3010.0   

0.90 N (0,1)+ 

0.10N(4,4) 

0.90 N (0,1) + 

)2,1(10.0 LN  

0.90 N(0,1)+ 

0.10Cauchy 

(0,16) 

LM 

No CD 

0i  

192.801  192.053  194.701  193.210  192.081  

 
(19.270) (23.416) (23.895) (70.995) (73.366) 

 
0.072 0.098 0.130 0.290 0.302 

RLM1 191.379  235.089*  193.625  192.753 220.842 

 
(18.833) (26.693) (18.956) (19.023) (24.062) 

 
0.054 0.284 0.058 0.064 0.454 

RLM2 192.449  310.237*  198.928  197.171 237.434* 

 
(20.027) (69.156) (19.679) (19.880) (27.113) 

 
0.076 0.360 0.116 0.104 0.684 

PCD 0.047 0.022  0.034  0.025  0.082  

 
(1.019) (1.083) (1.053) (0.997) (1.000) 

 
0.054 0.066 0.060 0.048 0.048 

RPCD1 0.023 -0.013 0.692 0.441 0.009 

 
(1.016) (1.094) (1.044) (1.034) (1.059) 

 
0.050 0.068 0.116 0.088 0.050 

RPCD2 -0.045 2.850* 0.002 -0.019 0.042 

 
(1.028) (2.246) (1.054) (1.057) (1.084) 

 
0.050 0.063 0.064 0.056 0.066 

LM 

Mild CD 

)3.0,1.0(~ Ui  

218.843  192.082  197.851  193.385  193.035  

 
(25.244) (23.343) (25.304) (71.255) (73.234) 

 
0.382 0.086 0.168 0.286 0.306 

RLM1 214.211  251.553*  206.616  205.492  235.412*  

 
(24.651) (29.301) (22.534) (21.432) (27.499) 

 
0.322 0.832 0.218 0.206 0.666 

RLM2 204.995  333.800*  208.550  206.717  257.031*  

 
(22.673) (71.208) (22.400) (22.294) (30.490) 

 
0.186 0.992 0.248 0.224 0.878 

PCD 4.806*  0.115  1.357  0.302  0.093  

 
(1.563) (1.083) (1.243) (1.059) (1.035) 

 
0.966 0.062 0.692 0.078 0.054 

RPCD1 4.502*  2.391*  3.542*  3.495* 2.782*  

 
(1.537) (1.455) (1.407) (1.390) (1.517) 

 
0.960 0.590 0.898 0.888 0.690 

RPCD2 3.313*  5.249*  2.852*  2.951*  3.018*  

 
(1.451) (2.215) (1.427) (1.428) (1.675) 

 
0.840 0.948 0.738 0.754 0.720 

LM 

Strong CD 

)5.1,5.0(~ U
i

  

4102.829*  198.375  867.096*  273.998*  195.672  

 
(556.187) (25.937) (209.001) (95.339) (72.223) 

 
1.000 0.164 1.000 0.672 0.318 

RLM1 3720.083*  1329.286*  1904.317*  2102.362*  1513.449*  

 
(528.175) (283.044) (342.683) (375.769) (272.890) 

 
1.000 1.000 1.000 1.000 1.000 

RLM2 2355.418*  1743.721*  1642.788*  1903.784*  1775.999*  

 
(429.196) (368.083) (305.008) (355.380) (355.474) 

 
1.000 1.000 1.000 1.000 1.000 

PCD 61.483*  2.108*  24.528*  5.572*  0.955  

 
(4.661) (1.334) (3.904) (2.563) (1.165) 

 1.000 0.544 1.000 0.932 0.176 

RPCD1 58.309*  31.538*  40.502*  42.763*  35.159*  

 (4.609) (4.364) (4.195) (4.378) (3.875) 

 1.000 1.000 1.000 1.000 1.000 

RPCD2 45.302*  37.132*  37.320* 40.406*  38.284*  

 (4.637) (4.858) (4.083) (4.391) (4.701) 

 1.000 1.000 1.000 1.000 1.000 
Note: The results are the sample mean, standard deviation (parentheses) and rejection rates (bold) of the tests based on 500 

replications. The H0 is rejected (marked with *) if   160.223RLM2RLM1,,LM 2

2/)1(


NN
 and 

96.1)1,0(RPCD2, RPCD1,PCD  N  at 5% significant levels. 
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Table 2.11: Results of the CD Tests in the Presence of Structural Break (SB) in the Pure Static Model 

i        Conditions LM
 

RLM1 RLM2 PCD RPCD1 RPCD2 

0i  

No SB 

 

192.030 191.808 190.944 -0.001 0.014 -0.001 

(19.234) (19.913) (20.511) (1.006) (1.030) (1.047) 

With SB 

 

197.930 193.878 191.945 -0.022 -0.025 -0.004 

(18.680) (18.817) (18.643) (0.990) (0.969) (0.943) 

               

 3.0,1.0~ Ui  

No SB 

 

221.247 218.330 205.936 5.192* 4.938* 3.761* 

(27.763) (26.219) (22.291) (1.717) (1.665) (1.526) 

With SB 

 

212.590 208.384 201.113 3.794* 3.618* 2.759* 

(24.355) (24.090) (22.238) (1.516) (1.505) (1.383) 

               

 5.51.0~ Ui  

No SB 

 

4393.100*  4040.739*  2511.355* 63.789*  61.087*  47.806*  

(792.49) (763.29) (608.22) (6.35) (6.34) (6.30) 

With SB 

 

3155.866*  2912.080*  1799.027*  53.170*  50.981*  39.545*  

(687.58) (656.32) (482.87) (6.60) (6.53) (6.05) 

 Size  

0i  
No SB 0.056 0.046 0.050 0.042 0.066 0.062 

With SB 0.102 0.078 0.056 0.030 0.034 0.038 

 Power 

 3.0,1.0~ Ui  
No SB 0.428 0.380 0.212 0.986 0.972 0.884 

With SB 0.322 0.244 0.150 0.894 0.876 0.690 

               

 5.51.0~ Ui  
No SB 1.000 1.000 1.000 1.000 1.000 1.000 

With SB 1.000 1.000 1.000 1.000 1.000 1.000 
Note: The results are the sample mean, standard deviation (parentheses) and rejection rates (second row) of the tests based on 500 replications. The H0 is rejected (marked with *) if 

  160.223RLM2RLM1,,LM 2

2/)1(


NN
 and 96.1)1,0(RPCD2, RPCD1,PCD  N  at 5% significant levels. 
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Table 2.12: Results of the CD Tests in the Presence of Structural Break (SB) in the Dynamic Panel Model 

i          Conditions LM
 

RLM1 RLM2 PCD RPCD1 RPCD2 

0i  

No SB 

 

193.223  192.070  191.579  0.044 0.033 -0.020 

(19.290) (19.305) (18.962) (1.019) (1.040) (1.050) 

With SB 

 

277.538*  240.229*  209.656*  0.138  0.145  0.174  

(28.550) (25.261) (23.584) (1.180) (1.083) (1.076) 

         

 3.0,1.0~ Ui  

No SB 

 

219.169  215.135  204.300  4.790*  4.492*  3.288*  

(25.296) (25.204) (23.253) (1.545) (1.535) (1.423) 

With SB 

 

292.176*  254.998*  218.818*  3.804*  3.705*  2.753*  

(32.010) (27.857) (22.845) (1.744) (1.627) (1.456) 

         

 5.51.0~ Ui  

No SB 

 

4094.888*  3711.907*  2350.155*  61.423*  58.240*  45.254*  

(558.689) (529.526) (433.641) (4.687) (4.632) (4.727) 

With SB 

 

3124.143*  2892.372*  1765.898*  52.437*  50.443*  38.312*  

(594.189) (549.518) (379.724) (5.659) (5.400) (4.821) 

 Size  

0i  No SB 0.070 0.064 0.054 0.054 0.066 0.052 

With SB 0.984 0.746 0.296 0.102 0.080 0.076 

 Power 

 3.0,1.0~ Ui  No SB 0.390 0.340 0.194 0.970 0.966 0.818 

With SB 0.994 0.886 0.420 0.858 0.862 0.668 

         

 5.51.0~ Ui  No SB 1.000 1.000 1.000 1.000 1.000 1.000 

With SB 1.000 1.000 1.000 1.000 1.000 1.000 
Note: The results are the sample mean, standard deviation (parentheses) and rejection rates (second row) of the tests based on 500 replications. The H0 is rejected (marked with *) if 

  160.223RLM2RLM1,,LM 2

2/)1(


NN
 and 96.1)1,0(RPCD2, RPCD1,PCD  N  at 5% significant levels. 
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Table 2.13: Performance of the CD Tests in the Pure Static Model (Uncontaminated panel) 

Size:  CD) No(0i  Power : CD) Mild)(3.0,1.0(~ iidUi  CD) (Strong)5.1,5.0(~ iidUi  

     T / N 10 20 30 50 100 

 

10 20 30 50 100 

 

10 20 30 50 100 

   
LM 

  10 - - - - - 

 

- - - - - 

 

- - - - - 

20 0.068 - - - - 

 

0.084 - - - - 

 

0.994 - - - - 

30 0.054 0.082 - - - 

 

0.080 0.210 - - - 

 

1.000 1.000 - - - 

50 0.070 0.068 0.106 - - 

 

0.120 0.242 0.382 - - 

 

1.000 1.000 1.000 - - 

100 0.070 0.056 0.070 0.068 - 

 

0.186 0.428 0.678 0.942 - 

 

1.000 1.000 1.000 1.000 - 

   
RLM1 

  10 - - - - - 

 

- - - - - 

 

- - - - - 

20 0.096 - - - - 

 

0.070 - - - - 

 

0.990 - - - - 

30 0.060 0.082 - - - 

 

0.090 0.202 - - - 

 

1.000 1.000 - - - 

50 0.076 0.070 0.082 - - 

 

0.104 0.228 0.316 - - 

 

1.000 1.000 1.000 - - 

100 0.070 0.046 0.074 0.060 - 

 

0.178 0.380 0.648 0.924 - 

 

1.000 1.000 1.000 1.000 - 

   
RLM2 

  10 - - - - - 

 

- - - - - 

 

- - - - - 

20 0.074 - - - - 

 

0.066 - - - - 

 

0.962 - - - - 

30 0.052 0.072 - - - 

 

0.084 0.126 - - - 

 

0.998 0.992 - - - 

50 0.066 0.048 0.078 - - 

 

0.100 0.194 0.268 - - 

 

1.000 1.000 0.998 - - 

100 0.064 0.050 0.066 0.064 - 

 

0.154 0.212 0.596 0.870 - 

 

1.000 1.000 1.000 1.000 - 

         

PCD 
        10 0.060 0.034 0.046 0.032 0.058 

 

0.160 0.356 0.440 0.702 0.924 

 

0.978 0.998 1.000 1.000 1.000 

20 0.042 0.064 0.034 0.062 0.046 

 

0.196 0.536 0.704 0.910 0.998 

 

1.000 1.000 1.000 1.000 1.000 

30 0.050 0.044 0.048 0.046 0.060 

 

0.310 0.626 0.894 0.982 1.000 

 

1.000 1.000 1.000 1.000 1.000 

50 0.056 0.056 0.044 0.038 0.044 

 

0.440 0.814 0.960 1.000 1.000 

 

1.000 1.000 1.000 1.000 1.000 

100 0.044 0.042 0.050 0.064 0.050 

 

0.634 0.986 1.000 1.000 1.000 

 

1.000 1.000 1.000 1.000 1.000 

         

RPCD1 
        10 0.058 0.034 0.060 0.038 0.058 

 

0.148 0.332 0.460 0.674 0.910 

 

0.976 0.998 1.000 1.000 1.000 

20 0.046 0.056 0.028 0.062 0.034 

 

0.180 0.496 0.654 0.888 0.998 

 

1.000 1.000 1.000 1.000 1.000 

30 0.044 0.050 0.042 0.048 0.054 

 

0.286 0.630 0.822 0.978 1.000 

 

1.000 1.000 1.000 1.000 1.000 

50 0.048 0.050 0.044 0.040 0.040 

 

0.414 0.796 0.948 1.000 1.000 

 

1.000 1.000 1.000 1.000 1.000 

100 0.046 0.066 0.044 0.054 0.052 

 

0.594 0.972 0.994 1.000 1.000 

 

1.000 1.000 1.000 1.000 1.000 

    

                                      

    
RPCD2 

        10                                                                 0.052 0.048 0.058 0.042 0.052 

 

0.110 0.200 0.262 0.564 0.842 

 

0.860 0.982 1.000 1.000 1.000 

20 0.040 0.042 0.040 0.048 0.032 

 

0.102 0.274 0.448 0.788 0.988 

 

0.988 1.000 1.000 1.000 1.000 

30 0.034 0.044 0.048 0.038 0.038 

 

0.136 0.378 0.536 0.946 1.000 

 

1.000 1.000 1.000 1.000 1.000 

50 0.052 0.040 0.040 0.030 0.034 

 

0.210 0.526 0.702 0.990 1.000 

 

1.000 1.000 1.000 1.000 1.000 

100 0.040 0.062 0.046 0.062 0.052 

 

0.314 0.884 0.918 1.000 1.000 

 

1.000 1.000 1.000 1.000 1.000 
Note: rejection rates of the tests are based on 500 replications. 
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Table 2.14: Performance of the CD Tests in the Pure Static Model (Contaminated panel) 

Size:  CD) No(0i  Power : CD) Mild)(3.0,1.0(~ iidUi  CD) (Strong)5.1,5.0(~ iidUi  

     T / N 10 20 30 50 100 

 

10 20 30 50 100 

 

10 20 30 50 100 

   

LM 

  10 - - - - - 

 

- - - - - 

 

- - - - - 

20 0.146 - - - - 

 

0.158 - - - - 

 

0.584 - - - - 

30 0.184 0.216 - - - 

 

0.204 0.212 - - - 

 

0.482 0.724 - - - 

50 0.190 0.212 0.240 - - 

 

0.178 0.232 0.252 - - 

 

0.308 0.498 0.664 - - 

100 0.168 0.272 0.198 0.076 - 

 

0.160 0.328 0.190 0.042 - 

 

0.230 0.548 0.446 1.000 - 

   

RLM1 

  10 - - - - - 

 

- - - - - 

 

- - - - - 

20 0.068 - - - - 

 

0.084 - - - - 

 

0.986 - - - - 

30 0.054 0.070 - - - 

 

0.064 0.130 - - - 

 

1.000 1.000 - - - 

50 0.070 0.062 0.050 - - 

 

0.096 0.196 0.286 - - 

 

1.000 1.000 1.000 - - 

100 0.054 0.066 0.066 0.056 - 

 

0.140 0.306 0.570 1.000 - 

 

1.000 1.000 1.000 1.000 - 

   

RLM2 

  10 - - - - - 

 

- - - - - 

 

- - - - - 

20 0.060 - - - - 

 

0.082 - -   - - 

 

0.950 - - - - 

30 0.048 0.060 - - - 

 

0.070 0.102 - - - 

 

0.972 0.968 - - - 

50 0.052 0.054 0.048 - - 

 

0.088 0.166 0.250 - - 

 

0.998 0.990 0.994 - - 

100 0.050 0.050 0.046 0.052 - 

 

0.128 0.250 0.556 1.000 - 

 

1.000 1.000 1.000 1.000 - 

         

PCD 

        10 0.060 0.034 0.036 0.064 0.086 

 

0.096 0.160 0.208 0.234 0.468 

 

0.740 0.948 0.988 1.000 1.000 

20 0.026 0.054 0.036 0.038 0.038 

 

0.058 0.112 0.150 0.100 0.324 

 

0.626 0.916 0.982 1.000 1.000 

30 0.056 0.042 0.042 0.060 0.052 

 

    0.080 0.076 0.098 0.114 0.308 

 

   0.518 0.862 0.978 1.000 1.000 

50 0.056 0.036 0.056 0.088 0.058 

 

   0.058 0.084 0.076 0.052 0.212 

 

   0.416 0.814 0.950 1.000 1.000 

100 0.036 0.052 0.052 0.076 0.066 

 

   0.046 0.046 0.040 0.042 0.146 

 

   0.392 0.752 0.926 1.000 1.000 

         

RPCD1 

        10 0.040 0.044 0.070 0.058 0.074 

 

0.142 0.270 0.446 0.916 0.926 

 

0.970 0.998 1.000 1.000 1.000 

20 0.074 0.064 0.062 0.052 0.056 

 

0.176 0.472 0.690 1.000 1.000 

 

0.998 1.000 1.000 1.000 1.000 

30 0.044 0.070 0.068 0.066 0.060 

 

0.284 0.640 0.830 1.000 1.000 

 

1.000 1.000 1.000 1.000 1.000 

50 0.070 0.062 0.050 0.068 0.054 

 

0.376 0.846 0.978 1.000 1.000 

 

1.000 1.000 1.000 1.000 1.000 

100 0.078 0.056 0.066 0.056 0.062 

 

0.584 0.926 1.000 1.000 1.000 

 

1.000 1.000 1.000 1.000 1.000 

    

                                      

    

RPCD2 

        10                                                                 0.038 0.050 0.042 0.056 0.038 

 

0.114 0.186 0.384 0.882 0.908 

 

0.868 0.928 0.886 1.000 1.000 

20 0.060 0.064 0.046 0.048 0.066 

 

0.128 0.324 0.490 0.976 0.992 

 

0.990 0.998 1.000 1.000 1.000 

30 0.040 0.060 0.062 0.044 0.044 

 

0.178 0.404 0.604 1.000 1.000 

 

1.000 1.000 1.000 1.000 1.000 

50 0.058 0.062 0.054 0.068 0.048 

 

0.252 0.600 0.828 1.000 1.000 

 

1.000 1.000 1.000 1.000 1.000 

100 0.058 0.056 0.046 0.052 0.052 

 

0.352 0.872 0.974 1.000 1.000 

 

1.000 1.000 1.000 1.000 1.000 
Note: rejection rates of the tests are based on 500 replications 
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Table 2.15: Performance of the CD Tests in the Dynamic Model (Uncontaminated panel) 

Size:  CD) No(0i  Power : CD) Mild)(3.0,1.0(~ iidUi  CD) (Strong)5.1,5.0(~ iidUi  

T / N 10 20 30 50 100 

 

10 20 30 50 100 

 

10 20 30 50 100 

 
LM 

10 - - - - - 
 

- - - - - 
 

- - - - - 

20 0.094 - - - - 

 

0.114 - - - - 

 

1.000 - - - - 

30 0.086 0.104 - - - 

 

0.094 0.204 - - - 

 

1.000 1.000 - - - 

50 0.062 0.074 0.128 - - 

 

0.106 0.234 0.420 - - 

 

1.000 1.000 1.000 - - 

100 0.066 0.072 0.048 0.054 - 

 

0.188 0.382 0.728 0.904 - 

 

1.000 1.000 1.000 1.000 - 

 

RLM1 

10 - - - - - 

 

- - - - - 

 

- - - - - 

20 0.064 - - - - 

 

0.098 - - - - 

 

0.996 - - - - 

30 0.070 0.084 - - - 

 

0.084 0.152 - - - 

 

1.000 1.000 - - - 

50 0.048 0.056 0.064 - - 

 

0.104 0.182 0.326 - - 

 

1.000 1.000 1.000 - - 

100 0.060 0.054 0.040 0.048 - 

 

0.166 0.322 0.640 0.882 - 

 

1.000 1.000 1.000 1.000 - 

 

RLM2 

10 - - - - - 

 

- - - - - 

 

- - - - - 

20 0.078 - - - - 

 

0.062 - - - - 

 

0.870 - - - - 

30 0.062 0.068 - - - 

 

0.074 0.122 - - - 

 

0.958 0.994 - - - 

50 0.066 0.054 0.046 - - 

 

0.080 0.140 0.290 - - 

 

0.992 1.000 1.000 - - 

100 0.054 0.076 0.044 0.042 - 

 

0.108 0.186 0.560 0.732 - 

 

1.000 1.000 1.000 1.000 - 

 

PCD 

10 0.038 0.056 0.058 0.060 0.044 

 

0.156 0.312 0.460 0.640 0.942 

 

0.988 1.000 1.000 1.000 1.000 

20 0.054 0.058 0.050 0.040 0.056 

 

0.208 0.508 0.794 0.916 0.996 

 

1.000 1.000 1.000 1.000 1.000 

30 0.042 0.036 0.028 0.048 0.058 

 

0.300 0.600 0.892 0.980 1.000 

 

1.000 1.000 1.000 1.000 1.000 

50 0.058 0.048 0.040 0.056 0.042 

 

0.368 0.828 0.990 0.996 1.000 

 

1.000 1.000 1.000 1.000 1.000 

100 0.046 0.054 0.050 0.046 0.050 

 

0.624 0.966 1.000 1.000 1.000 

 

1.000 1.000 1.000 1.000 1.000 

 

RPCD1 

10 0.038 0.056 0.064 0.044 0.056 

 

0.116 0.270 0.422 0.580 0.928 

 

0.982 1.000 1.000 1.000 1.000 

20 0.048 0.052 0.046 0.060 0.056 

 

0.170 0.420 0.656 0.880 0.998 

 

1.000 1.000 1.000 1.000 1.000 

30 0.036 0.030 0.030 0.042 0.050 

 

0.276 0.566 0.854 0.970 1.000 

 

1.000 1.000 1.000 1.000 1.000 

50 0.046 0.042 0.040 0.058 0.048 

 

0.334 0.780 0.984 0.992 1.000 

 

1.000 1.000 1.000 1.000 1.000 

100 0.050 0.050 0.056 0.050 0.042 

 

0.602 0.960 1.000 1.000 1.000 

 

1.000 1.000 1.000 1.000 1.000 

 

RPCD2 

10                                                                 0.046 0.062 0.052 0.044 0.056 

 

0.100 0.164 0.278 0.356 0.734 

 

0.854 0.980 0.994 1.000 1.000 

20 0.048 0.044 0.030 0.044 0.048 

 

0.114 0.254 0.546 0.692 0.990 

 

0.988 1.000 1.000 1.000 1.000 

30 0.042 0.034 0.036 0.044 0.040 

 

0.178 0.370 0.662 0.862 1.000 

 

1.000 1.000 1.000 1.000 1.000 

50 0.054 0.030 0.038 0.046 0.052 

 

0.196 0.542 0.884 0.958 1.000 

 

1.000 1.000 1.000 1.000 1.000 

100 0.050 0.050 0.058 0.056 0.052 

 

0.386 0.840 0.992 1.000 1.000 

 

1.000 1.000 1.000 1.000 1.000 
Note: rejection rates of the tests are based on 500 replications. 
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Table 2.16: Performance of the CD Tests in the Dynamic Model (Contaminated panel) 

Size:  CD) No(0i  Power : CD) Mild)(3.0,1.0(~ iidUi  CD) (Strong)5.1,5.0(~ iidUi  

     T / N 10 20 30 50 100 

 

10 20 30 50 100 

 

10 20 30 50 100 

 

LM 
10 - - - - - 

 

- - - - - 

 

- - - - - 

20 0.146 - - - - 

 

0.146 - - - - 

 

0.650 - - - - 

30 0.166 0.198 - - - 

 

0.170 0.202 - - - 

 

0.468 0.628 - - - 

50 0.166 0.228 0.222 - - 

 

0.158 0.226 0.212 - - 

 

0.270 0.538 0.636 - - 

100 0.172 0.270 0.410 0.326 - 

 

0.160 0.264 0.214 0.238 - 

 

0.254 0.546 0.556 0.694 - 

 
RLM1 

10 - - - - - 

 

- - - - - 

 

- - - - - 

20 0.086 - - - - 

 

0.090 - - - - 

 

0.986 - - - - 

30 0.078 0.108 - - - 

 

0.090 0.236 - - - 

 

0.998 1.000 - - - 

50 0.104 0.100 0.102 - - 

 

0.134 0.246 0.416 - - 

 

1.000 1.000 1.000 - - 

100 0.102 0.064 0.108 0.086 - 

 

0.160 0.266 0.690 0.888 - 

 

1.000 1.000 1.000 1.000 - 

 

RLM2 

10 - - - - - 

 

- - - - - 

 

- - - - - 

20 0.080 - - - - 

 

0.096 - - - - 

 

0.952 - - - - 

30 0.082 0.088 - - - 

 

0.100 0.208 - - - 

 

0.962 0.994 - - - 

50 0.090 0.098 0.088 - - 

 

0.138 0.238 0.398 - - 

 

0.996 1.000 1.000 - - 

100 0.098 0.100 0.194 0.090 - 

 

0.154 0.286 0.642 0.864 - 

 

1.000 1.000 1.000 1.000 - 

 

PCD 

10 0.060 0.046 0.040 0.060 0.074 

 

0.082 0.118 0.218 0.320 0.620 

 

0.694 0.932 0.992 1.000 1.000 

20 0.048 0.054 0.060 0.050 0.054 

 

0.056 0.108 0.116 0.184 0.522 

 

0.636 0.914 0.990 1.000 1.000 

30 0.042 0.040 0.048 0.050 0.040 

 

0.064 0.078 0.108 0.126 0.324 

 

0.530 0.876 1.000 1.000 1.000 

50 0.060 0.058 0.044 0.070 0.034 

 

0.070 0.056 0.060 0.144 0.182 

 

0.454 0.858 1.000 1.000 1.000 

100 0.044 0.036 0.050 0.042 0.060 

 

0.050 0.050 0.058 0.108 0.124 

 

0.468 0.808 1.000 1.000 1.000 

 

RPCD1 

10 0.048 0.058 0.060 0.072 0.078 

 

0.096 0.202 0.340 0.534 0.818 

 

0.912 0.990 1.000 1.000 1.000 

20 0.034 0.044 0.046 0.060 0.058 

 

0.134 0.318 0.626 0.692 0.982 

 

0.998 1.000 1.000 1.000 1.000 

30 0.044 0.060 0.048 0.082 0.076 

 

0.192 0.430 0.712 0.888 1.000 

 

1.000 1.000 1.000 1.000 1.000 

50 0.052 0.078 0.040 0.078 0.068 

 

0.296 0.618 0.920 0.994 1.000 

 

1.000 1.000 1.000 1.000 1.000 

100 0.056 0.064 0.052 0.066 0.056 

 

0.412 0.840 0.992 1.000 1.000 

 

1.000 1.000 1.000 1.000 1.000 

 

RPCD2 

10                                                                 0.046 0.066 0.078 0.070 0.066 

 

0.108 0.126 0.260 0.412 0.634 

 

0.826 0.974 0.980 1.000 1.000 

20 0.054 0.054 0.064 0.068 0.088 

 

0.108 0.266 0.500 0.608 0.966 

 

0.990 1.000 0.996 1.000 1.000 

30 0.056 0.054 0.050 0.048 0.048 

 

0.156 0.366 0.584 0.814 0.990 

 

0.998 1.000 1.000 1.000 1.000 

50 0.062 0.056 0.046 0.030 0.050 

 

0.248 0.500 0.916 0.920 1.000 

 

1.000 1.000 1.000 1.000 1.000 

100 0.070 0.054 0.048 0.052 0.054 

 

0.364 0.800 0.984 0.990 1.000 

 

1.000 1.000 1.000 1.000 1.000 
Note: rejection rates of the tests are based on 500 replications. 
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Figure 2.1: Quantile-Quantile Plots of LM, RLM1, RLM2 
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Figure 2.2: Quantile-Quantile Plots of PCD, RPCD1, RPCD2 
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2.6 Conclusion 

This chapter proposes the robust versions of the LM test of Breusch and Pagan and 

the PCD test of Pesaran for the cross sectional dependence. The proposed tests are 

robust to the effect of the spurious observation in the data.  The asymptotic distribution 

of the proposed test and the finite sample behaviour are provided resulting from the 

Monte Carlo analysis. From the results, it can be concluded that the RPCD1 is oversized 

in the presence of 10% outliers from 2
)30(  distribution for the pure static model.  Since 

observations drawn from 2
)30(  are always positive, the RPCD1 tends to reject the null 

in favor of the alternative. Other proposed tests yield reasonable size and good power in 

most scenarios in the pure static model. In the dynamic model, it is observed that the 

proposed tests (RLM1, RLM2, RPCD1 and RPCD2) exceed the reasonable size (that is 

0.05) in the presence of larger size and heavy tailed contaminations ( 2
)30(  and Cauchy). 

The presence of outliers affect the absence of CD subsequently results in the incorrect 

results for the test statistics. The powers of the tests are not as high as in the pure static 

model and this illustrates that the proposed tests do not perform well in the dynamic 

model in the presence of outliers. The powers for the dynamic model are expected to be 

less than in the pure static model when the independence among the regressor is 

assumed. 

Although the PCD test is quite robust in detecting the CD in the presence of breaks, 

this test fails to detect the mild CD in the contaminated panels.  The proposed RPCD1 

test, on the other hand, is capable of detecting the presence of the CD in the presence of 

outliers even for the case of the mild CD effect. 
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CHAPTER 3 

Parameter Estimation and Inferences in Panel Model 

 

3.1 Introduction 

There are a vast number of studies on panel data modeling in the presence of 

cross sectional dependence (Coakley et al., 2002; Bai and Ng, 2002; Philips and Sul, 

2003; Moon and Perron, 2004; Kapetonis and Pesaran, 2004; Coakley et al., 2006; 

Pesaran, 2006; and Noman, 2008)
24

. This is due to the recent development in panel data 

analysis in view of the fact that most economic data are cross correlated in panel 

framework; independent assumption of the residual among cross sectional units is 

therefore no longer appropriate.  

The presence of contemporaneous cross correlation among the disturbances, ite  

finds support from many empirical applications in macroeconomics, finance and 

international finance (Moon and Perron, 2004).  Many studies have been conducted by 

characterising CD using factor structure (see Bai and Ng, 2002; Coakley et al., 2002; 

Philips and Sul, 2003). In order to correct the CD in modeling and estimating the panel, 

Coakley et al. (2002) and Stock and Watson (2002) proposed the principal component
25

 

approach to obtain unobserved factor in order to accommodate the presence of CD in 

the panel.  Kapetonis and Pesaran (2004) applied the principal component procedure in 

modeling the standard Arbitrage Pricing Theory (APT) Model of the company asset 

returns. Bai and Ng (2002) and Moon and Perron (2004) determined the number of such 

unobserved factors using the selection criteria such as the Akaike's information 

                                                 
24

 Some literature focuses on (i) estimation of panel model in the presence of cross sectional dependence and (ii) tests on the 

existence of unit root in the presence of cross dependency among the residuals. 
25

 The residuals are obtained using principal component procedure and are considered as unobserved factor. 
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criterion
26

 (AIC) and Bayesian information criterion
27

 (BIC). This approach however, 

provides unreliable parameter estimates since the residuals are obtained from the 

procedures based on the OLS method to explain the CD.  

In this chapter, the techniques used to estimate the panel data model, both with 

and without the presence of cross sectional dependence are discussed.  These techniques 

include the standard method that uses OLS and the proposed procedure which is based 

on robust parameter estimation.  The properties of the proposed estimator are derived.  

From this a robust hypothesis tests is proposed and robust confidence interval for the 

parameter estimates is constructed.  In the final section, the goodness of fit of the 

proposed method is discussed.  

 

3.2 Estimation Procedure 

3.2.1 Pooled Model 

The standard technique used to model and estimate the parameter of the model is 

to pool the cross sectional units of the data together. The pooled model is considered 

since this model is restricted to the assumption of cross sectional independence among 

the residuals and parameter homogeneity in the model. Coakley et al. (2006) showed in 

their study that FE and RE provide similar results in terms of sample mean, standard 

deviation and mean squared error (MSE) under several scenarios of CD and these 

approaches are listed under Appendix B and not considered in this study
28

. 

A simple pooled regression model is considered as follows: 

itit

T

it ey  xβ  ; TtNi ,,2,1  and ,,2,1                      (3.1) 

                                                 
26

 AIC is computed as )ln(22AIC Lk   with k  as the number of parameters in the model, and L  as the maximized value of the 

likelihood function (will be discussed in the next page) for the estimated model.    

 

27 BIC is computed as   )ln(ˆlnBIC 2 NT
NT

k
   with k defined as above, 

2̂  is computed as the variance of the estimated 

residuals, N and T are the number of cross sectional units and time period, respectively. 
28 For interested reader, refer Coakley et al. (2006). 
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where  ity is the observation on the i
th  

cross section unit at time t ,  itx represents the 

1k  vector independent variable (regressor) on the i
th  

cross section unit at time t  and 

ite   is the random error components on the i
th  

cross section unit at time t . In this 

pooled model, the parameters  Tβb , are assumed constant across i  and t . The 

following assumptions are considered in the pooled model (Stock and Watson, 2006):  

A3.1: )1,0(~ iidNeit        

A3.2: 0)( ititeE x         

A3.3:   0,, 1 iTiiteE xx        

A3.4: 0)( itiseeE                                  

A3.5: 0)( jtiteeE                                                                              

 for ,T,,s,tNji  21   .,,2,1,   with ts  and  .ji     

           Assumptions A3.1, A3.2 and A3.4 are the usual assumptions for the linear 

regression with residuals, independent and identically (iid) normal distribution with 

mean zero and constant variance, and that the regressors are uncorrelated with the 

residuals. Assumption A3.3 imposes strictly exogenous where the residuals and 

regressors are independent; while assumption A3.5 ensures no cross sectional 

dependence between residuals. 

When the assumptions A3.1-A3.5 are satisfied, the Maximum Likelihood 

Estimator (MLE) is used to estimate the parameter of the model. The likelihood 

function of (3.1) is given as follows: 

 
 


N

i

T

t

itfL
1 1

, bx                  (3.2) 

Under assumption A3.1, (3.2) becomes:  

2

2

1

1 1
22

1
 











 

 



iteN

i

T

t

eL          (3.3) 
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Take the natural log to (3.3), yields: 


 


























N

i

T

t

eit

eL
1 1

2

1

2

2

2

1
lnln 


.        (3.4) 

Expanding (3.4) gives the following: 

    .
2

1
ln

2
2ln

2
ln 

2

1 1

2 
 











N

i

T

t

iteNTNT
L


       (3.5) 

With it

T

itit ye xb , (3.5) can be written as follows: 

   
2

1 1

2

2

1
ln

2
2ln

2
ln 

 
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
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

 


N

i

T

t

it

T

ityNTNT
L




xb
     (3.6) 

Here, the value of  Tβb ,  that maximizes (3.6) can be obtained by differentiating 

w.r.t. ,b   

it

N

i

T

t

it

T

ityL
x

xb

b

 








 






1 1

2
2

1ln 


;  

and thus solving  

0
1 1










 

 

it

N

i

T

t

it

T

ity
x

xb



29
,  

this yields b̂  as follows: 

 




 

 
N

i

T

t

it

N

i

T

t

itit
T

y

1 1

2

1 1ˆ,ˆˆ

x

x

βb                  (3.7) 

In matrix notation, (3.7) is equivalent to the following: 

    yXXXβb
TT

T 1ˆ,ˆˆ 
           (3.8) 

                                                 
29 Under assumption )1,0(~ iidNeit , we have 1 . 
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Under assumption A3.1, this MLE coincides with OLS. Specifically, the OLS 

minimizes the sum of the squared residuals of model (3.1). If X  is full rank, the 

asymptotic variance for b̂   is  

  12ˆ)ˆ(


 XXb
TVar    where    

1

ˆ

ˆ 1 1

2

2





 

kNT

e
N

i

T

t

it

 .       (3.9) 

where  k  is the number of parameters in the model.  Thus, the asymptotic distribution 

of the pooled estimates, b̂  is: 

      ˆ,0~ˆ 




 bbb VarN  

where )ˆ(bVar is given in (3.9). 

OLS is widely used as a statistical tool in econometric analysis. Despite its 

powerful properties, efficiency and accuracy under the standard assumptions of pooled 

model (A3.1-A3.5), this method lacks robustness. The OLS estimator of pooled model 

is consistent but is inefficient estimates in the presence of CD.  Notice that, in the 

presence of CD, the Assumption A3.5 is violated and hence the estimates of b  takes the 

form,     ΩyXΩXXβb TT 1
ˆ,ˆˆ


   , with non-zero off diagonal of Ω . Since the 

estimated scale of  b̂  is  based on the square residuals (refer (3.9)), the presence of 

outliers influence the estimates resulting in bias estimates and increase in variance. 

Thus, the pooled model is inappropriate for computing the parameter of interest when 

contemporaneous correlated errors (CD) and outliers exist in the data.  
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3.2.2 Common Correlated Effects Mean Group (CMG) 

In order to correct for cross dependency, Pesaran (2006) introduced two 

approaches of the common correlated effects in modeling the panel. The first approach 

namely, the Common Correlated Effects Mean Group Estimators (CMG) is commonly 

used in many applications such as by Coakley et al. (2006) and Noman (2008). In the 

second approach, Pesaran proposed the pooled version of the common correlated effects 

where the parameters of interest are assumed constant for all cross-sectional units. 

Referring to Equations (2.2) and (2.4), model (3.1) will take the following form 

in the presence of the CD:  

 itt

T

iit

T

iiit fy   xβ            (3.10) 

where  ity denotes the observation on the i
th 

cross section unit at time t  for 

,,...,2,1   ;,...,2,1 TtNi     itx is a 1k  vector of independent variable on the i
th 

cross 

section unit at time t  . Here,  ii β  ,  are parameters which differ across i , while tf
 
is 

the unobserved factor, i  
are the factor loadings which are common across i , and it  

represents random error.  

In order to eliminate the effect of cross dependency, Pesaran used the cross 

section averages of the dependent variable ( ty ) and observed regressor ( tx ), to explain 

the unobserved factor, tf . This tf  is derived as follows: 

Taking the cross section averages of both the sides of (3.10), the following is obtained: 
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 xβ

                    (3.11) 

It can be rewritten as: 
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T

t

T

it fy   xβ        (3.12) 
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Taking  t

T f to the left hand side, yields: 

tt

T

itt

T yf   xβ ,        (3.13) 

Multiplying both sides with   
1T , (3.13) becomes: 

    tt

T

t

T

t yf  


xβ
1

      (3.14) 

Using the assumptions in Pesaran (2006), the followings are considered: 

B3.1: Unobserved factor,  tf  and factor loadings, i   is iid for  all i and t  . 

B3.2: it  is iid for all i  and t , serially uncorrelated with mean zero and a finite 

variance, ki 2 (number of regressor), cumulantorder -fourth finite a and .   

B3.3: ki β  

The assumption of B3.2 implies the asymptotic distribution of t , that is: 












N

i

it
N

N
1

2

2

1
,0~  ,        (3.15) 

and in terms of convergence rate, the variance of t  can be rewritten as: 

  








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




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 N
wVar
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i

iwt

1

1

2       (3.16) 

where iw is the weight that satisfies conditions (Pesaran, 2006) as in the following: 

(i) 









N
wi

1
    (ii) kw

N

i

i 
1

30
 

As shown in Pesaran (2006), t  converges as
31

:  

  Nqm

t  as 0  , for each t , 

and under assumption B3.1 that is   is iid for all i  and t , yields: 

 Np
 as   .       (3.17) 

 

                                                 
30 k is the number of specific regressor which is assumed known, m is the number of unobserved factor which is assumed to be 

unknown but both values are fixed. 
31 The detail of this proof has been shown in Pesaran (2006). 
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Suppose the rank of m , using the result in (3.17), the following
32

 is obtained: 

    


Nyf p

t

T

it

T

t  as  0
1

xβ                (3.18) 

where qm , p denotes as convergence in quadratic mean and convergence in 

probability, respectively. 

This suggests that using  tt y,,1 xH  , tf  and i  can be eliminated. Averaging 

across the cross section may reduce the effects of CD among the residuals. Here, iβ   

can be estimated consistently by augmenting the dependent variable; 
it

y  on the 

observed regressor; itx  with vector of ones and cross section averages of respective 

dependent and observed variable tty x ,  ; using OLS. 

The individual parameter estimate of the common correlated effects in (3.10) is 

given by: 

i

T

ii

T

ii MyXMXXβ
1)(ˆ        (3.19) 

where   TT

t HHHHΙM
1

  and tΙ  is a unit matrix of order TT  . To compute 

factor loading   , ),,( tt yX1H  is used, where H is a combination of vector of ones,  

average of independent variables  tx  and dependent variables  ty  and it is given as 

follows: 
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32 This result is obtained as in Pesaran (2006) 
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Then, the CMG estimates, CMGβ̂  is the average of parameter estimates iβ̂  that is  
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Following Pesaran (2006), the asymptotic distribution of CMG is 

       TNNN CMG

d

CMG , as ˆ,0ˆ Σββ  

with d denotes convergence in distribution; and 
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Σ       (3.21) 

The CMG seems to be robust and stands out for homogeneous as well as 

heterogeneous slope experiments, and does not seem to depend on whether the rank 

condition is satisfied (Pesaran, 2006). Coakley et al. (2006) found that the CMG 

estimator stands out as the most robust in the sense that it is the preferred choice in 

rather general (non) stationary settings where regressors and errors share common 

factors and their factor loadings are possibly dependent. 

However, this procedure is subjected to the influence of outliers since the OLS is 

used to model the data. A single influential outlier will automatically pull the fitted line 

towards it and result in poor parameter estimates. The standard error of CMG estimates 

is observed as lack robustness of standard deviation due to OLS estimated residuals.   

Moreover, there is the influence of the outlying observation on the mean and 

subsequently on M . The aim is limit the influence of outliers and this can be achieved 

through the use of robust measures. Thus, a robust version of RCMG is proposed in the 

next subsection.  
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3.2.3 Robust Estimation Procedure (RCMG) 

Following Peter et al. (1982), a general version of the M-estimator criterion for 

model (3.10) can be written as follows: 

   
 
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
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for each .,,2,1 Ni             (3.22) 

where  itiv x  and  itiu x  are positive functions that are related to the position of the 

itx in the space-X . Here,  t  is a differential convex function (with minimum at 0) 

and is known as the robustifying criterion function while i̂  is the robust scale defined 

in (2.17) in Chapter 2. The objective function in (3.22) is introduced with the aim of 

minimizing a function related to standardized residuals. Therefore, (3.22) is minimized 

by differentiating i  w.r.t. iβ ; 
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yields the following: 
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, where )()( tt   .    (3.23) 

Using a weight function given by  

,
)(
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t

t
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
  

and solving (3.23) equals to 0, the M-estimates iβ can be computed as follows: 
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Several different robust M-estimators can be obtained by substituting the 

different choices of  itiu x ,  itiv x and )( iti x . The choice will result in how much the 

data are scarified to achieve certain efficiency at the true underlying model assumption. 
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In order to provide robustness to the effects of the outlying observation 

occurring in the X and y  directions, the high breakdown point estimator is suggested. 

Let   

 
 

i

iit
itiit

e
dz
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ˆ β
x ,        (3.25) 

and following the work of Hung et. al (2008), a generalization of the M-estimator can 

be obtained by substituting   1itiu x  and  
)(

1

iti

iti
d

v
x

x   in (3.23), yields the 

following: 
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iti ezw x .        (3.26) 

The  itid x  is given as a measure of the outlyingness “ X ” from its mean value and is 

defined as follows: 

Case I: single regressor variable 

 
X

XX
x






it

itd   

where X  is a robust location of itx  (median( itx )) and X  is a robust scale (MAD)  

and is given by  it
t

it
t

xxX medianmedian 4825.1  . 

 

Case II:  multiple regressors 

     XX xVxx   

it

T

ititd 1       (3.27) 

where X  is a robust location of itx  (median( itx )) and  V is a matrix of robust variance 

covariance matrix of itx  (Minimum Volume Ellipsoid).          

Following the procedure to the residuals of Bai and Ng (2002)
33

, we have 

 i

T

iii XβyMe ˆˆ          (3.28) 

                                                 
33

 This can be achieved if m (number of unobserved factors) is fixed. 
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where iê   is the fitted value of ie , for Ni ,,2,1   of model (3.10), and M  is computed 

as: 

  TT

t HHHHΙM
1

 .        (3.29) 

In order to limit the influence of outliers in M , the robust version  given by 
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1

 is introduced; tΙ  is an identity  T by T matrix with the 

value of     tt yXH  ,,1 . Here  . are some filter functions for the adjusted value 

of location for dependent and independent variables. The values of  .  are set as 

follows: 
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where c is the critical value, chosen to achieve specified level of efficiency, and it is    

computed as 
ty̂3  with 

ty̂  is a robust scale given by 

 t
t

t
t

y yy
t

medianmedian 4825.1ˆ  .  

Thus, by replacing 
M in (3.28), and substituting  i

T

iii XβyMe ˆˆ    into (3.26), yields 
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T

i z βΧyWMX        (3.31) 

and final estimates of iβ can be obtained via the following: 
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where      . itii zWMG
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The algorithm of RCMG estimator is given as follows: 

(i) Compute the fitted residuals  

 ;ˆyˆˆ )0()0()0(

iiiitit yyye
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βΧM                                                    (3.33)   
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 where )0(ˆ
i

β  is the initial values obtained from LTS
34

-estimates, 
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1

 and     tt yXH  ,,1  with  . is given in (3.30). 

(ii) Compute  
)0(

)0(

0
ˆ

)(

e

i

i

e
 dz iti

)(


x   where 

)0(ˆ
i

e  is computed from (3.33)  and  

 )0()0()0( medianmedian 4825.1
itite

ee
tt

              (3.34)   

 with  )( itd x  given in (3.27). 

 (iii) Compute   

 
 

)0(

)0(

)0()0(

i

i

ii z

z
zw

i

i


W             (3.35)   

 and  .  in (3.35) is given by  Huber function 

         
otherwise      )(sign 

;                  

)0(

)0()0(

)0(






 


i

ii

i

z

zz
zi




                 (3.36) 

 is set to 1.345 at 95% efficiency at normal distribution. 

(iv) The value of )1(ˆ
i

β  is computed as 

        ˆ )0(1)0()1(

i

T

i

T

iiiii
yGXXGXβ


               (3.37) 

where    .)0(

itii z WMG
 Thus, for h

th
 iteration in (3.37);  

        ˆ )1(1)1()(

i

hT

i

hTh

iiiii
yGXXGXβ

  

(v) Repeat the procedure (i)– (iv) until the value of )(ˆ h

i
β  converges; that is 

Q
h

hh

i

ii 






)1(

)1()(

ˆ

ˆˆ

β

ββ
 and Q is some constant value.    (3.38) 

 

 

 

                                                 
34 The objective function of LTS estimates has been defined in Equation (2.16) in Chapter 2.  
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3.3 Inferences  

In this section, the properties of the parameter estimates through its asymptotic 

distribution are described. The test statistics and confidence interval are constructed 

based on the asymptotic distribution of the proposed estimation procedure, RCMG.  

Other studies on inferences of parameter estimates can be found in Kapetonis and 

Pesaran (2004) and Pesaran (2006). 

 

3.3.1 Asymptotic Properties of RCMG  

Preliminaries 

(1) Assumptions for i  (filter function); for each Ni ,,2,1   

C3.1: 0
ˆ

ˆ










i

it
i

e


   

C3.2: 0)0( i      

C3.3:     1i  if i  is bounded. 

 

(2) Law of Large Number 

Let Nxxx ,,, 21  be an independent trial process, with finite expected value 

 
jxE and finite variance  

jxV2 . Let NN XXXS  .......21 , then for any 

,0   

0







 

N

S
P N   as N  

Equivalently,  

1







 

N

S
P N   as N . 
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(3) Slutsky’s Theorem (Maronna et al. (2006)) 

Let NNN xba    and     ,  be the sequence of random variables, and also let x  be a random 

variable, and    , ba are constants. Suppose bbaa p

N

p

N     , converges in 

probability as N , and that xx d

N  (converges in distribution) as N , then  

baxbxa NNN   as N . 

 

The asymptotic distribution of RCMG is given as follows:  

Theorem 3.1: Under assumptions A3.2-A3.4, A3.6, B3.1, B3.2 and C3.1-C3.3, 

             i

d

i NT vββ ,0ˆ     

as  N  and T ,  

where 

           

 
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







itii

iit
i

itii

iit
i

ii

T

i

v

e
E

v

e
E

i

x

β

x

β

XMXv







  

  ;,,2,1for  Ni  where   
)(

1

iti

iti
d

v
x

x  . 

 

Proof  of  Theorem 3.1. 

Suppose the Generalized M-estimates of  iβ  satisfies the following: 

 
 

.0
ˆ

ˆ

























itii

iit
i

v

e
E

x

β


                   (3.39) 

Taking the Taylor of expansion of order 1 to (3.39) as a function of iβ about 0β is  

 
 

 
 

 0

11 ˆ

ˆ1

ˆ

ˆ
ββxMx

x

β
x

x

β

















 



 ii

T

i

T

t itii

iit
i

i

i

T

t itii

iit
i

v

e

v

e





        (3.40) 
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Solving (3.40) equals to 0,  

 
 

 
 

 0

11 ˆ

ˆ1

ˆ

ˆ
0 ββxMx

x

β
x

x

β














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


 



 ii

T

i

T

t itii

iit
i

i

i

T

t itii

iit
i

v

e

v

e





     (3.41) 

Averaging over t  , yields  

 
 

 
 
  i

T

i

T

t itii

iit
ii

i

i
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x
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 



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
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


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


1

0

1 ˆ

ˆ1

ˆ

1

ˆ

ˆ1
0





   (3.42) 

and the following estimate is obtained: 
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


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     (3.43) 

multiplying T to both sides of (3.43), yields 
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    (3.44) 

The random variable 
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Therefore, for large ,T  the CLT (defined in Chapter 2, Section 2.4.3) implies that the 

distribution of  
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and the Law of Large Number implies that 
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Let 
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ˆ
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
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





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


 ˆ

ˆ

ˆ
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Then by Slutsky’s Lemma, 
B

A

B

A d

T

T    for largeT . Under CLT and Law of large 

numbers, the following is obtained: 











2
,0
B

a
N

B

A d   

as N  and T , as stated.  

End of proof of Theorem 3.1. 

 

Thus, by definition of RCMG estimates, the following is obtained: 

   RCMG

d

RCMG NT  ˆ,0ˆ ββ            (3.45) 

where N is a number of cross sectional units in the panel and 



N

i

iRCMG
N 1

2

1ˆ v  with 

iv  given in Theorem 3.1. 

        

From this, the hypothesis test and confidence interval for the parameter 

estimates can be derived as follows: 

 

Hypothesis Test 

Here, we are interested to test whether the slope estimates of the proposed model, 

RCMGβ̂   is close to the true value, 0β . Thus, the hypothesis is defined as follows: 
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Null hypothesis    00
ˆ:H ββ RCMG  

Alternative hypothesis  01
ˆ:H ββ RCMG     (3.46) 

Since RCMGβ̂  is asymptotically normally distributed and variance of RCMGβ̂  is known, the 

test statistics that can be used for the above hypothesis test is the standard z-test which 

is as follows:  

 
 RCMG

RCMG

se
z

β

ββ

ˆ

ˆ 
         (3.47) 

where RCMGβ̂ is the parameter estimates obtained from the proposed estimation 

procedure, and  RCMGse β̂  is the standard error of RCMGβ̂  where  

    2/1
ˆ1ˆ

RCMGRCMG
T

se β  , 



N

i

iRCMG
N 1

2

1ˆ v  and iv  is given in Theorem 3.1. H0 is 

not rejected if 96.12/05.0  zz and rejected for 96.12/05.0  zz . 

 

Confidence Interval 

For a confidence interval, a )%1(100   CI for the slopes estimates RCMGβ̂ is given by: 

    RCMGRCMGRCMGRCMG sezsez βββββ ˆˆˆˆ
2/2/                  (3.48) 

where RCMGβ̂ is computed as in (3.37),     2/1
ˆ1ˆ

RCMGRCMG
T

se β  , 



N

i

iRCMG
N 1

2

1ˆ v  

at a   level of significant. 

 

3.3.2 A Simple Measure of Robustness   

 There are several measures of robustness are used in the literature to establish 

whether the estimates have good properties (Wilcox, 2012). The most common one is 

the breakdown point and it is defined as the minimum fraction of outlying data that can 

cause the estimator to take an arbitrary value. A second measure of robustness is the 
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influence function where is defined as the change in an estimate caused by insertion of 

outlying data as a function of the distance of the data from the (uncorrupted) estimate.  

It is really difficult to find the finite sample breakdown point of RCMG 

estimator since the sophisticated mathematical techniques are required. Thus, Imon 

(2011) introduced a very simple rule for finding the breakdown point of estimators. The 

rule assumes that  

 There are outliers only in the Y-direction. 

 The numbers of observations are deleted/weighted are known before 

fitting the model. 

 The number of parameters ( k ) to be estimated. 

According to Imon (2011), the Generalized M-estimator is a bounded influence 

estimator and it is popular among the statistician. The weakness of this estimator is that 

it possess a breakdown point of 
k

1
. Thus, when k  is large, the breakdown point is small 

and may not be larger than the lowest breakdown point of  
N

1 35
 (breakdown point for 

OLS estimator). Therefore, the performance of proposed estimator is investigated by 

considering the small number of regressor ( k ) (refer Monte Carlo experiments in 

Chapter 4), it is believed that proposed Generalized M-estimator will produce very good 

results
36

. 

Finally, we can measure the robustness of the proposed estimator in terms of 

efficiency. The efficiency is defined as the ratio of the minimum variance in an estimate 

to the actual variance of a (robust) estimate, with the minimum variance being 

determined by a target distribution such as the normal distribution (Lindgren, 1993). 

According to Walpole et al. (2012), any estimator  is an efficient estimator among all 

the estimators of    if   they produce a minimum variance. Notice that, the MLE is 

                                                 
35 N is the number of sample size. 
36 We will discuss the breakdown properties for a larger number of regressos in our forthcoming paper. 
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always an efficient estimator under the iid assumption of residuals. In the presence of 

CD, MLE is no longer an efficient estimator. Therefore, the efficiency of the proposed 

estimator can be investigated dividing the )ˆ( RCMGVar β  with )ˆ( CMGVar β .  If the value is 

less than 1, we say that RCMG is efficient estimator than CMG, or vice versa. 

Consider
37
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Notice that, in the presence of CD, it is believed that CMGβ̂  will produces 

minimum variance among the estimation procedures (pooled and RCMG) in 

uncontaminated panel
38

. However, in the presence of outliers, it is believed that RCMG 

will produces minimum variance since M  in CMG procedure is affected by the 

influence of outliers.  

 

3.4 Goodness of Fit of the Model 

The respective estimation procedure is evaluated using several commonly used 

measures; that are: (1) coefficient of determination 2R ; (2) a robust version of 2R ; (3) 

cross validation criteria CV , and; (4) a robust version of CV .  Here, the focus is to (i) 

assess the goodness-of the fit to the data, and (ii) find the best fitting model.  The details 

of these measures are discussed in the next section.  

 

3.4.1 Coefficient of Determination 

The first measure is to use the ratio of the explained variance to the total 

variance given by: 
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     (3.49) 

Basically, this measure gives the ratio of the “regression sum of squares”, 

 
 


T

t

N

i

it yySSR
1 1

2
ˆ , to the “total sum of squares”, given by 

  .
1 1

2


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
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t

N

i

it yySST The SST  can be decomposed into two components: SSR  and the 

“residuals sum of squares”, SSE . 

                                                 
38 Refer Table 4.13 in Chapter 4 where when the bias is so small, )ˆvar(RMSE  and this result is proven that CMG is efficient 

under CD and without outliers.  
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Here,    
  
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it yyyySSESSRSST
1 1
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1 1

2
ˆˆ . The 2R   is computed as a 

measure goodness-of-fit, to quantify the percentage of the uncertainty in the data that is 

explained by the regression model. The 2R  ranges from 0 to 1. If the value of the 2R  is 

close to 0, this indicates a poor fit. However, if the fitted model is a good fit, the value 

of the large 2R  is obtained, and a perfect model if 12 R .  

In the presence of an influential outlier, the SSE  components will be larger due 

to a poor fit model, thus resulting in a small 2R . To limit the influence of such outlier 

on the resulting model, a robust version of 2R   is employed on which it is based on the 

absolute values of the fitted residuals (Croux and Dehon, 2003) and yields;
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where  
 


T

t

N

i

it yySST
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2
is replaced in (3.50) by  
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it yy
1 1

median .  

 

3.4.2 Cross Validation (CV ) Criteria 

To find the ‘best’ model, the cross validation techniques of Herwatz and Xu 

(2006) are employed. The CV  techniques are widely used in applied non- and semi-

parametric modelling. The details of the techniques are discussed as follows: 

For each cross sectional units ,i  

(1) CV  based on averages of absolute value of residuals: 

 

;

ˆ

C 1

T

yy

V

T

t

tiit

i






              (3.51) 
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(2) CV  based on squared residuals: 
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 Here   ti

T

itiy )()(
ˆˆ

  xb   is computed, where )(
ˆ

ib the estimated parameter that is 

obtained is for a particular model after removing the i
th

 pair dependent and independent 

variables. Morell et al. (2010) stated that although the absolute distances are less 

affected by outliers than the squared ones, outliers still have an impact on the estimation 

of  tiy 
ˆ  in (3.51). Thus, Zheng and Yang (1998) introduced the median of the CV (here 

denoted as RCV ) as follows:  

      TiiTiiiii yyyyyyRCV   ˆ,,ˆ,ˆmedian 2211              (3.53) 

A possible disadvantage of RCV is that substantial information may be lost since only 

the median of the residual is used. An alternative to RCV is to trim a proportion    of 

the residuals square which is particularly large in the sample, thus yielding the 

following: 

  
      

 




 
T

t

titii yy
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

 1

22
ˆ

1
                   (3.54) 

where   ti

T

itiy )()(
ˆˆ

  xb  and )(
ˆ

ib is the estimated parameter  after removing T  pairs of  

dependent and independent variables. 

By comparing iCV , 2

iCV , iRCV  and 2

iRCV  values for each unit i , the model 

that corresponds to the smallest value among these measures, will be selected as the best 

fitting model.  

 

3.5 Discussion 

In this chapter, an alternative approach of the CMG is proposed in order to limit 

the influence of outliers and leverage observations in the panel model. The Generalized-
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M estimator is introduced in the model together with the modification of the variance 

covariance matrix which results in the RCMG procedure. The 2RR , a robust version of 

2R and RCV , a robust version of  CV  as the measures to evaluate the goodness-of-fit 

of the fitted model are discussed.  The behaviour of RCMG is asymptotically normally 

distributed and as such the test statistics of the hypothesis testing of the parameter 

estimates can be derived together with the construction of the CI. Therefore, the 

performance of the proposed test is investigated in the next Chapter in terms of 

parameter estimates, size, power and also CI. 
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CHAPTER 4 

Finite Sample Behaviour of RCMG: A Monte Carlo Simulation Study 

 

4.1 Introduction 

Several simulation studies are conducted with the aim of studying the behaviour 

of small sample properties of the proposed estimator in the presence of cross correlated 

errors in the panel.  Coakley et al. (2006) designed a Monte Carlo simulation study in 

order to compare the properties of the estimators in several settings with cross section 

dependent errors. The errors are set to be either I(0) or I(1) processes
39

. Among the 

approaches used for the comparatives purposes, include: Pooled, Individual fixed 

effects, Two-way fixed effects, Fixed effects with principal components, Mean group 

(MG), Seemingly unrelated (SUR) mean group, Demeaned mean group, Mean group 

with principal components, CMG, and Between or cross section
40

. This study focuses 

on the analysis of the estimator through summary statistics: sample mean, sample 

standard deviation, standard error and bias of the parameter estimates. 

Pesaran (2006) studied the small sample properties of CMG and common 

correlated error pooled estimators in terms of size and power of the test by means of the 

Monte Carlo simulation. The MG and pooled models are also considered which include 

the unobserved factor tf  in the regression of ity , and the “naive” estimators that 

exclude those unobserved factors.  He computed bias and root mean square errors of the 

parameter estimates for the cases of homogeneous and heterogeneous slope in the 

panels. Kapetonis et al. (2006) used a similar approach to conduct the simulation 

experiments. They however considered another alternative approach which used a 

principal component (PC) as discussed in Kapetonis and Pesaran (2004). The 

                                                 
39 I(0) is a stationary process and I(1) is integrated of lagged dependent variable of order 1 (non-stationary). 
40 This estimator is defined in Appendix B.  
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alternatives are the pooled and mean group versions of this PC estimator. Other related 

studies can be found in Philips and Sul (2003) and Coakley et al. (2002). 

In this chapter, the finite sample behaviour of the proposed estimator is 

illustrated using a Monte Carlo simulation study as discussed in Chapter 3. The 

performance of the estimators are illustrated using several experiments: the first two 

experiments (given in Subsections 4.2.1.1 and 4.2.1.2) are summarised by the sample 

mean, standard deviation, standard error and bias of the parameter estimates over 

replications; in Section 4.3, the size and power of the estimator for the hypothesis test 

are examined; and in the last section, the CI for parameter estimates are obtained. 

 

4.2 Performance Study 

In this section, the performances of the estimators discussed in Chapter 3 are 

measured (see Pesaran, 2006; Kapetonis et al., 2006; and Coakley et al., 2006). By 

limiting the analysis to estimation issues, the performances of the estimator are 

measured based on (see Coakley et al., 2006) the following: 

(i) Sample mean (Mean),   of the slope estimates, ̂ . 

nsimul

nsimul

g

g



1

̂

           (4.1) 

where g̂ is the parameter estimates obtained for nsimulg ,,2,1  ; with nsimul as the 

number of simulations. 

(ii) Sample standard deviation,  SD of the parameter estimates ̂ , and; 

 
 

nsimul
SD

nsimul

g

g





1

2ˆ 

          (4.2) 

where g̂ and nsimul are in (4.1). 
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(iii) Bias of the parameter estimates, ̂  

     ˆEBias           (4.3) 

where bias is the expectation of the difference between an estimator and the true value 

of the parameter being estimated. 

(iv)  Mean squared error,  MSE values of the parameter estimates, ̂ .  

     2 BiasVarMSE                      (4.4) 

where    2
 SDVar  ,  SD  and  Bias  are given in (4.2) and (4.3), respectively. 

where  SD and  Bias  are given in (4.2) and (4.3), respectively. These measures can 

be used to gauge the bias and variance of the estimator and the reliability of the 

conventional standard errors. 

 

4.2.1 Design of Experiment 

The purpose of this section is to compare the small sample properties of CMG 

and RCMG with error cross section dependence. Here, two types of experiments are run 

with different settings among the regressor  itx , unobserved factor  tf , and factor 

loadings  i  in the DGP process under the following conditions: (i) the degrees of 

cross sectional dependence; (ii) the percentage of contaminations and leverage points; 

and (iii) the type of contaminations. The DGP of Experiment 1 and Experiment 2 are 

briefly discussed in Subsections 4.2.1.1 and 4.2.1.2, respectively. In Experiment 1, the 

common factor only affect the error while in Experiment 2, the common factors affect 

both the errors and regressors. 

 

4.2.1.1 Experiment 1 

Using the same design as in Pesaran (2006) and Kapetonis et al. (2006), the 

DGP for panel model (similar as in Section 2.5) is given as follows: 
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itit

T

iiit exy   ;  

and ititt

T

iit fe   ;     for TtNi ,,2,1,0,,49 and ,,2,1    

with  )5.0,5.0(~ iidUi ; 1it ;  1  i ; 

)1,0(~ iidNxit )1,0(~ iidNit ; )1,0(~ iidNft .   

In this experiment, only tf   (unobserved factor) drives the errors and the degree of cross 

sectional dependence  i  takes the following value as in (2.32); 

 (i)  0
i
  for no cross dependency;  

 (ii) )3.0,1.0(~ iidUi for mild cross dependency and ; 

(iii) )5.1,5.0(~ iidU
i

 for strong effect of cross dependency;  

with outliers defined as in (2.33) 
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In the presence of LP, itm  at time  jt  , the following itx  is set as: 
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The contaminations
41

 ( itm ) for ite  and itx   are derived 

from 2

30 , ),4,0(),4,4( NN )2,1(LN , Cauchy(0,16).  

 

4.2.1.2 Experiment 2 

In this study, the Monte Carlo design (with reference to Coakley et al., 2006) 

which allows for one or two common factors, ltf  is given as:   

;T

it i i it ity x e      for  TtNi ,,2,1,0,,49 and ,,2,1   .                (4.4) 

 )1,0(~ ,    , iidNfe e,ititelt

T

liit   ;        (4.5) 

                                                 
41 The performances of the estimators are measured under various types of outliers. 
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     ]5.1,5.0[~; ),0(~ , 2

, iidUiidNfx xixix,ititxtilt

T

liit       (4.6) 

The unobserved factors, ltf  and  t  are set as: 

2,1           ;)1,0(~ liidNflt  and        )1,0(~ iidNt      

The parameters of unobserved factors are generated as: 

.2,1];5.1,5.0[~     and  ],5.1,5.0[~     ];5.1,5.0[~ liidUiidUiidU lilii      (4.7) 

In the presence of outliers, the DGP for the errors, ite  is set at time it  ;  
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 and in the presence of leverage point at time it  , as follows: 
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where 2

30~ itm  
42

. 

Briefly, it is observed that all variance  1222   flei  but the regressor 

variances differ randomly across units, that is   ]5.1,5.0[~; iidUxi . The specifications 

are considered here (1) i is drawn independently from i  for each i  ; and  (2) 

dependence is introduced for each i  if lili     . In this experiment, the factor loadings 

( 2,1  ;     and  ,   , llilii  ) in (4.7) are set to ]5.1,5.0[U  which imply strong CD within 

residuals in the panel.  The details specifications under certain conditions of CD are 

given in Table (4.1). 

For each experiment, we generate heterogeneous slope, ]5.0,5.0[~ iidUi  

with 0)(  iE  . 1 i  is set to provide a homogeneous slope for all cross 

sectional units. Here, how close the slope estimates value to the true   using the stated 

statistical measures will be investigated. Only evaluating the performance of the 

                                                 
42 Only one type of LP is chosen from Experiment 1 in order to investigate the sample small properties of the procedure when LP 

drawn from where  2
30 (asymmetric and  larger size of contamination).   
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estimators based on the slope coefficient will be considered since the concept of slope is 

highly important in the economics view. This is simply because it is used to measure the 

rate of change in the dependent variable as the independent variable changes.  

 

Table 4.1 – Settings in DGP for Experiment 2 

Case Settings Definition 

A 0   iii   
 No cross sectional 

      dependence 

B 0  2  ii   

 Factor tf1 and t  drives the 

errors and regressors 

respectively. 

(The errors and regressors are 

independent) 

C 0  22  iii   

 Factor tf1  drives both the 

errors and regressors. 

(The errors and regressors are 

dependent) 

C’ 0  22  iii   and ii 11      

 Factor tf1  drives both the 

errors and regressors. 

 Factor-loading dependence 

D 0  22  ii   

 Factor tf1  drives both the 

errors and regressors. 

(The errors and regressors are 

dependent) 

 Factor t  drives the regressors 

E 0i  

 Factor )( 2,1
 ttt fff  drives 

both the errors and regressors 

(The errors and regressors are 

dependent) 

E’ 0i  and ii      

 Factor )( 2,1
 ttt fff  drives 

both the errors and regressors. 

(Factor-loading dependence) 

F Original setting in DGP 

 Factor )( 2,1
 ttt fff  drives 

both the errors and regressors 

(The errors and regressors are 

dependent) 

 Factor t  drives the regressors 
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In both experiments, 500 replications are performed for 100,20  TN  to 

investigate the performance of the estimator under the various degrees and conditions of 

CD and various types of outliers.   The first 50 observations will be removed in order to 

eliminate the initial effect of random generators. 

 

4.2.2 Results and Discussion 

4.2.2.1 Results - Experiment 1 

Tables 4.2 to 4.7 provide the results of CMG and RCMG with and without the 

presence of outliers and leverage point. In Table 4.2, the value of the mean, standard 

deviation, bias and MSE of ̂  are reported with 1% contamination present in the panel. 

Both the CMG and RCMG methods perform well with small MSE of 0.001 under the 

various degrees of CD in the uncontaminated panel (that is when ))1,0(~ Neit .  Under 

the cross sectional independence in the panel, the average of the CMG is comparable to 

the RCMG in the presence of contaminations such as ).4,0(  and  )4,4(,2

30 NN   

However, the RCMG yields unbiased  estimates than CMG in the presence of  heavy 

tailed outliers (drawn from Lognormal and Cauchy distributions) with small MSE in 

both estimators. These results hold for both cases of mild and strong CD in the panel. 

Thus, it is observed that CMG is quite robust and not much affected by outliers less than 

5%. 

As the percentage of outliers increases to 5% (see Table 4.3), the SD of CMG 

inflate in the presence of outliers drawn from Lognormal and Cauchy distributions and 

this result worsen for the case of strong CD effect. The RCMG continues to yield 

smaller MSE compared to CMG and these results hold as we increase the percentage of 

outliers to 10% (see Table 4.4). Thus, RCMG is robust even in the presence of a strong 

CD effect in the contaminated panel. As expected, the MSE for CMG in all cases of CD 
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will always be large in the presence of more than 5% outliers drawn from heavy tailed 

distribution. 

Tables 4.5 to 4.7 report the performance results of CMG and RCMG in the 

presence of outliers in input variable (X): the leverage point. With 1% leverage points in 

the panel, CMG estimator is more bias than RCMG even with a smaller value of MSE. 

RCMG performs better in all the CD cases with and without the presence of CD.  As the 

percentage of leverage point is increased to 5% (see Table 4.6), the CMG continues to 

be bias and this subsequently affects the value of MSE. The RCMG however is slightly 

bias with smaller value of MSE for all CD cases. In the presence of  10%  LP (see Table 

4.7),  CMG̂ is far from the true value of 0.1 and intends to contribute to the huge 

bias to the estimates. The RCMG̂  is slightly bias as the percentage of leverage points 

increases; however, it still outperforms CMG with a smaller value of MSE. In general, 

RCMG̂  provides stable/consistent estimates   in the presence of up to 10% 

contaminations. 

In general, CMG is quite robust in the presence of outliers in the response 

variable (Y-direction) in most cases apart from when outliers drawn from Lognormal 

and Cauchy distribution. In the presence of LP (X-directions), the estimates of CMG 

will be affected and differs significantly from the true estimates as the percentage  of LP 

increases but the RCMG less affected in all cases in the presence of outliers  in X and Y 

directions. 

The behaviour of this estimator reported in Tables 4.4 and 4.7 are illustrated via 

box plots in Figures 4.1 to 4.3 and 4.4 to 4.6 for the case of the contaminated panel in Y 

and X directions, respectively. In Figures 4.1 to 4.3, the proposed estimator provides a 

stable estimate of   compared to CMG in the presence of outliers for all cases of CD. 

In the presence of leverage points, RCMG̂  is unbiased while CMG̂  is consistently bias. 
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4.2.2.2 Results - Experiment 2 

Tables 4.8 to 4.12 present the results of the simulation study under the various 

scenarios of the cross section dependence with the strong CD in the DGP setting given 

in Table 4.1. The summary of the statistics of the estimators based on 500 simulated 

data is computed: sample mean, sample standard deviation, bias and MSE value with / 

without the presence of outliers and leverage points (drawn from 2

30 ). In the 

uncontaminated panel (refer Table 4.8), the CMG performed better than the RCMG in 

all cases. For E’ case, both estimators give a bias estimate of  . This is due to: (1) the 

factor loadings, ii    and  are dependent, and (2) the unobserved factors tf  derive the 

regressors and errors, subsequently resulting in the dependency between the regressors 

and error. Likewise, in the presence of 5% contamination (shown in Table 4.9), the 

CMG outperforms the RCMG estimator in all cases. Similar results are obtained when 

the percentage of outliers increases by 10% (refer Table 4.10). Although the RCMG 

gives us a slightly bias estimate, generally the performance is comparable with small 

MSE.  Since the outliers drawn from 2

30  , it is observed that the result of CMG and 

RCMG are comparable with the result in Experiment 1 (see column 4 Tables 4.2 to 4.4, 

for strong CD effect)  for cases A and B (no CD and dependency between errors and 

regressors). The results in Experiment 2 however conflicts the Experiment 1 for other 

cases ( C, C’, D, E, E’ and F) in the presence of outliers. The outliers worsen the 

conditions of cross dependency between the factor loadings, regressors and errors and 

therefore results in the bias estimates of RCMG. 

The results of ̂  are reported in Tables 4.11 to 4.12 in the presence of LP. The 

CMG provides a poor estimate in all cases and it is expected since the results in 

Experiment 1 are comparable with the result in Experiment 2 (see column 4 Tables 4.2 

to 4.4, for strong CD effect). The proposed estimator however yields reasonably good 

parameter estimates with a small bias and MSE) except in the case of B and D, that is 
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when the unobserved factors, ttf  and  drive the errors and regressors to indicate the 

presence of CD among the errors and regressors. The RCMG estimate is stable even 

with a larger percentage of LP while the CMG continues to yield a bias estimate. It can 

be concluded that RCMG is not much affected by the presence of LP while the CMG 

fails with bias and larger MSE. As expected, RCMG outperform CMG in the presence 

of LP since the RCMG are developed to limit the effects of outliers especially in X-

space because outliers in X-space are more influential. 
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Table 4.2: The Results of ̂  with 1% Contamination (Experiment 1) 

Estimation 

Method 
Performance 

Measure 

ite  

)1,0(N  

 

2

3001.0

)1,0(99.0



N
 

 

)4,4(01.0

)1,0(99.0

N

N 
 

 

 
)4,0(01.0

)1,0(99.0

N

N 
 

0.99 )1,0(N  

0.01 )2,1(LN  

0.99 )1,0(N  

0. 01 Cauchy 

(0,16) 

  0i  

CMG Mean 0.993  1.000  0.993  0.999  1.005  1.007  

 SD 0.025  0.029  0.041  0.022  0.151  0.224  

 Bias -0.007 0.000 -0.007 -0.001 0.005 0.007 

 MSE 0.001  0.001  0.002  0.000  0.023  0.050  

RCMG Mean 0.996  1.000  0.992  0.999  1.000  1.000  

 SD 0.027  0.027  0.027  0.025  0.027  0.032  

 Bias -0.004 0.000 -0.008 -0.001 0.000 0.000 

 MSE 0.001  0.001  0.001  0.001  0.001  0.001  

        

  )3.0,1.0(~ iidUi  

CMG Mean 0.998 1.000 1.001 0.998 1.037 1.019 

 SD 0.025  0.028  0.042  0.026  0.201  0.193  

 Bias -0.002 0.000 0.001 -0.002 0.037 0.019 

 MSE 0.001  0.001  0.002  0.001  0.042  0.037  

RCMG Mean 0.997 0.999 1.005 0.997 1.000 1.001 

 SD 0.028  0.026  0.028  0.029  0.029  0.033  

 Bias -0.003 -0.001 0.005 -0.003 0.000 0.001 

 MSE 0.001  0.001  0.001  0.001  0.001  0.001  

        

  )5.1,5.0(~ iidUi  

CMG Mean 1.000  0.997  1.006  1.000  0.992  0.996  

 SD 0.027  0.030  0.043  0.027  0.169  0.258  

 Bias 0.000 -0.003 0.006 0.000 -0.008 -0.004 

 MSE 0.001  0.001  0.002  0.001  0.029  0.067  

RCMG Mean 1.000  0.996  0.998  1.000  1.007  1.018  

 SD 0.029  0.032  0.026  0.029  0.028  0.019  

 Bias 0.000 -0.004 -0.002 0.000 0.007 0.018 

 MSE 0.001  0.001  0.001  0.001  0.001  0.002  

Mean and SD are the sample mean and standard deviations of ̂  over 500 replications respectively. MSE is the mean squared error for ̂ . 



91 

Table 4.3: The Results of ̂  with 5% Contamination (Experiment 1) 

  ite  

Estimation 

Method  
Performance 

Measure 

)1,0(N  

 

2

3005.0

)1,0(95.0



N
 

 

)4,4(05.0

)1,0(95.0

N

N 
 

 

 
)4,0(05.0

)1,0(95.0

N

N 
 

0.95 )1,0(N  

0.05 )2,1(LN  

0.95 )1,0(N  

0. 05 Cauchy 

(0,16) 

  0
i
  

CMG Mean 0.993  1.000  1.007  1.000  1.182  1.000  

 SD 0.025  0.041  0.089  0.031  0.779  1.155  

 Bias -0.007 0.000 0.007 0.000 0.182 0.000 

 MSE 0.001  0.002  0.008  0.001  0.640  1.335  

RCMG Mean 0.996  1.004  1.002  0.999  1.002  1.003  

 SD 0.027  0.032  0.029  0.027  0.034  0.049  

 Bias -0.004 0.004 0.002 -0.001 0.002 0.003 

 MSE 0.001  0.001  0.001  0.001  0.001  0.002  

        

  )3.0,1.0(~ iidU
i
  

CMG Mean 0.998 0.996 0.982 1.002 1.088 0.933 

 SD 0.025  0.034  0.097  0.033  0.725  1.367  

 Bias -0.002 -0.004 -0.018 0.002 0.088 -0.067 

 MSE 0.001  0.001  0.010  0.001  0.533  1.872  

RCMG Mean 0.997 0.995 0.994 1.000 1.002 1.002 

 SD 0.028  0.027  0.031  0.031  0.047  0.035  

 Bias -0.003 -0.005 -0.006 0.000 0.002 0.002 

 MSE 0.001  0.001  0.001  0.001  0.002  0.001  

        

  )5.1,5.0(~ iidU
i
  

CMG Mean 1.000  1.001  1.024  1.007  1.003  0.823  

 SD 0.027  0.040  0.084  0.032  1.603  1.175  

 Bias 0.000 0.001 0.024 0.007 0.003 -0.177 

 MSE 0.001  0.002  0.008  0.001  2.568  1.412  

RCMG Mean 1.000  1.000  1.001  1.005  1.002  0.999  

 SD 0.029  0.032  0.032  0.031  0.037  0.041  

 Bias 0.000 0.000 0.001 0.005 0.002 -0.001 

 MSE 0.001  0.001  0.001  0.001  0.001  0.002  

Mean and SD are the sample mean and standard deviations of ̂  over 500 replications respectively. MSE is the mean squared error for ̂ . 
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Table 4.4: The Results of ̂  with 10% Contamination (Experiment 1) 

  ite  

Estimation 

Method 
Performance 

Measure 

)1,0(N  

 

2

30
10.0

)1,0(90.0



N
 

 

)4,4(10.0

)1,0(90.0

N

N 
 

 

 
)4,0(10.0

)1,0(90.0

N

N 
 

0.90 )1,0(N  

0.10 )2,1(LN  

0.90 )1,0(N  

0.10 Cauchy (0,16) 

  0
i
  

CMG Mean 0.993  1.002  1.002  0.996  1.063  1.034  

 SD 0.025  0.045  0.130  0.041  2.248  2.807  

 Bias -0.007 0.002 0.002 -0.004 0.063 0.034 

 MSE 0.001  0.002  0.017  0.002  5.059  7.881  

RCMG Mean 0.996  1.001  1.000  0.999  0.989  0.999  

 SD 0.027  0.031  0.038  0.034  0.098  0.060  

 Bias -0.004 0.001 0.000 -0.001 -0.011 -0.001 

 MSE 0.001  0.001  0.001  0.001  0.010  0.004  

        

  )3.0,1.0(~ iidU
i
  

CMG Mean 0.998 0.999  1.007 0.991 0.512 0.845 

 SD 0.025  0.049  0.123  0.036  4.540  1.960  

 Bias -0.002 -0.001 0.007 -0.009 -0.488 -0.155 

 MSE 0.001  0.002  0.015  0.001  20.854  3.868  

RCMG Mean 0.997 1.003  1.000 0.998 0.990 0.989 

 SD 0.028  0.034  0.037  0.034  0.049  0.070  

 Bias -0.003 0.003 0.000 -0.002 -0.010 -0.011 

 MSE 0.001  0.001  0.001  0.001  0.002  0.005  

        

  )5.1,5.0(~ iidU
i
  

CMG Mean 1.000 0.993  0.991  0.998  1.186  1.083 

 SD 0.027 0.045  0.120  0.037  2.054  2.092 

 Bias 0.000 -0.007 -0.009 -0.002 0.186 0.083 

 MSE 0.001  0.002  0.014  0.001  4.252  4.385 

RCMG Mean 1.000  0.992  0.998  1.000  0.979  1.005 

 SD 0.029  0.034  0.039  0.031  0.240  0.058 

 Bias 0.000 -0.008 -0.002 0.000 -0.021 0.005 

 MSE 0.001  0.001  0.002  0.001  0.058  0.003 

Mean and SD are the sample mean and standard deviations of ̂  over 500 replications respectively. MSE is the mean squared error for ̂ . 
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Table 4.5: The Results of ̂  with 1% Leverage Points (Experiment 1) 

  it
X  

Estimation 

Method 
Performance 

Measure 

)1,0(N  

 

2

3001.0

)1,0(99.0



N
 

 

)4,4(01.0

)1,0(99.0

N

N 
 

 

 
)4,0(01.0

)1,0(99.0

N

N 
 

0.99 )1,0(N  

0.01 )2,1(LN  

0.99 )1,0(N  

0. 01 Cauchy 

(0,16) 

  0
i
  

CMG Mean 0.997  0.822  0.598  0.888  0.749  0.535  

 SD 0.023  0.058  0.093  0.040  0.094  0.094  

 Bias -0.003 -0.178 -0.402 -0.112 -0.251 -0.465 

 MSE 0.001  0.035  0.170  0.014  0.072  0.225  

RCMG Mean 0.996  0.982  0.983  0.986  0.991  0.981  

 SD 0.027  0.026  0.028  0.030  0.030  0.027  

 Bias -0.004 -0.018 -0.017 -0.014 -0.009 -0.019 

 MSE 0.001  0.001  0.001  0.001  0.001  0.001  

        

  )3.0,1.0(~ iidU
i
  

CMG Mean 0.998 0.813 0.614 0.897 0.741 0.537 

 SD 0.023  0.052  0.084  0.040  0.083  0.098  

 Bias -0.002 -0.187 -0.386 -0.103 -0.259 -0.463 

 MSE 0.001  0.038  0.156  0.012  0.074  0.224  

RCMG Mean 0.998 0.978 0.979 0.985 0.981 0.978 

 SD 0.030  0.026  0.024  0.031  0.027  0.029  

 Bias -0.002 -0.022 -0.021 -0.015 -0.019 -0.022 

 MSE 0.001  0.001  0.001  0.001  0.001  0.001  

        

  )5.1,5.0(~ iidU
i
  

CMG Mean 1.002  0.819  0.604  0.887  0.726  0.530  

 SD 0.024  0.051  0.096  0.035  0.090  0.100  

 Bias 0.002 -0.181 -0.396 -0.113 -0.274 -0.470 

 MSE 0.001  0.035  0.166  0.014  0.083  0.231  

RCMG Mean 1.002  0.981  0.973  0.976  0.987  0.978  

 SD 0.026  0.029  0.028  0.027  0.023  0.026  

 Bias 0.002 -0.019 -0.027 -0.024 -0.013 -0.022 

 MSE 0.001  0.001  0.001  0.001  0.001  0.001  

Mean and SD are the sample mean and standard deviations of ̂  over 500 replications respectively. MSE is the mean squared error for ̂  
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Table 4.6: The Results of ̂  with 5% Leverage Points (Experiment 1) 

  it
X  

Estimation 

Method  
Performance 

Measure 

)1,0(N  

 

2

3005.0

)1,0(95.0



N
 

 

)4,4(05.0

)1,0(95.0

N

N 
 

 

 
)4,0(05.0

)1,0(95.0

N

N 
 

0.95 )1,0(N  

0.05 )2,1(LN  

0.95 )1,0(N  

0.05 Cauchy (0,16) 

  0
i
  

CMG Mean 0.997  0.439  0.132  0.611  0.259  0.066  

 SD 0.023  0.048  0.041  0.047  0.066  0.034  

 Bias -0.003 -0.561 -0.868 -0.389 -0.741 -0.934 

 MSE 0.001  0.317  0.755  0.153  0.554  0.873  

RCMG Mean 0.996  0.933  0.949  0.943  0.945  0.948  

 SD 0.027  0.031  0.030  0.025  0.027  0.027  

 Bias -0.004 -0.067 -0.051 -0.057 -0.055 -0.052 

 MSE 0.001  0.005  0.004  0.004  0.004  0.003  

        

  )3.0,1.0(~ iidU
i
  

CMG Mean 0.998 0.446 0.132 0.605 0.272 0.056 

 SD 0.023  0.047  0.035  0.046  0.071  0.026  

 Bias -0.002 -0.554 -0.868 -0.395 -0.728 -0.944 

 MSE 0.001  0.309  0.755  0.158  0.536  0.892  

RCMG Mean 0.998 0.930 0.938 0.938 0.940 0.940 

 SD 0.030  0.027  0.029  0.027  0.026  0.025  

 Bias -0.002 -0.070 -0.062 -0.062 -0.060 -0.060 

 MSE 0.001  0.006  0.005  0.005  0.004  0.004  

        

  )5.1,5.0(~ iidU
i
  

CMG Mean 1.002  0.451  0.138  0.620  0.264  0.063  

 SD 0.024  0.044  0.039  0.043  0.070  0.036  

 Bias 0.002 -0.549 -0.862 -0.380 -0.736 -0.937 

 MSE 0.001  0.303  0.744  0.146  0.546  0.879  

RCMG Mean 1.002  0.909  0.921  0.929  0.931  0.925  

 SD 0.026  0.035  0.027  0.032  0.024  0.025  

 Bias 0.002 -0.091 -0.079 -0.071 -0.069 -0.075 

 MSE 0.001  0.009  0.007  0.006  0.005  0.006  

Mean and SD are the sample mean and standard deviations of ̂  over 500 replications respectively. MSE is the mean squared error for ̂ . 
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Table 4.7: The Results of ̂  with 10% Leverage Points (Experiment 1) 

  it
X  

Estimation 

Method 
Performance 

Measure 

)1,0(N  

 

2

30
10.0

)1,0(90.0



N
 

 

)4,4(10.0

)1,0(90.0

N

N 
 

 

 
)4,0(10.0

)1,0(90.0

N

N 
 

0.90 )1,0(N  

0.10 )2,1(LN  

0.90 )1,0(N  

0.10 Cauchy (0,16) 

  0
i
  

CMG Mean 0.997  0.272  0.048  0.422  0.088  0.010  

 SD 0.023  0.031  0.011  0.036  0.038  0.007  

 Bias -0.003 -0.728 -0.952 -0.578 -0.912 -0.990 

 MSE 0.001  0.531  0.907  0.336  0.833  0.980  

RCMG Mean 0.996  0.871  0.915  0.881  0.910  0.928  

 SD 0.027  0.031  0.030  0.029  0.027  0.026  

 Bias -0.004 -0.129 -0.085 -0.119 -0.090 -0.072 

 MSE 0.001  0.018  0.008  0.015  0.009  0.006  

        

  )3.0,1.0(~ iidU
i
  

CMG Mean 0.998 0.269 0.051 0.427 0.098 0.010 

 SD 0.023  0.029  0.011  0.039  0.036  0.006  

 Bias -0.002 -0.731 -0.949 -0.573 -0.902 -0.990 

 MSE 0.001  0.535  0.901  0.330  0.814  0.979  

RCMG Mean 0.998 0.872 0.912 0.880 0.912 0.913 

 SD 0.030  0.031  0.027  0.031  0.028  0.027  

 Bias -0.002 -0.128 -0.088 -0.120 -0.088 -0.087 

 MSE 0.001  0.017  0.008  0.015  0.008  0.008  

        

  )5.1,5.0(~ iidU
i
  

CMG Mean 1.002  0.266  0.049  0.418  0.093  0.009  

 SD 0.024  0.026  0.012  0.039  0.037  0.005  

 Bias 0.002 -0.734 -0.951 -0.582 -0.907 -0.991 

 MSE 0.001  0.539  0.904  0.340  0.824  0.983  

RCMG Mean 1.002  0.826  0.873  0.838  0.881  0.887  

 SD 0.026  0.036  0.030  0.032  0.030  0.025  

 Bias 0.002 -0.174 -0.127 -0.162 -0.119 -0.113 

 MSE 0.001  0.032  0.017  0.027  0.015  0.013  

Mean and SD are the sample mean and standard deviations of ̂  over 500 replications respectively. MSE is the mean squared error for ̂
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Table 4.8: The Results of ̂  in the Uncontaminated Panel (Experiment 2) 

Case Method Mean SD Bias MSE 

      

A CMG 1.0004 0.0272 0.0004 0.0007 

 RCMG 0.9940 0.0315 -0.0060 0.0010 

      

B CMG 1.0001 0.0284 0.0001 0.0008 

 RCMG 0.9801 0.0353 -0.0199 0.0016 

      

C CMG 0.9976 0.0276 -0.0024 0.0008 

 RCMG 1.0197 0.0375 0.0197 0.0018 

      

C’ CMG 1.0002 0.0269 0.0002 0.0007 

 RCMG 1.0208 0.0378 0.0208 0.0019 

      

D CMG 0.9990 0.0249 -0.0010 0.0006 

 RCMG 0.9937 0.0330 -0.0063 0.0011 

      

E CMG 0.9974 0.0309 -0.0026 0.0010 

 RCMG 1.0241 0.0397 0.0241 0.0022 

      

E’ CMG 1.0806 0.0317 0.0806 0.0075 

 RCMG 1.1106 0.0403 0.1106 0.0139 

      

F CMG 0.9995 0.0319 -0.0005 0.0010 

 RCMG 1.0043 0.0353 0.0043 0.0013 

            

Mean and SD are the sample mean and standard deviations of ̂  over 500 replications respectively. MSE is the mean squared error for ̂ . 
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Table 4.9: The Results of ̂  with 5% Contamination in the Panel (Experiment 2) 

Case Method Mean SD Bias MSE 

      

A CMG 1.0003 0.0457 0.0003 0.0021 

 RCMG 0.9988 0.0643 -0.0012 0.0041 

      

B CMG 0.9996 0.0408 -0.0004 0.0017 

 RCMG 0.9961 0.0570 -0.0039 0.0033 

      

C CMG 0.9967 0.0449 -0.0033 0.0020 

 RCMG 1.1278 0.0652 0.1278 0.0206 

      

C’ CMG 1.0006 0.0446 0.0006 0.0020 

 RCMG 1.1378 0.0641 0.1378 0.0231 

      

D CMG 0.9977 0.0463 -0.0023 0.0021 

 RCMG 1.1081 0.0677 0.1081 0.0163 

      

E CMG 0.9965 0.0430 -0.0035 0.0019 

 RCMG 1.1828 0.0683 0.1828 0.0381 

      

E’ CMG 1.0871 0.0458 0.0871 0.0097 

 RCMG 1.2722 0.0667 0.2722 0.0785 

      

F CMG 0.9960 0.0451 -0.0040 0.0020 

 RCMG 1.1641 0.0754 0.1641 0.0326 

       

Mean and SD are the sample mean and standard deviations of ̂  over 500 replications respectively. MSE is the mean squared error for ̂ . 
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Table 4.10: The Results of ̂ with 10% Contamination in the Panel (Experiment 2) 

Case Method Mean SD Bias MSE 

      

A CMG 0.9994 0.0563 -0.0006 0.0032 

 RCMG 0.9956 0.0766 -0.0044 0.0059 

      

B CMG 0.9995 0.0519 -0.0005 0.0027 

 RCMG 0.9976 0.0712 -0.0024 0.0051 

      

C CMG 0.9937 0.0505 -0.0063 0.0026 

 RCMG 1.1430 0.0671 0.1430 0.0249 

      

C’ CMG 0.9979 0.0501 -0.0021 0.0025 

 RCMG 1.1563 0.0680 0.1563 0.0290 

      

D CMG 1.0051 0.0571 0.0051 0.0033 

 RCMG 1.1173 0.0818 0.1173 0.0204 

      

E CMG 0.9929 0.0492 -0.0071 0.0025 

 RCMG 1.2344 0.0852 0.2344 0.0622 

      

E’ CMG 1.0897 0.0552 0.0897 0.0111 

 RCMG 1.3111 0.0786 0.3111 0.1029 

      

F CMG 1.0027 0.0554 0.0027 0.0031 

 RCMG 1.1641 0.0754 0.1641 0.0326 

        

Mean and SD are the sample mean and standard deviations of ̂  over 500 replications respectively. MSE is the mean squared error for ̂ . 
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Table 4.11: The Results of ̂  with 5% Leverage Points in the Panel (Experiment 2) 

Case Method Mean SD Bias MSE 

      

A CMG 0.4274 0.0513 -0.5726 0.3305 

 RCMG 0.9804 0.0634 -0.0196 0.0044 

      

B CMG 0.4292 0.0575 -0.5708 0.3291 

 RCMG 0.9336 0.0681 -0.0664 0.0090 

      

C CMG 0.4258 0.0489 -0.5742 0.3321 

 RCMG 1.0139 0.0781 0.0139 0.0063 

      

C’ CMG 0.4270 0.0489 -0.5730 0.3307 

 RCMG 1.0439 0.0919 0.0439 0.0104 

      

D CMG 0.4325 0.0457 -0.5675 0.3242 

 RCMG 0.9967 0.0769 -0.0033 0.0059 

      

E CMG 0.4445 0.0487 -0.5555 0.3110 

 RCMG 1.0162 0.0968 0.0162 0.0096 

      

E’ CMG 0.4788 0.0532 -0.5212 0.2745 

 RCMG 1.1265 0.0964 0.1265 0.0253 

      

F CMG 0.4484 0.0477 -0.5516 0.3065 

 RCMG 1.0045 0.0903 0.0045 0.0082 

            

Mean and SD are the sample mean and standard deviations of ̂  over 500 replications respectively. MSE is the mean squared error for ̂  
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Table 4.12: The Results of ̂  with 10% Leverage Points in the Panel 

Case Method Mean SD Bias MSE 

      

A CMG 0.2669 0.0351 -0.7331 0.5387 

 RCMG 1.0174 0.0389 0.0174 0.0018 

      

B CMG 0.2733 0.0388 -0.7267 0.5296 

 RCMG 0.8868 0.0480 -0.1132 0.0151 

      

C CMG 0.2648 0.0332 -0.7352 0.5416 

 RCMG 0.9666 0.0648 -0.0334 0.0053 

      

C’ CMG 0.2655 0.0330 -0.7345 0.5406 

 RCMG 0.9832 0.0644 -0.0168 0.0044 

      

D CMG 0.2725 0.0312 -0.7275 0.5302 

 RCMG 0.9029 0.0741 -0.0971 0.0149 

      

E CMG 0.2804 0.0331 -0.7196 0.5190 

 RCMG 0.9120 0.0841 -0.0880 0.0148 

      

E’ CMG 0.2975 0.0326 -0.7025 0.4945 

 RCMG 1.0133 0.0971 0.0133 0.0096 

      

F CMG 0.2852 0.0325 -0.7148 0.5120 

 RCMG 0.8281 0.0994 -0.1719 0.0394 

        

Mean and SD are the sample mean and standard deviations of ̂  over 500 replications respectively. MSE is the mean squared error for ̂ . 
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Figure 4.1: Box plots of the Parameter Estimates ̂  

with 10% Contamination ( 0i )  
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Figure 4.2: Box plots of the Parameter Estimates ̂  

with 10% Contamination ( )3.0,1.0(~ iidUi ) 
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Figure 4.3: Box plots of the Parameter Estimates ̂   

with 10% Contamination ( )5.1,5.0(~ iidUi ) 
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Figure 4.4: Box plots of the Parameter Estimates ̂   

with 10% Leverage Points ( 0i ) 
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Figure 4.5: Box plots of the Parameter Estimates ̂   

with 10% Leverage Points ( )3.0,1.0(~ iidUi ) 
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Figure 4.6: Box plots of the Parameter Estimates ̂   

with 10% Leverage Points ( )5.1,5.0(~ iidUi ) 
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4.3 Hypothesis Testing 

In this section, the performance of the pooled, CMG and RCMG are compared 

in terms of size and power of the test for the parameter estimates (slope coefficient) 

given in hypothesis in (3.46) (refer Chapter 3).  500 runs are performed for each pair of 

cross sectional units and time with )50,30,20(N  and  )100,50,30,20(T  in the 

uncontaminated and contaminated panels. The bias and RMSE of the slope estimates 

are computed as follows: (1)    ˆBias E as given in (4.3); and 

(2)     2,ˆˆRMSE  BiasVar  ; where RMSE is equals to the sum of the variance 

and the squared bias of the estimator. Note that, RMSE is a square root of MSE in (4.3). 

Here, ̂   is the parameter estimates and   is the true estimate. 

The performances of the respective estimators are measured using the test 

statistics given by the following: 

(1) Pooled Estimator 

 
 Pool

Pool
Pool

se
z

β

ββ

ˆ

ˆ 
                  (4.8) 

where     2/1ˆ 
 XXβ

T

poolse  with 
1

ˆ
1 12




 

kNT

e
N

i

T

t

it

  , k is the number of regressor and 

itê  is the estimated residuals, computed as ititit yye ˆˆ  ; with itit yy ˆ  and  the observed 

and fitted values of the dependent variable respectively. Poolβ̂  is the slope estimates 

obtained from the pooled model and is obtained from     yXXXβα
TT

T

PoolPool

1ˆ,ˆ


 (in 

matrix form). 

(2) CMG Estimator 

 
)ˆ(

ˆ

CMG

CMG
CMG

se
z

β

ββ 
                       (4.9) 

http://en.wikipedia.org/wiki/Variance
http://en.wikipedia.org/wiki/Bias_of_an_estimator
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where   2/1
ˆ1

)ˆ( CMGCMG
N

se Σβ  , 
1

)ˆˆ)(ˆˆ(
ˆ 1









N

N

i

T

CMGiCMGi

CMG

ββββ

Σ  and iβ̂  is 

computed in i

T

ii

T

ii MyXMXXβ
1)(ˆ   in matrix form, for each Ni ,,2,1   and M is 

given in (3.29) . The CMGβ̂  is the average of ,ˆ
iβ that is N

N

i

iCMG /ˆˆ

1









 



ββ . 

(3) RCMG Estimator 

 
 RCMG

RCMG
RCMG

se
z

β

ββ

ˆ

ˆ 
                               (4.10) 

where   2/1
ˆ1

)ˆ( RCMGRCMG
T

se Σβ  , 



N

i

iRCMG
N 1

2

1ˆ vΣ , 

 

 
 

 
 

2

2

21
ˆ





































































itii

iit
i

itii

iit
i

iiii

v

e
E

v

e
E

x

β

x

β

XMXv







  and  
)(

1

iti

iti
d

v
x

x   .   

N

N

i

i

RCMG


 1

ˆ

ˆ
β

β with iβ̂   is computed as i

T

ii

T

ii GYXGXXβ
1)(ˆ  . 

All estimators follow the standard normal distribution and therefore the z-test are used 

to test for β̂  (See the details in Chapter 3.)  

 

4.3.1 Data Generating Process (DGP) 

Using the same DGP in Section 4.2.1.1 (Experiment 1), we have: 

itit

T

iiit exy   ;    and ititt

T

iit fe   ;     

for 1,2, , .   49, ,0,1,2, ,i N t T   ; where   

)5.0,5.0(~ iidUi ; 1it  

);1,0(~ iidNxit )1,0(~ iidNit ; )1,0(~ iidNf
t

.   
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1 
i  

is set
 
to compute the size of the tests while the power is computed under the 

alternatives hypothesis of .9.0  i  The presence of cross dependency is set as 

follows:  

 (i)  0
i
  for no cross dependency;          

 (ii) )3.0,1.0(~ iidUi for mild cross dependency and ; 

(iii) )5.1,5.0(~ iidU
i

  for strong effect of cross dependency. 

In the presence of contaminations at time it  , the residual takes the form of 

the following: 

;,,2,1for    
for    

for             
Ni

tme

te
e

iitit

iit

it 












    

with )2,1(~ LNmit . We allow a 5% contamination since )2,1(LN  gives the worst case 

scenario in our previous study.  

 

4.3.2 Discussion 

Tables 4.13 to 4.16 provide the results of the RMSE in the uncontaminated and 

contaminated panels for the pooled, CMG and RCMG respectively. Table 4.13 provides 

the results for the case when 1 in the uncontaminated panel. In the presence of cross 

sectional independence 0i  , the pooled estimator yields the smallest RMSE for 

)20,20(),( TN  . However as N  increases, the RMSE decreases for all estimators and 

all results are comparable with the RCMG slightly bigger due to bias. The results hold 

in the presence of the mild CD.  When the strong CD effect is observed in the panel, the 

RMSE of the pooled estimator are slightly larger compared to in the presence of the 

mild CD but not for the CMG and RCMG. Both estimators continue to yield a 

consistent RMSE as in the presence of the mild CD and cross sectional independence.  
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In the presence of contaminations (shown in Table 4.14), the pooled and CMG 

estimators result in larger RMSE than RCMG under the various degrees of CD. As 

expected, when N and T increases, the RMSE decreases for all estimators. Under CD, 

the RMSE for the pooled estimator is slightly smaller than when no CD is observed in 

the panel. The RCMG yields the smallest RMSE and outperforms all the estimators in 

the presence of outliers. Similar results are obtained for the case of 9.0  and the 

results are reported in Tables 4.15 to Table 4.16. 

The bias of the respective estimators in Tables 4.17 to 4.20 for the case 1 is 

reported. In the uncontaminated panel (see Table 4.17), the bias value for the RCMG 

estimates is comparable to the bias value of the pooled and CMG for all sample size. In 

the presence of outliers, the estimates of    for the pooled and CMG estimators are 

slightly bias than in the uncontaminated panel (see Table 4.18). The RCMG̂  retains a 

small bias and outperforms the pooled and CMG estimates in the presence of outliers 

for all CD cases. When 9.0 , similar bias results are observed for both the 

uncontaminated and contaminated panels (See Table 4.19 and Table 4.20). 

The results of the size and power
43

 of the test are reported in Tables 4.21 to 4.24. 

The size and power of the test are computed under the null hypothesis  9.0  ;1   , 

respectively. For the uncontaminated panel (see Table 4.21), the pooled estimator gives 

reasonable size for )20,20(),( TN . The CMG and RCMG however are slightly 

oversized under the cross sectional independence. As N  increases, the sizes of the 

study for all estimators are reasonable (close to 0.05). In the presence of the mild CD, 

the sizes of study are comparable for all estimators. The RCMG however is undersized 

when )5.1,5.0(~ iidUi for each sample size under study. All estimators yield large 

powers (more than 95%) for all the CD cases and sample sizes (see Table 4.22) except 

for the RCMG when 20T .  

                                                 
43 For more details about the size and powers, refer to page 32, Chapter 2.  
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Reasonable sizes of the study for all estimators are obtained in the contaminated 

panel (see Table 4.23). The RCMG estimators however are slightly oversized for the 

case 0i  and )3.0,1.0(~ iidUi  but attain reasonable sizes under the strong CD 

effect in the panel. The RCMG also yields good powers of the tests in the presence of 

outliers (see Table 4.24). The two estimators of the pooled and CMG however have low 

powers in the presence of outliers and these powers are consistent in each sample size in 

all the CD cases: (1) 0i , (2) )3.0,1.0(~ iidUi , and (3) )5.1,5.0(~ iidUi . Based on 

these results, the proposed estimator provides a good estimate (unbiased and small 

RMSE) with reasonable size and high power in the presence of outliers relative to the 

other two estimators. The summary of the results are given in Table 4.25.  
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Table 4.13: RMSE of  1
 
for the Uncontaminated Panel 

T / N 20 30 50  20 30 50  20 30 50 

 Pooled  CMG  RCMG 

 0i  

20 0.0503 0.0432 0.0322  0.0587 0.0487 0.0364  0.0731 0.0539 0.0455 

30 0.0421 0.0337 0.0286  0.0447 0.0357 0.0296  0.0475 0.0463 0.0366 

50 0.0324 0.0272 0.0199  0.0338 0.0287 0.0202  0.0412 0.0325 0.0218 

100 0.0228 0.0185 0.0145  0.0227 0.0188 0.0146  0.0276 0.0224 0.0172 

200 0.0166 0.0131 0.0095  0.0167 0.0127 0.0091  0.0188 0.0164 0.0119 

            

 )3.0,1.0(~ iidUi  

20 0.0529 0.0446 0.0357  0.0586 0.0461 0.0396  0.0687 0.0585 0.0506 

30 0.0434 0.0351 0.0258  0.0460 0.0374 0.0274  0.0567 0.0494 0.0419 

50 0.0338 0.0273 0.0218  0.0361 0.0285 0.0214  0.0406 0.0356 0.0209 

100 0.0243 0.0196 0.0150  0.0238 0.0189 0.0146  0.0281 0.0240 0.0187 

200 0.0161 0.0134 0.0099  0.0161 0.0127 0.0096  0.0190 0.0151 0.0110 

            

 )5.1,5.0(~ iidU
i

  

20 0.0740 0.0606 0.0472  0.0589 0.0459 0.0397  0.0681 0.0595 0.0488 

30 0.0612 0.0483 0.0370  0.0462 0.0372 0.0271  0.0541 0.0510 0.0410 

50 0.0446 0.0375 0.0307  0.0364 0.0285 0.0212  0.0404 0.0344 0.0213 

100 0.0331 0.0274 0.0207  0.0238 0.0190 0.0146  0.0276 0.0228 0.0183 

200 0.0231 0.0193 0.0140  0.0162 0.0127 0.0096  0.0188 0.0148 0.0116 

            

RMSE is computed as     2,ˆˆRMSE  BiasVar   and    ˆBias E  based on 500 numbers of replications. 

 

 



110 

Table 4.14: RMSE of  1
 
for the Contaminated Panel (5% contamination) 

T / N 20 30 50  20 30 50  20 30 50 

 Pooled  CMG  RCMG 

 0i  

20 0.9832 0.7680 0.6426  0.4604 0.3342 0.3742  0.0923 0.0674 0.0531 

30 5.2336 0.9610 0.9119  0.3565 0.3467 0.3142  0.0673 0.0576 0.0458 

50 0.5961 0.7808 0.7336  0.3367 0.3319 0.2507  0.0454 0.0376 0.0303 

100 0.5487 0.4837 0.4153  0.2330 0.2433 0.1965  0.0316 0.0254 0.0181 

200 0.3862 0.3784 0.3325  0.2348 0.1946 0.1765  0.0207 0.0161 0.0139 

            

 )3.0,1.0(~ iidUi  

20 1.1278 1.0214 0.7658  0.5588 0.4171 0.4254  0.0927 0.0661 0.0560 

30 1.8626 0.9775 0.5951  0.4819 0.3317 0.2835  0.0725 0.0526 0.0470 

50 0.6519 0.7012 0.6315  0.2997 0.2907 0.3453  0.0480 0.0371 0.0329 

100 0.5977 0.4961 0.4662  0.2576 0.2351 0.1972  0.0318 0.0262 0.0209 

200 0.4038 0.3208 0.2228  0.2381 0.1860 0.1745  0.0217 0.0166 0.0138 

            

 )5.1,5.0(~ iidU
i

  

20 1.1279 1.0209 0.7660  0.5919 0.4524 0.4450  0.1009 0.0725 0.0597 

30 1.8633 0.9763 0.5958  0.5057 0.3545 0.3089  0.0746 0.0489 0.0507 

50 0.6522 0.7025 0.6335  0.3142 0.3048 0.3518  0.0525 0.0379 0.0345 

100 0.5986 0.2417 0.4669  0.2642 0.2417 0.2121  0.0342 0.0277 0.0217 

200 0.4039 0.3204 0.2239  0.2400 0.1918 0.1805  0.0233 0.0184 0.0144 

            

RMSE is computed as     2,ˆˆRMSE  BiasVar   and    ˆBias E  based on 500 numbers of replications. 
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Table 4.15: RMSE of  9.0 
 
for the Uncontaminated Panel 

T / N 20 30 50  20 30 50  20 30 50 

 Pooled  CMG  RCMG 

 0i  

20 0.0523 0.0437 0.0329  0.0591 0.0484 0.0371  0.0732 0.0537 0.0453 

30 0.0425 0.0341 0.0287  0.0449 0.0362 0.0289  0.0472 0.0464 0.0366 

50 0.0327 0.0279 0.0201  0.0336 0.0291 0.0231  0.0435 0.0326 0.0219 

100 0.0233 0.0183 0.0148  0.0229 0.0193 0.0147  0.0264 0.0224 0.0173 

200 0.0167 0.0135 0.0099  0.0174 0.0132 0.0098  0.0185 0.0164 0.0118 

            

 )3.0,1.0(~ iidUi  

20 0.0531 0.0448 0.0364  0.0587 0.0469 0.0393  0.0649 0.0583 0.0508 

30 0.0437 0.0356 0.0259  0.0461 0.0375 0.0273  0.0566 0.0494 0.0420 

50 0.0338 0.0275 0.0222  0.0358 0.0289 0.0217  0.0419 0.0356 0.0209 

100 0.0244 0.0195 0.0157  0.0234 0.0191 0.0148  0.0286 0.0240 0.0187 

200 0.0162 0.0133 0.0096  0.0166 0.0128 0.0099  0.0201 0.0151 0.0110 

            

 )5.1,5.0(~ iidU
i

  

20 0.0744 0.0613 0.0474  0.0588 0.0460 0.0395  0.0658 0.0596 0.0488 

30 0.0609 0.0485 0.0371  0.0463 0.0377 0.0272  0.0540 0.0509 0.0410 

50 0.0433 0.0377 0.0313  0.0365 0.0284 0.0218  0.0414 0.0344 0.0213 

100 0.0332 0.0275 0.0212  0.0233 0.0192 0.0144  0.0278 0.0228 0.0183 

200 0.0234 0.0196 0.0143  0.0165 0.0126 0.0095  0.0201 0.0148 0.0117 

            

RMSE is computed as     2,ˆˆRMSE  BiasVar   and    ˆBias E  based on 500 numbers of replications. 
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Table 4.16: RMSE of  9.0 
 
for the Contaminated Panel (5% contamination) 

T / N 20 30 50  20 30 50  20 30 50 

 Pooled  CMG  RCMG 

 0i  

20 0.9844 0.7689 0.6543  0.4651 0.3407 0.3776  0.0913 0.0653 0.0542 

30 4.9776 0.9456 0.9133  0.3889 0.3532 0.3215  0.0657 0.0574 0.0457 

50 0.5977 0.7843 0.7612  0.3347 0.3334 0.2566  0.0399 0.0371 0.0306 

100 0.6432 0.4899 0.4231  0.2589 0.2442 0.2076  0.0311 0.0254 0.0181 

200 0.3891 0.3674 0.3756  0.2379 0.1999 0.1871  0.0214 0.0160 0.0139 

            

 )3.0,1.0(~ iidUi  

20 1.1296 1.0232 0.7669  0.5597 0.4186 0.4266  0.0941 0.0660 0.0570 

30 1.8734 0.9795 0.6034  0.4910 0.3332 0.2978  0.0719 0.0513 0.0465 

50 0.6662 0.7089 0.6411  0.3008 0.2981 0.3563  0.0573 0.0372 0.0328 

100 0.5999 0.4816 0.4673  0.2656 0.2359 0.1986  0.0362 0.0262 0.0206 

200 0.4128 0.3232 0.2234  0.2379 0.1891 0.1788  0.0223 0.0166 0.0137 

            

 )5.1,5.0(~ iidU
i

  

20 1.1284 1.0221 0.7678  0.6323 0.4667 0.4578  0.1022 0.0727 0.0598 

30 1.8673 0.9790 0.5982  0.5071 0.3563 0.3919  0.0750 0.0496 0.0507 

50 0.6569 0.7133 0.6337  0.3243 0.3158 0.3635  0.0618 0.0379 0.0344 

100 0.5778 0.4977 0.4802  0.2332 0.2424 0.2176  0.0408 0.0277 0.0217 

200 0.4125 0.3210 0.2250  0.2455 0.1923 0.1817  0.0244 0.0184 0.0144 

            

RMSE is computed as     2,ˆˆRMSE  BiasVar   and    ˆBias E  based on 500 numbers of replications. 
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Table 4.17: Bias of  1  in the Uncontaminated Panel
 

T / N 20 30 50  20 30 50  20 30 50 

 Pooled  CMG  RCMG 

 0i  

20 0.0018 -0.0006 0.0017  0.0012 0.0010 0.0029  -0.0012 0.0082 0.0023 

30 0.0002 -0.0024 0.0004  -0.0017 -0.0028 -0.0006  -0.0126 0.0010 0.0076 

50 0.0013 0.0006 -0.0009  0.0003 0.0008 -0.0005  -0.0014 0.0006 -0.0026 

100 -0.0010 0.0001 -0.0001  -0.0014 -0.0005 0.0000  0.0015 -0.0007 -0.0001 

200 -0.0008 -0.0005 0.0005  -0.0010 -0.0005 0.0008  -0.0004 0.0022 0.0011 

            

 )3.0,1.0(~ iidUi  

20 -0.0004 -0.0030 0.0034  -0.0009 -0.0024 0.0041  -0.0008 0.0020 0.0032 

30 0.0003 -0.0009 -0.0019  -0.0007 0.0001 -0.0027  0.0069 0.0133 0.0046 

50 -0.0023 -0.0005 -0.0001  -0.0026 0.0000 -0.0002  -0.0011 -0.0036 -0.0010 

100 0.0008 0.0005 0.0004  0.0005 -0.0001 0.0000  0.0006 -0.0024 -0.0006 

200 -0.0003 -0.0004 0.0010  -0.0001 -0.0007 0.0013  0.0001 -0.0015 0.0015 

            

 )5.1,5.0(~ iidU
i

  

20 -0.0011 -0.0061 0.0028  -0.0004 -0.0021 0.0039  -0.0028 0.0019 -0.0004 

30 0.0000 -0.0006 -0.0033  -0.0007 -0.0001 -0.0027  0.0103 0.0111 0.0045 

50 -0.0026 -0.0011 -0.0010  -0.0026 0.0000 -0.0004  -0.0013 -0.0045 -0.0009 

100 0.0002 0.0005 0.0010  0.0005 -0.0002 -0.0001  0.0008 -0.0018 -0.0002 

200 -0.0006 0.0005 0.0003  -0.0001 -0.0007 0.0014  0.0005 -0.0006 0.0017 

            

Bias is computed as    ˆBias E  based on 500 numbers of replications. 
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Table 4.18: Bias of  1  for the Contaminated Panel (5% contamination)
 

T / N 20 30 50  20 30 50  20 30 50 

 Pooled  CMG  RCMG 

 0i  

20 -0.0631 0.0193 0.0038  -0.0329 0.0137 -0.0006  -0.0020 -0.0017 0.0006 

30 0.2717 0.0865 0.0234  0.0114 0.0093 -0.0339  -0.0027 0.0045 -0.0013 

50 0.0094 0.0227 -0.0742  0.0001 0.0355 -0.0105  -0.0004 0.0089 -0.0036 

100 -0.0426 0.0141 0.0125  0.0019 -0.0030 -0.0168  -0.0011 -0.0016 -0.0030 

200 -0.0032 0.0002 -0.0360  -0.0086 -0.0038 -0.0091  -0.0018 0.0009 0.0008 

            

 )3.0,1.0(~ iidUi  

20 -0.0195 -0.0269 -0.0305  -0.0134 -0.0344 0.0190  -0.0016 -0.0065 -0.0003 

30 -0.0754 -0.0356 -0.0223  0.0166 -0.0032 0.0139  -0.0039 -0.0019 -0.0015 

50 -0.0197 -0.0311 0.0355  -0.0210 0.0044 -0.0298  0.0000 0.0048 -0.0047 

100 0.0158 -0.0146 -0.0056  -0.0001 0.0035 -0.0057  0.0010 0.0014 -0.0021 

200 0.0281 0.0235 -0.0149  0.0138 0.0011 0.0043  -0.0015 0.0008 0.0021 

            

 )5.1,5.0(~ iidU
i

  

20 -0.0180 -0.0286 -0.0301  -0.0151 -0.0304 0.0205  -0.0023 -0.0113 0.0015 

30 -0.0761 -0.0343 -0.0228  0.0189 -0.0036 0.0154  -0.0006 -0.0023 -0.0021 

50 -0.0195 -0.0298 0.0339  -0.0228 0.0034 -0.0302  0.0009 0.0029 -0.0054 

100 0.0156 0.0062 -0.0058  -0.0013 0.0062 -0.0042  0.0013 0.0013 -0.0020 

200 0.0273 0.0236 -0.0147  0.0139 -0.0003 0.0026  -0.0005 0.0009 0.0013 

            

Bias is computed as    ˆBias E  based on 500 numbers of replications. 
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Table 4.19: Bias of  9.0   for the Uncontaminated Panel
 

T / N 20 30 50  20 30 50  20 30 50 

 Pooled  CMG  RCMG 

      0i       

20 0.0021 -0.0006 0.0019  0.0015 0.0011 0.0031  -0.0010 0.0086 0.0023 

30 0.0004 -0.0027 0.0005  -0.0024 -0.0028 -0.0006  -0.0121 0.0015 0.0077 

50 0.0013 0.0006 -0.0009  0.0007 0.0008 -0.0005  -0.0022 0.0006 -0.0025 

100 -0.0015 0.0004 -0.0001  -0.0024 -0.0004 0.0001  0.0001 -0.0007 -0.0001 

200 -0.0009 -0.0006 0.0006  -0.0013 -0.0006 0.0009  -0.0011 0.0022 0.0011 

            

 )3.0,1.0(~ iidUi  

20 -0.0005 -0.0033 0.0037  -0.0010 -0.0034 0.0032  0.0022 0.0021 0.0032 

30 0.0004 -0.0011 -0.0019  -0.0009 0.0001 -0.0027  0.0070 0.0133 0.0047 

50 -0.0023 -0.0005 -0.0001  -0.0025 0.0004 -0.0005  -0.0074 -0.0035 -0.0009 

100 0.0009 0.0005 0.0004  0.0008 -0.0003 0.0007  0.0011 -0.0023 -0.0005 

200 -0.0005 -0.0004 0.0016  -0.0003 -0.0004 0.0023  0.0012 -0.0014 0.0016 

            

 )5.1,5.0(~ iidU
i

  

20 -0.0018 -0.0066 0.0038  -0.0005 -0.0033 0.0032  0.0016 0.0021 -0.0004 

30 0.0001 -0.0007 -0.0043  -0.0004 -0.0003 -0.0027  0.0104 0.0111 0.0046 

50 -0.0028 -0.0011 -0.0020  -0.0027 0.0001 -0.0003  -0.0056 -0.0043 -0.0009 

100 0.0003 0.0005 0.0011  0.0006 -0.0003 -0.0004  0.0006 -0.0018 -0.0002 

200 -0.0004 0.0006 0.0004  -0.0003 -0.0009 0.0024  0.0012 -0.0006 0.0017 

            

Bias is computed as    ˆBias E  based on 500 numbers of replications. 
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Table 4.20: Bias of  9.0  for the Contaminated Panel (5% contamination)
 

T / N 20 30 50  20 30 50  20 30 50 

 Pooled  CMG  RCMG 

 0i  

20 -0.0644 0.0204 0.0049  -0.0331 0.0149 -0.0007  -0.0013 -0.0008 -0.0006 

30 0.2821 0.0871 0.0239  0.0127 0.0094 -0.0349  -0.0104 0.0039 -0.0017 

50 0.0095 0.0229 -0.0755  0.0005 0.0366 -0.0113  0.0011 0.0091 -0.0031 

100 0.0559 0.0147 0.0123  -0.0004 -0.0039 -0.0184  0.0021 -0.0012 -0.0029 

200 -0.0037 0.0012 -0.0473  -0.0088 -0.0044 -0.0111  -0.0016 0.0010 0.0008 

            

 )3.0,1.0(~ iidUi  

20 -0.0215 -0.0321 -0.0323  -0.0153 -0.0364 0.0231  0.0011 -0.0062 -0.0006 

30 -0.0862 -0.0364 -0.0271  0.0213 -0.0056 0.0154  -0.0037 -0.0015 -0.0019 

50 -0.0234 -0.0332 0.0355  -0.0232 0.0099 -0.0312  0.0008 0.0049 -0.0049 

100 0.0173 -0.0176 -0.0065  -0.0044 0.0065 -0.0088  0.0055 0.0014 -0.0019 

200 0.0299 0.0243 -0.0158  0.0176 0.0091 0.0054  -0.0042 0.0009 0.0022 

            

 )5.1,5.0(~ iidU
i

  

20 -0.0194 -0.0293 -0.0332  -0.0191 -0.0355 0.0276  0.0023 -0.0110 0.0015 

30 -0.0766 -0.0362 -0.0274  0.0201 -0.0096 0.0157  -0.0007 -0.0017 -0.0021 

50 -0.0222 -0.0321 0.0354  -0.0234 0.0045 -0.0371  0.0003 0.0032 -0.0052 

100 -0.0467 -0.0183 -0.0098  0.0069 0.0092 -0.0083  0.0053 0.0016 -0.0019 

200 0.0279 0.0255 -0.0197  0.01422 -0.0007 0.0048  -0.0034 0.0010 0.0013 

            

Bias is computed as    ˆBias E  based on 500 numbers of replications. 
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Table 4.21: Size of the Test for the Uncontaminated Panel at 5% Significant Level 

T / N 20 30 50  20 30 50  20 30 50 

 Pooled         CMG  RCMG 

 0i  

20 0.043 0.046 0.040  0.080 0.059 0.054  0.080 0.050 0.067 

30 0.040 0.041 0.068  0.051 0.057 0.062  0.066 0.071 0.079 

50 0.041 0.053 0.038  0.054 0.070 0.060  0.071 0.067 0.066 

100 0.050 0.047 0.048  0.063 0.073 0.064  0.065 0.069 0.053 

200 0.040 0.042 0.025  0.076 0.058 0.035  0.066 0.079 0.061 

            

 )3.0,1.0(~ iidUi  

20 0.036 0.064 0.072  0.066 0.054 0.056  0.054 0.062 0.092 

30 0.043 0.044 0.034  0.074 0.066 0.050  0.061 0.089 0.088 

50 0.044 0.053 0.048  0.081 0.073 0.060  0.072 0.077 0.045 

100 0.060 0.051 0.052  0.076 0.060 0.070  0.063 0.079 0.089 

200 0.044 0.050 0.040  0.046 0.044 0.050  0.062 0.067 0.055 

            

 )5.1,5.0(~ iidU
i

  

20 0.060 0.061 0.054  0.070 0.051 0.068  0.014 0.009 0.037 

30 0.049 0.051 0.038  0.070 0.066 0.052  0.010 0.026 0.020 

50 0.039 0.053 0.060  0.081 0.081 0.058  0.016 0.011 0.019 

100 0.039 0.064 0.046  0.077 0.062 0.066  0.013 0.023 0.016 

200 0.048 0.058 0.025  0.050 0.044 0.040  0.008 0.011 0.010 

            
The test statistics for the respective estimation procedure is rejected at 5% significant level if the test 96.1

025.0
 z  and the results are based on 500 numbers of replications. 
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Table 4.22: Power of the Test for the Uncontaminated Panel at 5% Significant Level 

T / N 20 30 50  20 30 50  20 30 50 

 Pooled  CMG  RCMG 

 0i  

20 1.000 1.000 1.000  1.000 1.000 1.000  0.976 0.978 0.981 

30 1.000 1.000 1.000  1.000 1.000 1.000  1.000 1.000 1.000 

50 1.000 1.000 1.000  1.000 1.000 1.000  1.000 1.000 1.000 

100 1.000 1.000 1.000  1.000 1.000 1.000  1.000 1.000 1.000 

200 1.000 1.000 1.000  1.000 1.000 1.000  1.000 1.000 1.000 

            

 )3.0,1.0(~ iidUi  

20 1.000 1.000 1.000  1.000 1.000 1.000  0.994 0.937 0.958 

30 1.000 1.000 1.000  1.000 1.000 1.000  1.000 0.989 0.991 

50 1.000 1.000 1.000  1.000 1.000 1.000  1.000 1.000 1.000 

100 1.000 1.000 1.000  1.000 1.000 1.000  1.000 1.000 1.000 

200 1.000 1.000 1.000  1.000 1.000 1.000  1.000 1.000 1.000 

            

 )5.1,5.0(~ iidU
i

  

20 1.000 1.000 1.000  1.000 1.000 1.000  1.000 0.934 0.964 

30 1.000 1.000 1.000  1.000 1.000 1.000  1.000 0.992 0.997 

50 1.000 1.000 1.000  1.000 1.000 1.000  1.000 1.000 1.000 

100 1.000 1.000 1.000  1.000 1.000 1.000  1.000 1.000 1.000 

200 1.000 1.000 1.000  1.000 1.000 1.000  1.000 1.000 1.000 

            
The test statistics for the respective estimation procedure is rejected at 5% significant level if the test 96.1

025.0
 z  and the results are based on 500 numbers of replications. 
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Table 4.23: Size of the Test for the Contaminated Panel at 5% Significant Level (5% contamination) 

T / N 20 30 50  20 30 50  20 30 50 

 Pooled  CMG  RCMG 

 0i  

20 0.044 0.044 0.052  0.037 0.028 0.038  0.086 0.080 0.074 

30 0.061 0.052 0.028  0.039 0.032 0.046  0.089 0.071 0.070 

50 0.066 0.046 0.050  0.030 0.050 0.060  0.080 0.047 0.063 

100 0.042 0.062 0.055  0.044 0.060 0.045  0.076 0.062 0.057 

200 0.050 0.046 0.035  0.050 0.054 0.045  0.054 0.064 0.069 

            

 )3.0,1.0(~ iidUi  

20 0.056 0.046 0.038  0.057 0.044 0.040  0.091 0.080 0.079 

30 0.051 0.044 0.058  0.043 0.040 0.042  0.083 0.077 0.083 

50 0.044 0.054 0.045  0.052 0.038 0.040  0.076 0.072 0.081 

100 0.034 0.050 0.045  0.050 0.038 0.045  0.080 0.081 0.078 

200 0.074 0.040 0.030  0.060 0.052 0.055  0.079 0.066 0.078 

            

 )5.1,5.0(~ iidU
i

  

20 0.056 0.054 0.048  0.046 0.032 0.028  0.044 0.039 0.047 

30 0.050 0.048 0.052  0.036 0.036 0.040  0.039 0.034 0.045 

50 0.044 0.054 0.050  0.050 0.036 0.045  0.038 0.032 0.041 

100 0.034 0.052 0.040  0.048 0.036 0.045  0.036 0.042 0.039 

200 0.076 0.040 0.030  0.060 0.046 0.055  0.032 0.035 0.046 

            
The test statistics for the respective estimation procedure is rejected at 5% significant level if the test 96.1

025.0
 z  and the results are based on 500 numbers of replications. 
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Table 4.24: Power of the Test for the Contaminated Panel at 5% Significant Level (5% contamination) 

T / N 20 30 50  20 30 50  20 30 50 

 Pooled  CMG  RCMG 

 0i  

20 0.453 0.450 0.432  0.680 0.648 0.618  0.986 0.966 0.992 

30 0.444 0.436 0.524  0.660 0.656 0.706  0.980 0.989 1.000 

50 0.488 0.510 0.595  0.686 0.634 0.760  1.000 1.000 1.000 

100 0.548 0.544 0.665  0.740 0.728 0.805  1.000 1.000 1.000 

200 0.614 0.652 0.740  0.784 0.810 0.860  1.000 1.000 1.000 

            

 )3.0,1.0(~ iidUi  

20 0.453 0.436 0.478  0.653 0.648 0.608  0.990 0.988 0.947 

30 0.457 0.470 0.520  0.689 0.642 0.654  1.000 0.991 0.993 

50 0.506 0.474 0.540  0.708 0.668 0.705  1.000 1.000 1.000 

100 0.544 0.532 0.660  0.716 0.722 0.785  1.000 1.000 1.000 

200 0.594 0.632 0.730  0.728 0.818 0.865  1.000 1.000 1.000 

            

 )5.1,5.0(~ iidU
i

  

20 0.433 0.434 0.470  0.596 0.594 0.552  0.982 0.988 0.969 

30 0.456 0.446 0.514  0.630 0.606 0.628  0.996 0.995 0.991 

50 0.496 0.480 0.540  0.658 0.624 0.705  1.000 1.000 1.000 

100 0.498 0.532 0.660  0.700 0.702 0.770  1.000 1.000 1.000 

200 0.598 0.628 0.735  0.726 0.826 0.860  1.000 1.000 1.000 

            
The test statistics for the respective estimation procedure is rejected at 5% significant level if the test 96.1

025.0
 z  and the results are based on 500 numbers of replications. 
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Table 4.25: Summary of the Results for Tables 4.13 to 4.24. 

  Uncontaminated Panel   Contaminated Panel  

Estimator Parameter Estimates 
 

Size Power Parameter Estimates 
 

Size Power 

 
no CD 

Pooled 
Unbiased 

(Consistent)  
√ HIGH 

Bias 

(Inconsistent)  
√ LOW 

CMG 

Unbiased 

Unbiased 

(Consistent) 
 

√ HIGH 
Unbiased 

(Inconsistent)  
√ MD 

RCMG 
Unbiased 

(Consistent)  
√ HIGH 

Unbiased 

(Consistent)  
√ HIGH 

    
 

      
 

    

 
with CD 

Pooled 
Unbiased 

(Consistent)  
√ HIGH 

Bias 

(Inconsistent)  
√ LOW 

CMG 

Unbiased 

Unbiased 

(Consistent) 
 

√ HIGH 
Unbiased 

(Inconsistent)  
√ MD 

RCMG 
Unbiased 

(Consistent)  
√ HIGH 

Unbiased 

(Consistent)  
√ HIGH 

                  
The summary is based on the estimation results. The abbreviations for  √=reasonable size, US = undersize,  LOW = low power, MD = medium power and HIGH = high power44. 

                                                 
44 The details of definition of size and power have been discussed in Section 2.5, Chapter 2.  
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4.4 Confidence Interval 

In this section, a Monte Carlo simulation study is run in order to obtain an 

approximate confidence interval for the parameter based on the pooled, CMG and 

RCMG estimators. The )%1(100   CI for the parameter estimates are computed as in 

(3.48) and given by the following: 

(1) Pooled Estimator 

    PoolPoolPoolPool sezsez  
ˆˆ,ˆˆ

2/2/   

where     2/1ˆ 
 XX

T

Poolse  and 
1

ˆ
1 12




 

kNT

e
N

i

T

t

it

  with  k  is the number of 

independent variable. 

(2) CMG Estimator 

    CMGCMGCMGCMG sezsez  
ˆˆ,ˆˆ

2/2/   

where     2/1
ˆ1ˆ

CMGCMG
N

se    and  
1

)ˆˆ)(ˆˆ(
ˆ 1










N

N

i

T

CMGiCMGi

CMG



. 

(3) RCMG Estimator 

    RCMGRCMGRCMGRCMG sezsez  
ˆˆ,ˆˆ

2/2/   

where     2/1
ˆ1ˆ

RCMGRCMG
T

se  , 



N

i

iRCMG
N 1

2

1ˆ v  and iv  is defined in 

Theorem 3.1. 

 

Here  is chosen as 10% and 5% respectively and  2/z  is a standard normal. The data 

are generated as follows:   

itit

T

iiit exy   ; and ititt

T

iit fe   ;  

for 1,2, , .   49, ,0,1,2, ,i N t T    

with )5.0,5.0(~ iidUi ; 1it  
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)1,0(~ iidNxit )1,0(~ iidNit ; )1,0(~ iidNf
t

;  
 

and 0.1  i . Here, i  is set as follows: 

 (i)  0
i
  for no cross dependency; 

 (ii) )3.0,1.0(~ iidUi for mild cross dependency and ; 

(iii) )5.1,5.0(~ iidU
i

  for strong effect of cross dependency. 

In the presence of contaminations at time it  , the residual takes a similar form as 

before, that is: 

;,,2,1for    
for    

for             
Ni

tme

te
e

iitit

iit

it 












    

with )2,1(~ LNmit  and 5% contamination are chosen. 

In this experiment, 500 samples for each of size  TN , ;  50,30,20N   and  

 ,200,100,50,30,20T    are simulated. The  95% and 90% CI of  parameter estimates 

RCMG̂  are computed with the respective length of CI. 

 

4.4.1 Results and Discussion 

The CI of the parameter estimates for the respective estimator (Pooled, CMG 

and RCMG) is reported in Tables 4.26 to 4.31. In the uncontaminated panel (Table 

4.26), the length of the CI for the pooled estimates attains a small value as N and T  

increases when no CD is present. Similar results are observed for the case of the mild 

CD. The length however increases in the presence of the strong CD.  The length of CI 

for CMG̂ however is comparable with and without the presence of CD (Table 4.27).  

For RCMG̂ , similar findings are observed and these are reported in Table 4.28. Based on 

these results, the pooled estimates yields the shorter length for the case of the no and 
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mild CD in the panel but not for the strong CD case. The CMG however provides the 

shortest length of CI in the presence of the strong CD effect. 

For the contaminated panel (Table 4.29) and no CD (row 1), the pooled 

estimates yields a larger length of CI for    20,20, TN , but this results decrease as 

N and T  increase.  The CI of the pooled estimator however worsens under the CD.  

Similar results are obtained for CMG (Table 4.30) with a slightly shorter length of CI 

than the pooled estimates. The parameter estimates RCMG̂  (Table 4.31) however 

provides better results for small N  andT , and these values improve with shorter length 

of CI as N and T  increase.   
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Table 4.26: CI of Pool̂  in the Uncontaminated Panel 

 

90% CI 95% CI 

length 

of 

length 

of 

 

90% CI 95% CI 

length 

of 

length 

of 90% CI 95% CI 

length 

of 

length 

of 

   

90% 

CI 

95% 

CI 

   

90% 

CI 

95% 

CI 

   

90% 

CI 

95% 

CI 

T/N                                 20                                                                                  30                                                                             50 

 

0i  

20 (0.9174,1.0822) (0.9018,1.0960) 0.1648 0.1942 

 

(0.9279,1.0701) (0.9132,1.0840) 0.1422 0.1708 

 

(0.9399,1.0556) (0.9301,1.0627) 0.1158 0.1326 

30 (0.9355,1.0686) (0.9240,1.0779) 0.1342 0.1539 

 

(0.9415,1.0539) (0.9325,1.0622) 0.1124 0.1296 

 

(0.9575,1.0438) (0.9425,1.0539) 0.0863 0.1114 

50 (0.9484,1.0551) (0.9390,1.0618) 0.1067 0.1228 

 

(0.9564,1.0451) (0.9456,1.0520) 0.0887 0.1065 

 

(0.9627,1.0358) (0.9576,1.0417) 0.0732 0.0841 

100 (0.9631,1.0359) (0.9558,1.0431) 0.0729 0.0873 

 

(0.9693,1.0304) (0.9639,1.0338) 0.0612 0.0699 

 

(0.9741,1.0252) (0.9711,1.0291) 0.0511 0.0579 

200 (0.9707,1.0268) (0.9650,1.0309) 0.0561 0.0659 

 

(0.9785,1.0220) (0.9751,1.0241) 0.0435 0.0490 

 

(0.9814,1.0166) (0.9783,1.0200) 0.0352 0.0417 

               

 

)3.0,1.0(~ iidUi  

20 (0.9195,1.0878) (0.9044,1.1017) 0.1683 0.1973 

 

(0.9244,1.0684) (0.9120,1.0836) 0.1440 0.1716 

 

(0.9444,1.0563) (0.9332,1.0661) 0.1119 0.1329 

30 (0.9310,1.0711) (0.9145,1.0851) 0.1401 0.1706 

 

(0.9439,1.0561) (0.9308,1.0615) 0.1122 0.1307 

 

(0.9544,1.0490) (0.9411,1.0552) 0.0946 0.1141 

50 (0.9398,1.0547) (0.9305,1.0674) 0.1149 0.1368 

 

(0.9533,1.0453) (0.9447,1.0493) 0.0920 0.1046 

 

(0.9665,1.0333) (0.9572,1.0395) 0.0667 0.0823 

100 (0.9633,1.0434) (0.9571,1.0539) 0.0800 0.0967 

 

(0.9706,1.0317) (0.9634,1.0370) 0.0611 0.0736 

 

(0.9759,1.0248) (0.9729,1.0285) 0.0489 0.0556 

200 (0.9691,1.0295) (0.9638,1.0341) 0.0604 0.0703 

 

(0.9786,1.0209) (0.9738,1.0209) 0.0423 0.0509 

 

(0.9834,1.0163) (0.9802,1.0190) 0.0329 0.0389 

               

 

)5.1,5.0(~ iidU
i

  

20 (0.8795,1.1147) (0.8578,1.1254) 0.2352 0.2675 

 

(0.8948,1.0980) (0.8835,1.1170) 0.2032 0.2335 

 

(0.9342,1.0785) (0.9186,1.0958) 0.1442 0.1772 

30 (0.8971,1.1010) (0.8783,1.1251) 0.2040 0.2468 

 

(0.9209,1.0804) (0.9032,1.0906) 0.1594 0.1874 

 

(0.9352,1.0609) (0.9232,1.0772) 0.1257 0.1540 

50 (0.9197,1.0715) (0.9067,1.0830) 0.1518 0.1763 

 

(0.9375,1.0689) (0.9258,1.0836) 0.1314 0.1579 

 

(0.9560,1.0483) (0.9434,1.0579) 0.0924 0.1145 

100 (0.9489,1.0556) (0.9376,1.0657) 0.1068 0.1281 

 

(0.9545,1.0449) (0.9426,1.0523) 0.0905 0.1097 

 

(0.9667,1.0328) (0.9624,1.0418) 0.0661 0.0793 

200 (0.9583,1.0376) (0.9499,1.0451) 0.0793 0.0951 

 

(0.9685,1.0313) (0.9621,1.0362) 0.0628 0.0740 

 

(0.9766,1.0234) (0.9734,1.0259) 0.0468 0.0524 

               

The length of CI is computed as length of CI =upper CI – lower CI 
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Table 4.27: CI of CMG̂  in the Uncontaminated Panel 

 
90% CI 95% CI 

length 

of 

length 

of  
90% CI 95% CI 

length 

of 

length 

of  
90% CI 95% CI 

length 

of 

length 

of 

 

90% 

CI 

95% 

CI  

90% 

CI 

95% 

CI  

90% 

CI 

95% 

CI 

T/N                                       20                                                                         30                                                                                  50 

0i  

20 (0.9051,1.1015) (0.8788,1.1133) 0.1964 0.2345 
 

(0.9228,1.0840) (0.9102,1.0956) 0.1612 0.1854 
 

(0.9377,1.0595) (0.9245,1.0686) 0.1218 0.1440 

30 (0.9233,1.0710) (0.9162,1.0808) 0.1477 0.1646 
 

(0.9415,1.0560) (0.9308,1.0707) 0.1145 0.1399 
 

(0.9527,1.0477) (0.9385,1.0550) 0.0950 0.1164 

50 (0.9455,1.0544) (0.9318,1.0626) 0.1090 0.1308 
 

(0.9507,1.0469) (0.9437,1.0566) 0.0962 0.1129 
 

(0.9621,1.0373) (0.9552,1.0476) 0.0751 0.0924 

100 (0.9614,1.0332) (0.9548,1.0414) 0.0719 0.0866 
 

(0.9707,1.0313) (0.9662,1.0395) 0.0606 0.0733 
 

(0.9731,1.0235) (0.9686,1.0283) 0.0504 0.0597 

200 (0.9728,1.0272) (0.9641,1.0308) 0.0544 0.0667 
 

(0.9787,1.0217) (0.9746,1.0258) 0.0430 0.0512 
 

(0.9810,1.0155) (0.9781,1.0184) 0.0345 0.0403 

               

 
)3.0,1.0(~ iidUi  

20 (0.9080,1.1011) (0.8897,1.1160) 0.1931 0.2262 
 

(0.9237,1.0748) (0.9073,1.0888) 0.1511 0.1815 
 

(0.9345,1.0597) (0.9215,1.0708) 0.1252 0.1493 

30 (0.9213,1.0787) (0.9041,1.0787) 0.1574 0.1840 
 

(0.9367,1.0549) (0.9244,1.0724) 0.1182 0.1480 
 

(0.9531,1.0464) (0.9417,1.0578) 0.0932 0.1162 

50 (0.9366,1.0615) (0.9228,1.0701) 0.1249 0.1472 
 

(0.9507,1.0399) (0.9396,1.0448) 0.0892 0.1052 
 

(0.9645,1.0350) (0.9572,1.0411) 0.0705 0.0838 

100 (0.9628,1.0403) (0.9543,1.0498) 0.0775 0.0955 
 

(0.9686,1.0322) (0.9644,1.0360) 0.0635 0.0716 
 

(0.9779,1.0231) (0.9713,1.0265) 0.0452 0.0552 

200 (0.9711,1.0277) (0.9668,1.0318) 0.0566 0.0649 
 

(0.9780,1.0208) (0.9739,1.0247) 0.0428 0.0508 
 

(0.9829,1.0167) (0.9801,1.0199) 0.0338 0.0399 

               

 
)5.1,5.0(~ iidU

i
  

20 (0.9099,1.1024) (0.8908,1.1168) 0.1925 0.2260 
 

(0.9252,1.0778) (0.9104,1.0864) 0.1526 0.1760 
 

(0.9373,1.0553) (0.9226,1.0682) 0.1180 0.1456 

30 (0.9206,1.0804) (0.9079,1.0918) 0.1598 0.1839 
 

(0.9372,1.0563) (0.9239,1.0708) 0.1190 0.1469 
 

(0.9504,1.0461) (0.9428,1.0548) 0.0957 0.1120 

50 (0.9346,1.0586) (0.9222,1.0680) 0.1240 0.1458 
 

(0.9537,1.0479) (0.9447,1.0557) 0.0941 0.1110 
 

(0.9670,1.0345) (0.9612,1.0447) 0.0674 0.0835 

100 (0.9622,1.0409) (0.9561,1.0505) 0.0787 0.0944 
 

(0.9691,1.0334) (0.9606,1.0404) 0.0643 0.0798 
 

(0.9762,1.0239) (0.9721,1.0262) 0.0477 0.0541 

200 (0.9706,1.0315) (0.9662,1.0315) 0.0576 0.0653 
 

(0.9778,1.0204) (0.9735,1.0234) 0.0426 0.0499 
 

(0.9835,1.0176) (0.9802,1.0215) 0.0341 0.0413 

               

The length of CI is computed as length of CI =upper CI – lower CI 

 



127 

Table 4.28: CI of RCMG̂  in the Uncontaminated Panel 

 
90% CI 95% CI 

length 

of  

90% 

CI 

length 

of 

95% 

CI 

90% CI 95% CI 

length 

of 

90% 

CI 

length 

of 

95% 

CI 

90% CI 95% CI 

length 

of 

90% 

CI 

length 

of 

95% 

CI 

T/N                                                         20                                                                            

 

30 

 

50 

 

0i  

20 (0.8756,1.1231) (0.8589,1.1431) 0.2475 0.2842 

 

(0.9042,1.0991) (0.8829,1.1157) 0.1949 0.2327 

 

(0.9393,1.0806) (0.9250,1.0960) 0.1413 0.1710 

30 (0.9068,1.0938) (0.8836,1.1044) 0.1870 0.2207 

 

(0.9302,1.0734) (0.9104,1.0904) 0.1432 0.1800 

 

(0.9407,1.0584) (0.9177,1.0707) 0.1177 0.1530 

50 (0.9388,1.0938) (0.9231,1.1044) 0.1550 0.1813 

 

(0.9432,1.0527) (0.9317,1.0711) 0.1095 0.1393 

 

(0.9547,1.0312) (0.9481,1.0376) 0.0765 0.0895 

100 (0.9555,1.0465) (0.9484,1.0570) 0.0910 0.1086 

 

(0.9576,1.0299) (0.9560,1.0383) 0.0723 0.0823 

 

(0.9710,1.0267) (0.9653,1.0294) 0.0557 0.0641 

200 (0.9649,1.0286) (0.9619,1.0286) 0.0594 0.0667 

 

(0.9760,1.0282) (0.9610,1.0356) 0.0522 0.0746 

 

(0.9710,1.0267) (0.9776,1.0294) 0.0557 0.0518 

               

 

)3.0,1.0(~ iidUi  

20 (0.8914,1.1115) (0.8615,1.1335) 0.2202 0.2720 

 

(0.9022,1.0937) (0.8866,1.1161) 0.1915 0.2294 

 

(0.9293,1.1012) (0.9210,1.1179) 0.1719 0.1969 

30 (0.9049,1.0892) (0.8875,1.1062) 0.1843 0.2187 

 

(0.9297,1.0770) (0.9091,1.0887) 0.1473 0.1795 

 

(0.9386,1.0593) (0.9214,1.0866) 0.1207 0.1652 

50 (0.9299,1.0694) (0.9175,1.0847) 0.1395 0.1671 

 

(0.9416,1.0539) (0.9352,1.0616) 0.1123 0.1264 

 

(0.9614,1.0290) (0.9553,1.0406) 0.0676 0.0853 

100 (0.9533,1.0442) (0.9434,1.0534) 0.0909 0.1100 

 

(0.9538,1.0340) (0.9436,1.0378) 0.0803 0.0942 

 

(0.9680,1.0344) (0.9602,1.0360) 0.0663 0.0758 

200 (0.9705,1.0289) (0.9651,1.0461) 0.0584 0.0810 

 

(0.9733,1.0269) (0.9664,1.0323) 0.0537 0.0659 

 

(0.9824,1.0175) (0.9781,1.0235) 0.0351 0.0454 

               

 

)5.1,5.0(~ iidU
i

  

20 (0.8883,1.1097) (0.8628,1.1385) 0.2214 0.2756 

 

(0.9081,1.0891) (0.8887,1.1167) 0.1811 0.2280 

 

(0.9210,1.1005) (0.9129,1.1190) 0.1795 0.2061 

30 (0.9139,1.0908) (0.8916,1.0993) 0.1769 0.2078 

 

(0.9310,1.0804) (0.9102,1.0912) 0.1494 0.1810 

 

(0.9359,1.0643) (0.9247,1.0782) 0.1284 0.1535 

50 (0.9293,1.0658) (0.9120,1.0838) 0.1365 0.1719 

 

(0.9350,1.0440) (0.9275,1.0690) 0.1090 0.1415 

 

(0.9643,1.0357) (0.9512,1.0432) 0.0708 0.0920 

100 (0.9517,1.0458) (0.9427,1.0541) 0.0941 0.1114 

 

(0.9583,1.0318) (0.9460,1.0343) 0.0736 0.0883 

 

(0.9725,1.0337) (0.9620,1.0366) 0.0612 0.0747 

200 (0.9691,1.0341) (0.9630,1.0415) 0.0650 0.0785 

 

(0.9725,1.0229) (0.9687,1.0266) 0.0504 0.0579 

 

(0.9790,1.0189) (0.9785,1.0227) 0.0399 0.0442 

     

 

         The length of CI is computed as length of CI =upper CI – lower CI 
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Table 4.29: CI of Pool̂  in the Contaminated Panel 

 
90% CI 95% CI 

length 

of 

length 

of  
90% CI 95% CI 

length 

of 

length 

of  
90% CI 95% CI 

length 

of 

length 

of 

 

90% 

CI 

95% 

CI    

90% 

CI 

95% 

CI    

90% 

CI 

95% 

CI 

T/N                                                         
 

20                                                                     30                                                                                50 
  

 
0i  

20 (0.0062,1.7465) (-0.6119,2.0778) 1.7403 2.6898 
 

(0.0550,1.8851) (-0.4382,2.1613) 1.8301 2.5996 
 

(0.2914,1.8018) (0.0121,2.3509) 1.5104 2.3389 

30 (0.1451,2.0847) (-0.2654,2.5206) 1.9397 2.7859 
 

(0.3336,1.7274) (0.0483,2.3801) 1.3938 2.3318 
 

(0.2999,1.6502) (-0.0384,2.1510) 1.3504 2.1894 

50 (0.3012,2.0107) (-0.3281,2.3226) 1.7095 2.6507 
 

(0.3124,1.6115) (-0.0243,2.0508) 1.2991 2.0751 
 

(0.4018,1.4987) (0.0501,1.7086) 1.0969 1.6584 

100 (0.2313,1.6131) (-0.0462,1.9887) 1.3818 2.0349 
 

(0.2614,1.5708) (-0.1811,1.7369) 1.3094 1.9180 
 

(0.6033,1.4855) (0.4247,1.7491) 0.8822 1.3245 

200 (0.4379,1.5361) (0.1618,1.7327) 1.0982 1.5709 
 

(0.5539,1.4584) (0.3238,1.6042) 0.9045 1.2804 
 

(0.6129,1.3823) (0.4044,1.4867) 0.7694 1.0823 

               

 
)3.0,1.0(~ iidUi  

20 (-0.3033,1.9085) (-1.3946,2.7744) 2.2118 4.1690 
 

(0.0812,1.9253) (-0.5551,2.5743) 1.8441 3.1294 
 

(0.1520,1.6586) (-0.3005,1.9129) 1.5066 2.2135 

30 (0.0225,2.1861) (-0.4787,2.7472) 2.1636 3.2259 
 

(-0.0958,1.7845) (-0.7386,2.2414) 1.8804 2.9801 
 

(0.2676,1.8755) (-0.1788,2.1425) 1.6079 2.3213 

50 (0.1495,1.7839) (-0.4547,2.0226) 1.6344 2.4773 
 

(0.1405,1.6726) (-0.2032,1.9289) 1.5321 2.1320 
 

(0.4435,1.6636) (0.1566,2.0296) 1.2200 1.8730 

100 (0.3675,1.5994) (0.0908,1.8920) 1.2319 1.8012 
 

(0.4597,1.5480) (0.1734,1.8233) 1.0882 1.6499 
 

(0.5140,1.4609) (0.2719,1.6490) 0.9470 1.3771 

200 (0.4015,1.5176) (0.1647,1.8083) 1.1161 1.6436 
 

(0.5238,1.4749) (0.3159,1.6063) 0.9510 1.2904 
 

(0.6838,1.4246) (0.5104,1.5905) 0.7408 1.0801 

               

 
)5.1,5.0(~ iidU

i
  

20 (-0.3263,1.8778) (-1.3946,2.7377) 2.2041 4.1323 
 

(0.0687,1.8782) (-0.5310,2.5629) 1.8095 3.0939 
 

(0.1389,1.6637) (-0.3582,2.0066) 1.5248 2.3648 

30 (0.0462,2.1641) (-0.4857,2.7208) 2.1180 3.2065 
 

(-0.1182,1.7851) (-0.6971,2.2347) 1.9033 2.9319 
 

(0.4469,1.7220) (0.0364,2.1559) 1.2751 2.1195 

50 (0.1321,1.7818) (-0.4507,2.0290) 1.6497 2.4797 
 

(0.1203,1.6745) (-0.1847,1.9346) 1.5542 2.1194 
 

(0.2749,1.6582) (-0.2394,1.9366) 1.3834 2.1759 

100 (0.3561,1.5924) (0.0845,1.8824) 1.2363 1.7978 
 

(0.3971,1.5715) (-0.2205,1.7839) 1.1744 2.0044 
 

(0.4272,1.5125) (0.2708,1.8272) 1.0852 1.5564 

200 (0.5069,1.5215) (0.2613,1.6450) 1.0145 1.3837 
 

(0.5560,1.3713) (0.2253,1.5443) 0.8153 1.3190 
 

(0.6204,1.3419) (0.3866,1.4855) 0.7214 1.0989 

    

 

          
The length of CI is computed as length of CI =upper CI – lower CI 
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Table 4.30: CI of CMG̂  in the Contaminated Panel 

 

90% CI 95% CI 

length 

of 

length 

of 90% CI 95% CI 

length 

of 

length 

of 90% CI 95% CI 

length 

of 

length 

of 

   

90% 

CI 

95% 

CI 

   

90% 

CI 

95% 

CI 

   

90% 

CI 

95% 

CI 

T/N                                                         

 

20                                                                           30                                                                           50            

  

       

0i  

       20 (0.3876,1.4750) (0.0972,1.6100) 1.0874 1.5128 

 

(0.5338,1.5813) (0.3382,1.8168) 1.0476 1.4786 

 

(0.5337,1.4955) (0.2500,1.7377) 0.9617 1.4878 

30 (0.4814,1.5850) (0.3287,1.6768) 1.1036 1.3482 

 

(0.5425,1.4332) (0.3547,1.6684) 0.8907 1.3137 

 

(0.5010,1.4236) (0.3185,1.5476) 0.9226 1.2291 

50 (0.5103,1.5065) (0.2374,1.6294) 0.9962 1.3919 

 

(0.6436,1.4527) (0.4923,1.5764) 0.8090 1.0841 

 

(0.5701,1.3768) (0.4020,1.4991) 0.8067 1.0972 

100 (0.6186,1.3923) (0.5402,1.4816) 0.7737 0.9414 

 

(0.6306,1.3520) (0.5008,1.4602) 0.7214 0.9594 

 

(0.7024,1.2860) (0.6151,1.3723) 0.5835 0.7572 

200 (0.6233,1.3590) (0.5346,1.4443) 0.7358 0.9097 

 

(0.6869,1.2983) (0.5868,1.3681) 0.6113 0.7813 

 

(0.7080,1.2906) (0.6366,1.3763) 0.5827 0.7397 

               

 

)3.0,1.0(~ iidUi  

20 (0.4272,1.5234) (0.1548,1.8411) 1.0963 1.6862 

 

(0.3995,1.4862) (0.0191,1.6747) 1.0867 1.6556 

 

(0.4497,1.5402) (0.3095,1.6840) 1.0905 1.3745 

30 (0.4386,1.5556) (0.2454,1.9499) 1.1170 1.7045 

 

(0.5416,1.5291) (0.3102,1.6868) 0.9875 1.3766 

 

(0.5766,1.4898) (0.4560,1.6079) 0.9133 1.1519 

50 (0.4886,1.4680) (0.2656,1.5219) 0.9794 1.2562 

 

(0.5734,1.4537) (0.4269,1.6564) 0.8804 1.2295 

 

(0.5979,1.3927) (0.4247,1.4725) 0.7948 1.0479 

100 (0.5792,1.4094) (0.4830,1.5124) 0.8301 1.0294 

 

(0.6153,1.3538) (0.4443,1.4431) 0.7385 0.9988 

 

(0.6598,1.3591) (0.5541,1.4740) 0.6993 0.9199 

200 (0.6519,1.3641) (0.4694,1.4339) 0.7122 0.9645 

 

(0.6836,1.2942) (0.5997,1.4050) 0.6106 0.8052 

 

(0.7441,1.2785) (0.6987,1.3020) 0.5344 0.6034 

               

 

)5.1,5.0(~ iidU
i

  

20 (0.3386,1.5441) (0.0684,1.8054) 1.2055 1.7370 

 

(0.2555,1.6027) (0.2555,1.6027) 1.3472 1.8309 

 

(0.4956,1.5175) (0.2517,1.8512) 1.0219 1.5995 

30 (0.4190,1.5893) (0.1146,1.9488) 1.1703 1.8341 

 

(0.4656,1.5410) (0.4656,1.5410) 1.0754 1.3913 

 

(0.6041,1.5483) (0.3265,1.6207) 0.9443 1.2942 

50 (0.4550,1.4638) (0.2582,1.5599) 1.0088 1.3017 

 

(0.5695,1.4715) (0.5695,1.4715) 0.9019 1.2232 

 

(0.5572,1.4587) (0.3568,1.6081) 0.9015 1.2513 

100 (0.5869,1.3928) (0.4679,1.5687) 0.8059 1.1008 

 

(0.5942,1.4256) (0.5942,1.4256) 0.8314 1.0996 

 

(0.6538,1.3406) (0.5259,1.4794) 0.6868 0.9536 

200 (0.6527,1.3481) (0.5945,1.4428) 0.6954 0.8484 

 

(0.6873,1.3077) (0.6873,1.3077) 0.6205 0.8348 

 

(0.7141,1.2859) (0.6619,1.3733) 0.5718 0.7113 

     

 

         The length of CI is computed as length of CI =upper CI – lower CI 
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Table 4.31: CI of RCMG̂  in the Contaminated Panel 

 

90% CI 95% CI 

length 

of 

length 

     of 90% CI 95% CI 

length 

of 

length 

of 

 

90% CI 95% CI 

length 

of 

length 

of 

   

90% 

CI 

95% 

CI 

   

90% 

CI 

95% 

CI 

   

90% 

CI 

95% 

CI 

T/N                                                         

 

20                                                                          30                                                                            50              

  

       

0i  

       20 (0.8578,1.1655) (0.8133,1.1992) 0.3077 0.3859 

 

(0.8661,1.1342) (0.8243,1.1631) 0.2680 0.3389 

 

(0.9031,1.1115) (0.8777,1.1272) 0.2084 0.2495 

30 (0.8864,1.1046) (0.8611,1.1191) 0.2182 0.2580 

 

(0.8972,1.0930) (0.8818,1.1117) 0.1957 0.2299 

 

(0.9349,1.0655) (0.9224,1.0752) 0.1306 0.1528 

50 (0.9188,1.0825) (0.9052,1.0959) 0.1636 0.1907 

 

(0.9393,1.0604) (0.9279,1.0691) 0.1212 0.1412 

 

(0.9532,1.0465) (0.9462,1.0572) 0.0933 0.1110 

100 (0.9470,1.0525) (0.9354,1.0639) 0.1055 0.1285 

 

(0.9554,1.0399) (0.9425,1.0470) 0.0844 0.1045 

 

(0.9664,1.0305) (0.9595,1.0375) 0.0641 0.0781 

200 (0.9660,1.0330) (0.9616,1.0407) 0.0670 0.0792 

 

(0.9732,1.0231) (0.9691,1.0273) 0.0499 0.0582 

 

(0.9795,1.0214) (0.9751,1.0239) 0.0419 0.0488 

               

 

)3.0,1.0(~ iidUi  

20 (0.8620,1.1579) (0.8250,1.2043) 0.2959 0.3793 

 

(0.8744,1.1182) (0.8351,1.1496) 0.2438 0.3145 

 

(0.8969,1.1048) (0.8775,1.1274) 0.2078 0.2499 

30 (0.8845,1.1030) (0.8630,1.1218) 0.2185 0.2589 

 

(0.9101,1.0907) (0.8828,1.1127) 0.1806 0.2299 

 

(0.9323,1.0719) (0.9226,1.0846) 0.1396 0.1620 

50 (0.9275,1.0775) (0.9122,1.0980) 0.1500 0.1857 

 

(0.9356,1.0685) (0.9177,1.0685) 0.1246 0.1508 

 

(0.9528,1.0507) (0.9430,1.0555) 0.0980 0.1125 

100 (0.9421,1.0488) (0.9296,1.0598) 0.1067 0.1302 

 

(0.9556,1.0437) (0.9482,1.0505) 0.0881 0.1023 

 

(0.9658,1.0329) (0.9582,1.0366) 0.0672 0.0784 

200 (0.9633,1.0349) (0.9532,1.0452) 0.0716 0.0919 

 

(0.9698,1.0273) (0.9649,1.0315) 0.0575 0.0666 

 

(0.9782,1.0217) (0.9743,1.0258) 0.0435 0.0515 

               

 

)5.1,5.0(~ iidU
i

  

20 (0.8333,1.1720) (0.7886,1.2264) 0.3387 0.4378 

 

(0.8550,1.1337) (0.8227,1.1789) 0.2787 0.3562 

 

(0.8944,1.1377) (0.8595,1.1377) 0.2192 0.2782 

30 (0.8803,1.1262) (0.8544,1.1626) 0.2458 0.3082 

 

(0.9090,1.0924) (0.8885,1.1055) 0.1834 0.2169 

 

(0.9216,1.0688) (0.9075,1.0808) 0.1472 0.1733 

50 (0.9130,1.0788) (0.8863,1.0958) 0.1658 0.2095 

 

(0.9374,1.0615) (0.9235,1.0759) 0.1241 0.1524 

 

(0.9491,1.0481) (0.9344,1.0636) 0.0990 0.1292 

100 (0.9446,1.0518) (0.9335,1.0629) 0.1072 0.1294 

 

(0.9569,1.0437) (0.9490,1.0498) 0.0867 0.1008 

 

(0.9664,1.0333) (0.9605,1.0389) 0.0669 0.0784 

200 (0.9619,1.0384) (0.9549,1.0447) 0.0765 0.0899 

 

(0.9691,1.0319) (0.9612,1.0387) 0.0628 0.0775 

 

(0.9745,1.0222) (0.9676,1.0277) 0.0477 0.0598 

               The length of CI is computed as length of CI = upper CI – lower CI.
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4.5 Conclusion 

In this chapter, the finite of sample behaviour of the estimation procedures are 

examined via simulation experiments. By limiting the analysis to estimation issues, the 

performances of the estimator are measured based on the sample mean, standard 

deviation, bias and MSE of the parameter estimates in the presence of outliers and 

leverage points in the first part of the study.  The proposed estimator yields unbiased 

estimates with small MSE under such conditions. Extensive simulation studies are run 

to investigate the behaviour of the proposed estimation procedure in terms of power and 

size of the test. The proposed estimator provides comparable results with the CMG in 

the uncontaminated panel; however outperforms the CMG in the contaminated panel. 

With small bias and RMSE, a reasonable size and high power, the RCMG retains its 

robustness with and without the presence of outliers. This is shown in 90% and 95% CI, 

where the values of RCMG̂ are %10  from   for large N  and T . 
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CHAPTER 5 

Panel Unit Root Tests 

 

5.1 Introduction 

There has been a considerable amount of research work related to unit root test. 

One of the most commonly used procedures in testing the presence of unit root is that of 

Dickey and Fuller (1979)
45

. The Dickey-Fuller
46

 (DF) test, as it is commonly called, 

tests the presence of unit root in an autoregressive (AR) model under the assumption 

that the residuals are iid. In statistics and econometric, the augmented version of the DF 

test (ADF) is widely used for many empirical studies. 

The panel unit root test can be found in Im et al. (2003), Levin and Lin (1992, 

1993), Levin et al. (2002), Bai and Ng (2004), Philips and Sul (2003), Moon and Perron 

(2004), Pesaran (2007) and Choi (2001, 2002). Hurlin (2010) distinguished two 

generations of unit root tests on which the first generation tests relied on the assumption 

that all cross sectional units are independent (see Dickey and Fuller, 1979). The first 

generation of unit root tests are those proposed by Quah (1994), Breitung and Meyer 

(1994) and Levin and Lin (1992, 1993).  Quah (1990, 1994) showed that the asymptotic 

property of the DF unit root tests is a standard normal distribution when the residuals 

are iid and all groups are homogeneous. Breitung and Meyer (1994) also showed the 

same asymptotic distribution of DF test and this is applicable for large N  and small 

fixed T .   

For the second generation of panel unit root tests, the presence of CD among the 

residuals is allowed within the panel. The assumption of the cross correlated errors is 

                                                 
45

 The test is based on the AR model; 
ttt

eyy 
1

 , .,,2,1 nt  where 
t

y is the variable of interest, n  is the number of 

observation,  is the coefficient and 
t

e is the error term. The model is non-stationary if 1 meaning the unit root is present in the 

series. 
46

 The hypothesis testing for this test is under the null hypothesis, H0: 1  versus the alternative; H1: .1  
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due to the evidence obtained on the strong co-movements among the economic 

variables (Barbieri, 2009). The assumption that the individual time series in the panel 

are cross sectional independent is not practical in the context of cross country 

regressions. The presence of such CD may affect the finite sample behaviour of the 

panel unit root test (O’Connell, 1998). Those who proposed the tests which 

incorporated the CD are: Pesaran (2007), Philips and Sul (2003), Bai and Ng (2004), 

Moon and Perron (2004) and Choi (2002). 

Pesaran (2004), Bai and Ng (2002), Moon and Perron (2004) and Philips and Sul 

(2003) used the factor approach to explain the CD.  In their study, the CD is allowed to 

have different effects on different cross sectional units.  Pesaran (2007) introduced a 

new unit root test in which the standard DF regressions are augmented with the cross 

sectional averages of lagged levels and first differences (hereafter called CADF)
47

.  The 

test is then generalized based on the t-ratio of the average of the individual CADF-test 

statistics. Moon and Perron (2004) proposed a pooled panel unit root test based on “de-

factored” observations in which the factor loadings were estimated by using the 

principal component approach. This test has good asymptotic power properties if the 

model does not contain deterministic trends. Bai and Ng (2004) used similar 

orthogonalisation procedures as in Moon and Perron. They however specified the model 

by allowing the possibility of unit roots in the common factors and then used the first 

differences of the model and applied the principal components. The unit root test is then 

computed by taking the partial sums of the estimated first differences on both factor 

loadings and the individual de-factored series. 

The existence of outliers implies that some shocks will only have temporary 

effects and thus, providing that they are sufficiently large or sufficiently frequent 

indicated that the series is stationary (Franses and Haldrup, 1994). Martin and Yohai 

(1986) showed via the simulation experiment that an AO biases the OLS estimator 

                                                 
47 Refer equation (5.7) on page 136.  
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downward for the parameter in a stationary first order autoregressive process. Hence, in 

some situations it could be expected that the AOs will establish the wrong impression 

that a time series is stationary when it is actually non-stationary. In addition, the 

presence of a cross dependency may deteriorate the asymptotic distribution of the 

standard unit root test which is normally distributed (Philips and Sul, 2003; Banerjee, 

1999). Due to such interest, in this chapter, we propose a robust unit root test in the 

panel data model which aims at reducing the effects of outliers in the presence of the 

CD.  Specifically, the presence of the unit root will be tested for when both the CD and 

outliers exist in the panel. The finite sample behaviour of the proposed test is studied 

and its performance is evaluated through the Monte Carlo simulation study.  

 

5.2 The Unit Root Test  

5.2.1 Augmented Dickey-Fuller (ADF) Test 

The following model is considered in the ADF test: 

;
1

1 itjit

p

j

ijitiiit eyyby
i

 



   Ni ,,2,1  ; Tt ,,2,1                 (5.1) 

where ity  is generated according to a finite order AR( )1ip , ip is the number of 

augmenting lags, i  is the intercept, and ijib ,  are parameters for the respective 

variables of 1ity  and jity  . 

This test can be employed for larger and complicated set of time series. In the 

absence of the unit root, negative values for ib  are expected. Specifically, H0 and H1 are 

defined as follows: 

  H0: 0ib  for all i;  Ni ,,2,1  ; ;,,2,1 Tt   

H1: 0ib  for some i;  Ni ,,2,1  ; Tt ,,2,1       (5.2) 
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where under H0:  1ity    has a unit root and under H1: )0(~1 Iyit

48
. 

Following the work of Dickey and Fuller (1979), the t-ratio statistics for testing 

the presence of a unit root is given by the following: 

 

  1

1,1,

2

ˆ








i

T

ii

ii

i

yy

bb
t



 for each cross sectional units  Ni ,.....,2,1   (5.3) 

where  TiTiii yyy 1101, ,,,   y   ; and
2

ˆ
1

2

2






i

T

t
i

kT

e
it

 ,  with ititit yye ˆˆ  .  

Here ib̂  is the estimates of ib  obtained from the OLS estimator. The asymptotic 

distribution for the ADF test is a Wiener process under certain conditions
49

. The 

average of it  is computed which is given by   
N

t

t

N

i

i
 1 (follows the work of Im et al. 

(2003)).  

 

5.2.2 Pesaran’s Unit Root Test (2007) 

In the presence of the CD, Pesaran (2007) proposed an alternative approach to 

the ADF where the standard ADF is augmented with the cross section averages of the 

lagged levels and first-differences of the individual series. The methodology is 

introduced by Pesaran (2004) in which the unobserved common factors are used to 

explain the CD. Specifically, Pesaran considers the following model to test the presence 

of the unit root: 

;1 ittiitiiit fyby        TtNi ,,2,1   .,,2,1       (5.4) 

where 1 ititit yyy , )1( iib 
50

 with the following unit root hypothesis. 

                                                 
48This means 

1it
y are integrated with order 0 (the data is stationary). 

49 See Dickey and Fuller (1979) for more details of the properties of the test. 
50 Consider this model, ititiit eyy  1 , Ni ,,2,1  ; Tt ,,2,1  where ity is the variable of interest for each cross sectional 

unit i  at time t . Here, i is the autoregressive coefficient for each  i  and ite is the error term. 
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H0:     ;0ib    Ni ,,2,1 allfor   (this is equivalent to testing 1i ) (5.5) 

against the possible alternative:   









NNib

Nib

i

i

,,1        ,0

,,2,1        ,0
:H

1

1

1



      (5.6) 

where the fraction of the stationary individuals is such that NN /1  such that 

10   as N . Under the alternative hypothesis, the panel can be a combination 

of stationary and non-stationary model. 

Model in (5.4) can be expressed as cross-sectional augmented ADF (CADF) model:  

;11 ittitiitiiit eydycyby    ;,,2,1   .,,2,1 TtNi       (5.7) 

that is (5.7) a DF (or ADF) regression which is augmented with the cross section 

averages of lagged levels and first differences of the individual series, i . 

Let CADFi  be the ADF statistics for the i
th

 cross sectional unit given by the t-

ratio of the OLS estimate ib̂ of ib  in the CADF regression  (5.7).  Then, the Pesaran unit 

root test is given by  

N

N

i

i
 1

CADF

CIPS           (5.8) 

where CIPS stands for cross-sectional augmented IPS (Im et al. (1997) unit root test) . 

This CADFi is given by  

   

  1

1,1,

2

1,

1

1,1,
),(CADF









 


i

T

ii

i

T

ii

T

i

ii TNt

yMy

yMyyMy


       (5.9) 

where  TiTii yy 111, ,,   y   ,  TiTiii yyy  ,,, 32 y ; 
4

ˆ
1

2

2







T

e
T

t

i

it

 , with 

ititit yye ˆˆ   and M  is defined as   TT

t HHHHΙM
1

   with   ),,( 1 tt yy1H  . 
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tΙ is a unit matrix of order TT   and H  is the combination of the dummy variables, 

average of cross section of the first difference of  ity and its first lagged value  1ity . 

The asymptotic distribution of this distribution is more skewed compared to the 

ADF (asymptotically normal) distribution in the presence of the CD (Philips and Sul, 

2003). The critical value of the test statistics in (5.9) is given in Table C1, Appendix C
51

 

and those are obtained from the simulation experiment based on the cross-sectional 

augmented DF statistics (denoted by CADF) model
52

.  

Although Pesaran (2007) proposes a truncated version of CIPS, termed as CIPS* 

which tends to standard normal distribution for large N and ,T  the critical value for 

CIPS* obtained by him coincides with CIPS
53

. Thus, for comparing the models, the 

CIPS is used. 

 

 5.2.3 The Proposed Unit Root Test  

The Pesaran’s unit root test uses the OLS estimator that is non-robust. It has 

been known in the literature that the OLS is sensitive to the influence of outliers in the 

data.  To limit the influence of outliers in the data, the estimation procedure is adopted 

in Chapter 3 by using the Generalized M-estimator to investigate the presence of the 

unit root in the model. Recall that
54

 the Generalized M-estimator is obtained by solving 

the following equation: 

   
 
 

;0
ˆ

ˆ

1

1

1

11






 






T

t

it

itii

iit
iitiiti y

yv

be
yvyu


     for .,,2,1 Ni                (5.10) 

where    11 iti yu  and    
 

.
1

1

1



 
it

iti
yd

yv    

To test for a unit root, the following hypothesis test is considered: 

H0: 0ib  for all i;  Ni ,,2,1  ; ;,,2,1 Tt   

                                                 
51 Quoted from Pesaran (2007). 
52 The critical values are obtained from the estimates of 

ittitiitiiit
eYdYcYbY 

 11
 regression based on 10,000 runs. 

53
 for more details, see Pesaran, 2007. 

54 Note that, the details of the objective function for Generalized M- estimator has been given in Chapter 3. 
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H1: 0ib  for some i;  Ni ,,2,1  ; Tt ,,2,1     (5.11) 

where under  H0:  1ity    is not stationary  and under H1 : 1ity  is stationary
55

. 

  

Under H0 of no unit root, the generalisation of the test is given by:  

)ˆ(

ˆ










i

i

i

bVar

bb
t

i
                   (5.12) 

where 

i
b̂   is the Generalized M-estimator and it is computed as follows:
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The 
M is computed as   TT

t




  HHHHΙM
1

  ;  tΙ  is an identity T by T matrix 

and       tt yy  

  ,, 11H .  The value of  .  takes the form  
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where c  and d
56

 are the critical values and are computed as 
1

ˆ3
ty and 

ty̂3 , 

respectively. 
1

ˆ
ty  and 

ty̂  are a robust scale and this is given by 

 11 medianmedian 4825.1ˆ
1  
 t

t
t

t
y yy

t
 ,  t

t
t

t
y yy

t
 medianmedian 4825.1̂ , 

respectively. 

 

                                                 
55 Similar hypothesis tests as in (5.2). 
56  c and d is the critical value, chosen to achieve specified level of efficiency 
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The proposed unit root test is the average of 


i
t  which is given by  

N

t

t

N

i
i

i



 



 1RCIPS                               (5.15) 

where 


i
t  is given in (5.12) . 

The asymptotic distribution of the test statistics given in (5.12) is obtained 

through the extensive simulation experiment. Based on Figure 5.2, the RCIPS unit root 

test tends to have an approximate t-distribution with a mean  and a standard deviation, 

 . As the sample size increase, it is believed that the RCIPS will tend to a standard 

normal distribution. This result is comparable with Pesaran (2007) under conditions 

where ite  is normally distributed. 

To investigate the performance of the RCIPS, the critical region of test statistics 

is required. Therefore, the critical region of RCIPS test is obtained through simulation 

experiment at the 0.05 level of significance and it is given in Table (5.13).  The DGP 

and results are given in the next section. 

 

5.3 Simulation Experiment 

First, the critical values for the ADF and RCIPS test are computed. Following 

the work of Im et al. (2003), the DGP for computing critical values for ADF and RCIPS 

test is given by  

  ,1 ititit eyy      with )1,0(~ iidNeit ; for 1,2, , .   49, ,0,1,2, ,i N t T    

The value of the test statistics at 1%, 5% and 10% quartiles are computed based on the 

formula given in (5.3) and (5.12).  

Next, for computing the size and power of the unit root tests in the presence of 

the CD, Monte Carlo simulations are run with the following DGP setup: 

ititiiiit eyy  1)1(  ;   and  

itt

T

iit fe   ; )1,0(~ iidN
i

 ; 
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)1,0(~ iidNf
t

; ),0(~ 2

iit
iidN  ;  .5.1,5.0~2 iidUi  

The performance of the tests is measured by setting: 1) 1
i
  and 2) ]95.0,75.0[~ U

i
  

for computing the size and power of the test, respectively. The setup of i  is similar to 

the other experiments in the previous chapter, which is as follows: 

(i) 0
i
  for no cross dependency; 

(ii)  )3.0,1.0(~ iidUi for mild cross dependency and ; 

(iii) )5.1,5.0(~ iidU
i

  for strong effect of cross dependency. 

A panel contaminated by outliers is represented by  

    ititit ILyy         for 1,2, , .   49, ,0,1,2, ,i N t T    

where 

ity   is the observed contaminated series 

ity  is the uncontaminated series 

 L  is the dynamic pattern of the outliers 

 is the magnitude of outliers 

 itI  is the indicator  function of the presence of outlier at time t  which   

       takes the following form: 

 


 


elsewhere       0

 if       1 τt
I it   

In the presence of AO,   1L while TC takes the form of  
L

L






1

1
where 

 represents the velocity of the dynamic effect and is bound by  1,0 (Tsay, 1998). 

The distribution of the test can be computed in the traditional way (see Fuller, 

1976; and Herce, 1993). However, the computation of RCIPS is similar to the CADF 

statistics under the null hypothesis of absence of unit root based on 5,000 replications. 

In order to compute the critical values of the test statistics at 1%, 5% and 10% nominal 
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levels, the pair of sample size )50,30,20(N and )200,100,50,30,20(T are chosen.  

The size and power of the tests are investigated at the 5% significant level using the 

same sample size with 500 replications. 

 

5.3.1 Results and Discussion 

The critical values for the ADF and RCIPS tests are provided in Tables 5.1 to 

5.3. The nominal levels chosen are at 1%, 5% and 10%, respectively. The values of the 

mean and standard deviation of the respective unit root tests are also reported.  

For 20N , the critical values for the ADF test decreases at each respective nominal 

level, as T  increases. Similar results are obtained for the mean and standard deviation 

of this test with a largeT . The average and standard deviation of the ADF test statistics 

are closer to -1.5 and 0.12, respectively, for large N and T , and this is expected based 

on Figure 5.1. Note that, the average of the ADF test is comparable with those obtained 

in Im et al. (2003).   The t-statistics of the RCIPS is slightly larger than the ADF unit 

root tests (Tables 5.3 to 5.4). It is observed that these values approximated -1.28 (mean) 

and 0.2 (standard deviation for large N and T ) (see Figure 5.2).  As we would expect in 

theory, as the sample size increase, the absolute of critical value will also increase.  The 

results at 5% nominal levels are used as critical values in order to compute the size and 

power of the tests which are reported in Tables 5.5 to 5.10.   

The results at 5% nominal levels are used as critical values in order to compute 

the size and power of the tests which are reported in Tables 5.5 to 5.10.   

The size and power of the unit root tests are investigated for the uncontaminated 

panel, the panel with additive outliers (AO) and the panel with temporary change (TC) 

which is based on 500 replications. The results are tabulated in Tables 5.5 to 5.10. For 

the uncontaminated panel, the size of the ADF unit root is 0 for the small  N  and T   

under the cross sectional independence ( 0
i
 ).  Similar results hold when the number 
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of N and T  increases.  The CIPS gives a similar size for a small sample but attains a 

reasonable size as T  increases.  The t-test of the RCIPS however is slightly oversized 

even when N  and T are large. In the presence of the CD ( )3.0,1.0(~ iidU
i
  and  

)5.1,5.0(~ iidU
i
 ), the size of the ADF, CIPS and RCIPS  are comparable with those in 

the absence CD in the panel. The behaviour of these tests can be observed in Figure 5.3. 

In the presence of the AO and TC (see Tables 5.6 to 5.7) in the panel, the sizes 

for the ADF test are 0 for all CD cases. The CIPS also provides similar results for all 

sample sizes and CD cases. The size for the RCIPS however is small for 

  ).20,20(, TN  The results hold as N  increases in the presence of AO.  The RCIPS 

does not perform well in the presence of AO in the panel. In the presence of the TC, the 

RCIPS achieves good size of the test compared to the others and comparable with the 

uncontaminated panel.  The behaviour of these tests (ADF, CIPS and RCIPS) is 

illustrated in Figures 5.4 to 5.5 in the presence of AO and TC.  

In investigating the power of the test in the uncontaminated panel (See Table 5.8 

and Figure 5.6), the ADF test surprisingly yields a stronger power compared to the 

CIPS for 50T  under the CD even though the ADF test relaxes the assumption of the 

CD. The CIPS however provides good power as T  increases and the result is 

comparable to those obtained in Pesaran (2007). The RCIPS outperforms the ADF and 

CIPS even for small sample and all CD cases. In the presence of the AO and TC (See 

Tables 5.9 to 5.10 and Figures 5.7 to 5.8) in the panel, the powers for the ADF and 

CIPS tests are poor when 50T . The power however increases for 100T  with an 

increasing N . The powers for all tests are good as N increases in the presence of TC in 

the panel. The RCIPS provides a sensible power when 30T in the presence of the AO 

but outperforms the ADF and CIPS in the presence of the TC. Based on these results, 

the RCIPS provides a good reasonable size
57

 (close to 0.05) and power (greater than 

                                                 
57 The definition of size and power of the tests have been discussed in Section 2.5, Chapter 2. 
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0.95) in the presence of the AO and TC relative to the other two estimators especially 

when N  and T are small. 
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Figure 5.1 : The Density and QQ plots of t-statistics (ADF unit root test) 
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Figure 5.2: The Density and QQ plots of t-statistics (RCIPS unit root test) 
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Table 5.1: Critical Values for the ADF Unit Root Tests 

T/N 20  30  50 

Quartile 1% 5% 10%  1% 5% 10%  1% 5% 10% 

20 -1.8719 -1.7451 -1.6746  -1.8021 -1.6848 -1.6249  -1.7071 -1.6117 -1.5702 

30 -1.9041 -1.7858 -1.7167  -1.8443 -1.7182 -1.6575  -1.7348 -1.6591 -1.6164 

50 -1.9276 -1.7562 -1.7340  -1.8473 -1.7445 -1.6861  -1.7847 -1.6946 -1.6522 

100 -1.9429 -1.8244 -1.7531  -1.8621 -1.7671 -1.7132  -1.7893 -1.7092 -1.6637 

200 -1.9661 -1.8365 -1.7679  -1.8751 -1.7714 -1.7178  -1.7983 -1.7184 -1.6762 
The table contains the 1%, 5% and 10% critical values of the proposed test and it is based on 5,000 numbers of runs. 

 

Table 5.2: Summary Statistics of Average  t  ADF 

Mean  

T/N 20 30 50 

20 -1.4067 -1.4039 -1.4062 

30 -1.4536 -1.4528 -1.4558 

50 -1.4895 -1.4847 -1.4906 

100 -1.5120 -1.5145 -1.5100 

200 -1.5241 -1.5208 -1.5221 

 

Standard Deviation 

T/N 20 30 50 

20 0.2045 0.1699 0.1291 

30 0.1992 0.1611 0.1271 

50 0.1933 0.1605 0.1255 

100 0.1886 0.1539 0.1217 

200 0.1911 0.1551 0.1197 
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Table 5.3: Critical Values for the Proposed Unit Root Tests (RCIPS) 

T/N 20  30  50 

Quartile 1% 5% 10%  1% 5% 10%  1% 5% 10% 

20 -1.6240 -1.3834 -1.2711  -1.5179 -1.3423 -1.2458  -1.4291 -1.2888 -1.2124 

30 -1.6565 -1.4592 -1.3637  -1.6139 -1.4300 -1.3319  -1.5264 -1.3843 -1.2931 

50 -1.7569 -1.5555 -1.4484  -1.6979 -1.4987 -1.4138  -1.6126 -1.4483 -1.3692 

100 -1.8267 -1.6090 -1.5238  -1.7662 -1.5894 -1.6866  -1.6866 -1.5242 -1.4575 

200 -1.8983 -1.6946 -1.5992  -1.8397 -1.6613 -1.5646  -1.7706 -1.6182 -1.5319 
The table contains the 1%, 5% and 10% critical values of the proposed test and it is based on 5,000 numbers of runs. 

 

Table 5.4: Summary Statistics of Average  t  RCIPS 

Mean 

T/N 20 30 50 

20 -0.9418 -0.9465 -0.9576 

30 -1.0274 -1.0365 -1.0375 

50 -1.1204 -1.1165 -1.1273 

100 -1.2015 -1.2130 -1.2077 

200 -1.2717 -1.2753 -1.2794 

 

Standard Deviation 

T/N 20 30 50 

20 0.2569 0.2269 0.1916 

30 0.2488 0.2253 0.1920 

50 0.2503 0.2225 0.1885 

100 0.2448 0.2186 0.1922 

200 0.2483 0.2227 0.2010 
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Table 5.5: Size of the Unit Root Tests in the Uncontaminated Panel 

 

ADF CIPS RCIPS 
 

ADF CIPS RCIPS 
 

ADF CIPS RCIPS 

N 20 
 

30 
 

50 

T 0
i
  

20 0.000 0.004 0.042 
 

0.000 0.000 0.074 
 

0.000 0.000 0.082 

30 0.000 0.014 0.080 
 

0.000 0.008 0.050 
 

0.000 0.008 0.066 

50 0.000 0.024 0.062 
 

0.000 0.014 0.056 
 

0.000 0.014 0.076 

100 0.000 0.035 0.068 
 

0.000 0.028 0.080 
 

0.000 0.012 0.052 

200 0.000 0.036 0.080 
 

0.000 0.052 0.080 
 

0.000 0.036 0.080 

            

 

)3.0,1.0(~ iidU
i
  

20 0.000 0.008 0.040 
 

0.000 0.004 0.074 
 

0.000 0.002 0.068 

30 0.000 0.012 0.082 
 

0.000 0.002 0.052 
 

0.000 0.004 0.066 

50 0.000 0.012 0.070 
 

0.000 0.012 0.056 
 

0.000 0.014 0.080 

100 0.000 0.029 0.072 
 

0.000 0.028 0.080 
 

0.000 0.036 0.076 

200 0.000 0.050 0.074 
 

0.000 0.034 0.064 
 

0.000 0.024 0.080 

            

 

)5.1,5.0(~ iidU
i
  

20 0.002 0.006 0.040 
 

0.000 0.002 0.058 
 

0.000 0.006 0.056 

30 0.000 0.010 0.074 
 

0.000 0.004 0.042 
 

0.000 0.002 0.062 

50 0.000 0.012 0.052 
 

0.000 0.014 0.048 
 

0.000 0.008 0.058 

100 0.000 0.046 0.076 
 

0.000 0.022 0.078 
 

0.000 0.028 0.074 

200 0.000 0.034 0.068 
 

0.000 0.034 0.058 
 

0.000 0.024 0.080 
The results given are the proportion of rejecting the null if there is a unit root in panel based on 500 runs.  The presence of the unit root is investigated in (1) ADF unit root test, (2) CIPS of Pesaran’s unit root test, and (3) the 

proposed test, RCIPS. The test is significant based on its corresponding critical values given in Tables 5.1, C1 and 5.2, respectively. The critical value is set at the 5% significant levels. 
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Table 5.6: Size of the Unit Root Tests in the Presence of the AO 

 

ADF CIPS RCIPS 
 

ADF CIPS RCIPS 
 

ADF CIPS RCIPS 

N 20 
 

30 
 

50 

T 0
i
  

20 0.000 0.000 0.016 
 

0.000 0.000 0.022 
 

0.000 0.000 0.006 

30 0.000 0.000 0.012 
 

0.000 0.000 0.000 
 

0.000 0.000 0.002 

50 0.000 0.000 0.008 
 

0.000 0.000 0.018 
 

0.000 0.000 0.000 

100 0.000 0.000 0.026 
 

0.000 0.000 0.020 
 

0.000 0.000 0.008 

200 0.000 0.000 0.046 
 

0.000 0.000 0.012 
 

0.000 0.000 0.016 

            

 

)3.0,1.0(~ iidU
i
  

20 0.000 0.000 0.006 
 

0.000 0.000 0.014 
 

0.000 0.000 0.002 

30 0.000 0.000 0.016 
 

0.000 0.000 0.004 
 

0.000 0.000 0.002 

50 0.000 0.000 0.001 
 

0.000 0.000 0.008 
 

0.000 0.000 0.010 

100 0.000 0.000 0.034 
 

0.000 0.000 0.012 
 

0.000 0.000 0.016 

200 0.000 0.000 0.044 
 

0.000 0.000 0.034 
 

0.000 0.000 0.038 

            

 

)5.1,5.0(~ iidU
i
  

20 0.000 0.000 0.008 
 

0.000 0.002 0.006 
 

0.000 0.000 0.004 

30 0.000 0.000 0.012 
 

0.000 0.000 0.010 
 

0.000 0.000 0.002 

50 0.000 0.000 0.004 
 

0.000 0.000 0.026 
 

0.000 0.000 0.020 

100 0.000 0.000 0.048 
 

0.000 0.000 0.070 
 

0.000 0.000 0.052 

200 0.000 0.000 0.080 
 

0.000 0.000 0.076 
 

0.000 0.000 0.070 
The results given are the proportion of rejecting the null if there is a unit root in panel based on 500 runs.  The presence of the unit root is investigated in (1) ADF unit root test, (2) CIPS of Pesaran’s unit root test, and (3) the 

proposed test, RCIPS. The test is significant based on its corresponding critical values given in Tables 5.1, C1 and 5.2, respectively. The critical value is set at the 5% significant levels. 
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Table 5.7: Size of the Unit Root Tests in the Presence of TC 

 

ADF CIPS RCIPS 
 

ADF CIPS RCIPS 
 

ADF CIPS RCIPS 

N 20 
 

30 
 

50 

T 0
i
  

20 0.000 0.000 0.066 
 

0.000 0.000 0.036 
 

0.000 0.000 0.048 

30 0.000 0.000 0.044 
 

0.000 0.000 0.026 
 

0.000 0.000 0.032 

50 0.000 0.000 0.038 
 

0.000 0.000 0.040 
 

0.000 0.000 0.046 

100 0.000 0.000 0.064 
 

0.000 0.000 0.054 
 

0.000 0.000 0.046 

200 0.000 0.006 0.054 
 

0.000 0.000 0.052 
 

0.000 0.000 0.042 

            

 

)3.0,1.0(~ iidU
i
  

20 0.000 0.000 0.054 
 

0.000 0.000 0.064 
 

0.000 0.000 0.062 

30 0.000 0.000 0.048 
 

0.000 0.000 0.040 
 

0.000 0.000 0.038 

50 0.000 0.000 0.048 
 

0.000 0.000 0.048 
 

0.000 0.000 0.060 

100 0.000 0.002 0.066 
 

0.000 0.000 0.046 
 

0.000 0.000 0.064 

200 0.000 0.006 0.076 
 

0.000 0.000 0.042 
 

0.000 0.000 0.074 

            

 

)5.1,5.0(~ iidU
i
  

20 0.002 0.000 0.038 
 

0.002 0.000 0.038 
 

0.000 0.000 0.056 

30 0.000 0.000 0.042 
 

0.000 0.000 0.022 
 

0.000 0.000 0.044 

50 0.000 0.000 0.030 
 

0.000 0.000 0.032 
 

0.000 0.000 0.054 

100 0.002 0.000 0.050 
 

0.000 0.000 0.044 
 

0.000 0.000 0.038 

200 0.000 0.008 0.042 
 

0.000 0.000 0.052 
 

0.000 0.000 0.044 
The results given are the proportion of rejecting the null if there is a unit root in panel based on 500 runs.  The presence of the unit root is investigated in (1) ADF unit root test, (2) CIPS of Pesaran’s unit root test, and (3) the 

proposed test, RCIPS. The test is significant based on its corresponding critical values given in Tables 5.1, C1 and 5.2, respectively. The critical value is set at the 5% significant levels. 
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Table 5.8: Power of the Unit Root Tests in the Uncontaminated Panel 

 

ADF CIPS RCIPS 
 

ADF CIPS RCIPS 
 

ADF CIPS RCIPS 

N 20 
 

30 
 

50 

T 0
i
  

20 0.516 0.000 0.740 
 

0.668 0.034 0.914 

 

0.878 0.028 0.974 

30 0.852 0.206 0.916 
 

0.958 0.250 0.974 

 

0.998 0.274 0.982 

50 1.000 0.866 0.982 
 

1.000 0.952 0.994 
 

1.000 0.994 1.000 

100 1.000 1.000 1.000 

 

1.000 1.000 1.000 
 

1.000 1.000 1.000 

200 1.000 1.000 1.000 
 

1.000 1.000 1.000 
 

1.000 1.000 1.000 

            

 

)3.0,1.0(~ iidU
i
  

20 0.548 0.000 0.762 
 

0.662 0.024 0.926 

 

0.884 0.014 0.956 

30 0.862 0.216 0.926 
 

0.972 0.256 0.978 

 

0.998 0.236 0.990 

50 1.000 0.852 0.992 
 

1.000 0.940 0.998 
 

1.000 0.992 1.000 

100 1.000 1.000 1.000 

 

1.000 1.000 1.000 
 

1.000 1.000 1.000 

200 1.000 1.000 1.000 
 

1.000 1.000 1.000 
 

1.000 1.000 1.000 

            

 

)5.1,5.0(~ iidU
i
  

20 0.518 0.000 0.792 
 

0.610 0.022 0.912 

 

0.708 0.018 0.952 

30 0.744 0.206 0.920 
 

0.770 0.240 0.964 

 

0.812 0.282 0.982 

50 0.950 0.862 0.994 
 

0.954 0.952 1.000 
 

0.964 0.998 1.000 

100 1.000 1.000 1.000 

 

1.000 1.000 1.000 
 

1.000 1.000 1.000 

200 1.000 1.000 1.000 
 

1.000 1.000 1.000 
 

1.000 1.000 1.000 
The results given are the proportion of rejecting the null if there is a unit root in panel based on 500 runs.  The presence of the unit root is investigated in (1) ADF unit root test, (2) CIPS of Pesaran’s unit root test, and (3) the 

proposed test, RCIPS. The test is significant based on its corresponding critical values given in Tables 5.1, C1 and 5.2, respectively. The critical value is set at the 5% significant levels. 
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Table 5.9: Power of the Unit Root Tests in the Presence of AO 

 

ADF CIPS RCIPS 
 

ADF CIPS RCIPS 
 

ADF CIPS RCIPS 

N 20 
 

30 
 

50 

T 0
i
  

20 0.028 0.000 0.504 
 

0.024 0.000 0.558 
 

0.012 0.000 0.680 

30 0.050 0.002 0.592 
 

0.072 0.000 0.788 

 

0.040 0.000 0.842 

50 0.164 0.014 0.840 
 

0.134 0.002 0.940 
 

0.204 0.000 0.988 

100 0.558 0.876 0.998 

 

0.822 0.266 1.000 
 

0.954 0.342 1.000 

200 0.998 0.952 1.000 
 

1.000 0.994 1.000 
 

1.000 1.000 1.000 

            

 

)3.0,1.0(~ iidU
i
  

20 0.020 0.004 0.474 
 

0.024 0.000 0.532 
 

0.026 0.000 0.706 

30 0.060 0.000 0.628 
 

0.068 0.000 0.780 

 

0.064 0.000 0.798 

50 0.178 0.010 0.870 
 

0.164 0.002 0.936 
 

0.214 0.000 0.994 

100 0.672 0.882 1.000 

 

0.836 0.240 1.000 
 

0.962 0.306 1.000 

200 1.000 0.966 1.000 
 

1.000 0.990 1.000 
 

1.000 1.000 1.000 

            

 

)5.1,5.0(~ iidU
i
  

20 0.188 0.000 0.422 
 

0.210 0.000 0.480 
 

0.304 0.000 0.682 

30 0.276 0.000 0.616 
 

0.310 0.000 0.752 

 

0.372 0.000 0.804 

50 0.482 0.010 0.834 
 

0.554 0.004 0.922 
 

0.644 0.000 0.986 

100 0.938 0.918 1.000 

 

0.958 0.282 1.000 
 

0.986 0.354 1.000 

200 1.000 0.980 1.000 
 

1.000 0.994 1.000 
 

1.000 1.000 1.000 
The results given are the proportion of rejecting the null if there is a unit root in panel based on 500 runs.  The presence of the unit root is investigated in (1) ADF unit root test, (2) CIPS of Pesaran’s unit root test, and (3) the 

proposed test, RCIPS. The test is significant based on its corresponding critical values given in Tables 5.1, C1 and 5.2, respectively. The critical value is set at the 5% significant levels. 
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Table 5.10: Power of the Unit Root Tests in the Presence of TC 

 

ADF CIPS RCIPS 
 

ADF CIPS RCIPS 
 

ADF CIPS RCIPS 

N 20 
 

30 
 

50 

T 0
i
  

20 0.014 0.000 0.796 
 

0.030 0.000 0.854 
 

0.014 0.000 0.956 

30 0.050 0.000 0.910 
 

0.086 0.000 0.964 

 

0.080 0.000 0.988 

50 0.350 0.010 0.982 
 

0.406 0.006 0.996 
 

0.660 0.010 1.000 

100 0.978 0.746 1.000 

 

1.000 0.906 1.000 
 

1.000 0.954 1.000 

200 1.000 1.000 1.000 
 

1.000 1.000 1.000 
 

1.000 1.000 1.000 

            

 

)3.0,1.0(~ iidU
i
  

20 0.014 0.000 0.772 
 

0.012 0.000 0.884 
 

0.016 0.000 0.970 

30 0.064 0.000 0.874 
 

0.096 0.000 0.976 

 

0.094 0.000 0.988 

50 0.294 0.014 0.968 
 

0.440 0.010 0.994 
 

0.670 0.008 1.000 

100 0.980 0.752 1.000 

 

1.000 0.916 1.000 
 

1.000 0.948 1.000 

200 1.000 1.000 1.000 
 

1.000 1.000 1.000 
 

1.000 1.000 1.000 

            

 

)5.1,5.0(~ iidU
i
  

20 0.150 0.000 0.788 
 

0.152 0.000 0.832 
 

0.268 0.000 0.960 

30 0.288 0.000 0.864 
 

0.384 0.000 0.962 

 

0.440 0.000 0.980 

50 0.642 0.026 0.968 
 

0.698 0.022 0.988 
 

0.828 0.022 1.000 

100 0.992 0.836 1.000 

 

0.994 0.952 1.000 
 

0.998 0.978 1.000 

200 1.000 1.000 1.000 
 

1.000 1.000 1.000 
 

1.000 1.000 1.000 
The results given are the proportion of rejecting the null if there is a unit root in panel based on 500 runs.  The presence of the unit root is investigated in (1) ADF unit root test, (2) CIPS of Pesaran’s unit root test, and (3) the 

proposed test, RCIPS. The test is significant based on its corresponding critical values given in Tables 5.1, C1 and 5.2, respectively. The critical value is set at the 5% significant levels. 
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Figure 5.3: Size of the Unit Root Tests in the Uncontaminated Panel 

Legend 
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Figure 5.4: Size of the Unit Root Tests in the Presence of the AO in the Panel 
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Figure 5.5: Size of the Unit Root Tests in the Presence of the TC in the Panel. 
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Figure 5.6: Power of the Unit Root Tests in the Uncontaminated Panel 

Legend 
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Figure 5.7: Power of the Unit Root Tests in the Presence of the AO in the Panel 

Legend 
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Figure 5.8: Power of the Unit Root Tests in the Presence of the TC in the Panel 

Legend 
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5.4 Discussion 

An alternative approach to the ADF and Pesaran unit root test is proposed in 

order to investigate the presence of the unit root when outliers occur in the panel. Two 

types of outliers are considered: (1) Additive outliers, and (2) Temporary change
58

. The 

proposed unit root test is based on the Generalized M-estimator which has been 

discussed in Chapter 3. The finite sample behaviour of the tests is studied and compared 

via the Monte Carlo experiments.  The results show that the proposed unit root test 

outperforms the ADF and Pesaran’s unit root test in terms of power with/ without the 

presence of outliers and CD in the panel especially for the small pair of sample size. 

The proposed test however suffers slightly from size distortion compared to the ADF in 

the uncontaminated panel. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 
58 The definition of these outliers has been given in Chapter 1.  
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CHAPTER 6 

Empirical Illustrations 

 

6.1 Introduction  

There are considerable amount of empirical studies conducted to illustrate the 

behaviour of the tests and estimation procedure in the panel framework (see Philips and 

Sul, 2003; Coakley et al., 2002; Pesaran, 2004; Noman, 2008; and Serlenga and Shin, 

2004). Kapetanios and Pesaran (2004) compared two alternative methods in modeling a 

panel set of company returns. One uses the CMG technique and the other uses the 

principal component of Stock and Watson (2002).  Serlenga and Shin (2004) 

generalized the Hausman-Taylor estimation methodology and used the factor structure 

as a proxy on the unobserved factor.  The proposed method is applied to a gravity 

equation of bilateral trade flows amongst the 15 European countries over the period of 

1960 to 2001. The results show that the proposed approach fit the data reasonably well 

and provide much more sensible results than the conventional methods such as pooled, 

FE, RE and between or cross section regression methods. 

Empirical applications on the CD tests recently have been studied in Pesaran 

(2004), Cerrato and Sarantis (2007), Hoyos and Sarafidis (2006), and Sarafidis et al. 

(2009). Pesaran used the PCD test to investigate the presence of the CD for per capita 

output of innovations across countries within a given region, and across countries in 

different regions. The results show a significant evidence of CD in output innovations 

across many countries and regions in the world. Cerrato and Sarantis tested for the 

presence of CD prior to applying the panel unit root tests in the PPP data of 20 OECD 

countries. The LM test results strongly reject the null hypothesis of the cross sectional 

independence among the group of innovations. Hoyos and Sarafidis described the new 
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command of the Stata routine to test for the presence of the CD. The example of the 

Cobb-Douglas production relationship taken from Baltagi (2001) is used to illustrate the 

command and the results show evidence of the presence of CD in the data.  In a recent 

study, Sarafidis et al. investigated the presence of CD in a linear dynamic model with 

regressor for employment equations of the United Kingdom (UK) firms. The results 

show that there is enough evidence to reject the null hypothesis of the cross sectional 

independence in the data.   

Several studies have been conducted to investigate the presence of the unit root 

in the PPP data. MacDonald (1996) implemented the ADF unit root test using the real 

exchange rate (RER) data sets. The ADF test statistics is able to reject the null 

hypothesis of a unit root both for high frequency data (monthly) and annual data. 

Coakley and Fuertes (1997) used the Im et al. (1995) unit root test to analyse the 

stationary of the RER for the G10
59

 economies and Switzerland. The results show that 

there is a mean reversion in the RER in the period of the monthly data of 1973 -1996 

and a half life of less than three years for a one-off shock. Caporale and Cerrato (2006) 

highlighted various drawbacks of the standard panel data methods, which represents 

important challenges for future research, such as: (i) the existing unit root tests suffer 

from severe size distortions in the presence of negative moving average errors, (ii) the 

common de-meaning procedure used to correct the bias however has a non effective 

result in the presence of CD; and (iii) co-integration between cross sectional units could 

also lead to size distortion however it is concluded that the panel approach is unlikely to 

solve the PPP puzzle. Harris et al. (2005) investigated the PPP hypothesis in the case 

when the CD is present. The data of a group of 17 countries are investigated using a 

new panel based test of stationary that allows for arbitrary CD. The results of unit root 

tests indicate that there is significant evidence against the PPP.  

                                                 
59 G-10 refers to the group of countries that have agreed to participate in the General Arrangements to Borrow (GAD).  
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In this chapter, real examples of the panel dataset through a proper estimation 

procedure are examined.  The aim of this chapter is to estimate the appropriate model 

and provide a reasonable explanation about the relationship of the economic variables. 

In this estimation process, the CD tests are evaluated first.  The chapter is divided into 

two parts: (1) first, for the pure static model, the presence of the CD is investigated and 

then the parameter of the model is estimated, (2) second, for the dynamic model, the CD 

tests are considered first and then the presence of a unit root is investigated in the panel. 

 

6.2 Estimation Procedure 

The example of the Gasoline data is considered in modeling the panel dataset for 

the pure static case. Prior to estimating the model, the presence of the CD is examined. 

In the estimation procedure, the parameters of the model are estimated using the 

methods of: (1) Pooled, (2) CMG, and (3) RCMG, as discussed in Chapter 3. The fitted 

model is evaluated using the criteria of: (1) the coefficient of determination  2R ; (2) a 

robust version of 2R ,  2RR  ; (3) cross-validation ( CV ) and 2CV ; together with (4) a 

robust version of CV  and 2CV  , RCV and 2RCV as discussed in Section 3.4, Chapter 

3. 

 

6.2.1 Gasoline Data  

The gasoline data are annual demands (observations) of 18 OECD countries for 

the sample period of 1960 until 1978. These data are available at 

http://www.wiley.com/legacy/wileychi/baltagi/supp/Gasoline.dat (Baltagi, 2001). It 

consist information of wide variations of per capita income, relative gasoline process, 

and cars per capita, both over time and across countries.  

http://www.wiley.com/legacy/wileychi/baltagi/supp/Gasoline.dat
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The approach is to model a gasoline consumption based on three variables: (1) 

utilisation of the typical auto, (2) gasoline efficiency, and (3) stock of cars on the road, 

which form the following consumption identity (Baltagi and Griffin, 1983):  

Gasoline = Miles driven × Gasoline consumption × Cars consumption per car per mile 

     = Utilisation       ×  
efficiency

1
    Stock of cars                                 (6.1)          

 

The advantage of analysing gasoline consumption in these three components is that the 

effects of short and long run consumption can be separated. For example, changes in the 

utilisation of cars may be achieved in the short run with the existing stock of cars, while 

changes in auto efficiency need a longer period to turn over the car stock. Due to the 

lack of data on the miles driven and gasoline consumption per mile, the utilisation and 

efficiency factors are combined, thus leaving gasoline consumption per car  CarGas /  

to be explained by variables of utilisation (U) and efficiency (E) as follows: 

  EUCarGas //           (6.2) 

The empirical determination of (6.2) is based on the variables that reflect the utilisation 

of cars, such as per capita income  NY /   and gasoline price  GDPMG PP / . On the other 

hand, the rising stock of cars per capita  NCar /  is likely to lead to reduced car 

utilisation. Specifically, the model describes how gasoline price and income affect the 

utilisation and the efficiency of the car fleet. Thus, the following relationship which is 

the model of Baltagi and Griffin (1983) is considered: 

u
N

Car

P

P

N

Y

Car

Gas

GDP

MG  lnlnlnln 321        (6.3) 

where 
Car

Gas
ln    is the logarithm of motor gasoline consumption per car; 

N

Y
ln   is the 

logarithm of real per capita income; 
GDP

MG

P

P
ln    is the logarithm of real motor gasoline 
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price; 
N

Car
ln  is the logarithm of the stock of cars per capita; 321 ,,   are parameters 

to be estimated for the respective independent variable; and u  is the residual. 

Table 6.1 provides a statistical summary of the gasoline consumption per car for 

all 18 OECD countries. Turkey records the highest average annual gasoline 

consumption (5.8) followed by Canada, Greece and the US (4.8-4.9). Italy exhibits the 

lowest gasoline consumption. With small kurtosis for all countries, it is expected that 

gasoline consumption per car value is closer to the mean, with no fat tails, but slightly 

skewed. 

 

Table 6.1: Summary Statistics of 
Car

Gas
ln for 18 OECD Countries 

  Min Max Mean Median Std. Dev Skewness Kurtosis 

Austria 3.9227 4.1994 4.0565 4.0475 0.0693 0.0592 0.5685 

Belgium 3.8182 4.1640 3.9223 3.8778 0.1034 1.2468 0.5826 

Canada 4.8110 4.8997 4.8624 4.8558 0.0262 -0.0949 -0.8663 

Denmark 4.0005 4.5020 4.1899 4.1617 0.1582 0.6495 -0.5593 

France 3.7495 3.9081 3.8152 3.8080 0.0499 0.7487 -0.5537 

Germany 3.8488 3.9324 3.8934 3.8894 0.0239 0.1215 -0.6616 

Greece 4.4800 5.3815 4.8787 4.8948 0.2547 -0.0028 -0.6499 

Ireland 4.1649 4.3256 4.2256 4.2211 0.0437 0.4306 -0.3332 

Italy 3.3802 4.0507 3.7296 3.7374 0.2200 -0.0867 -1.0947 

Japan 3.9487 5.9953 4.6996 4.5183 0.6841 0.5318 -1.0926 

Netherland 3.7114 4.6463 4.0803 3.9877 0.2864 0.5780 -0.7250 

Norway 3.9603 4.4350 4.1098 4.0846 0.1231 1.2787 1.6262 

Spain 3.6204 4.7494 4.0553 3.9941 0.3170 0.6445 -0.2065 

Sweden 3.9132 4.0674 4.0061 4.0026 0.0364 -0.3338 1.3780 

Switzerland 4.0500 4.4413 4.2376 4.2592 0.1018 -0.0767 -0.0388 

Turkey 5.1413 6.1566 5.7664 5.7221 0.3290 -0.4013 -1.1804 

UK 3.9126 4.1002 3.9847 3.9768 0.0479 1.3011 1.5555 

US 4.7879 4.8603 4.8191 4.8110 0.0219 0.5910 -0.9557 
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Table 6.2: The Correlation Results among the ),( ji
th

    
ij̂ Cross Sectional Units of 18 OECD Countries 

),( ji  Austria 

  

Belgium 

  

Canada 

  

Den- 

mark 

France 

  

Germany 

  

Greece 

  

Ireland 

  

Italy 

  

Japan 

  

Nether- 

land 

Norway 

  

Spain 

  

Sweden 

  

Switzer- 

land 
Turkey 

  

UK 

  

US 

  

Austria 1 

             
 

   Belgium 0.2232 1 

            
 

   Canada -0.1216 0.0062 1 

           
 

   Denmark 0.1078 0.2657 0.0875 1 

          
 

   France 0.1702 0.1568 -0.0339 -0.1117 1 

         
 

   Germany 0.5281 0.5635 0.1212 -0.0725 0.1222 1 

        
 

   Greece -0.1496 -0.2590 -0.1384 0.1721 -0.1420 -0.1469 1 

       
 

   Ireland 0.3410 0.1872 0.3348 -0.4431 0.0524 0.4785 -0.1229 1 

      
 

   Italy 0.4136 0.6413 0.3324 0.3262 0.3296 0.6425 -0.3221 0.0765 1 

     
 

   Japan -0.2323 0.0008 -0.1187 0.0710 -0.1539 -0.0992 -0.2817 -0.4674 0.1326 1 

    
 

   Netherland 0.1106 0.4795 0.4487 0.4933 0.0726 0.1409 -0.0280 -0.0751 0.4736 0.2036 1 

   
 

   Norway 0.2021 0.5797 0.4091 0.3571 -0.1781 0.3193 -0.2481 0.4025 0.3523 -0.0587 0.6133 1 

  
 

   Spain 0.4263 0.3728 -0.0203 0.0892 0.2151 0.2016 -0.3466 0.5053 0.0304 -0.5250 -0.0042 0.4923 1 

 
 

   Sweden 0.0018 0.4639 -0.1285 0.3808 -0.0341 0.1530 0.0710 -0.3909 0.3468 0.1198 0.3102 -0.0259 -0.0994 1  
   Switzerland 0.4248 0.4128 -0.1441 0.1920 0.4633 0.5549 0.2016 0.1405 0.5324 -0.0700 0.3545 0.2406 0.0294 0.2347 1 

   Turkey 0.3558 -0.4073 0.0270 0.1141 -0.0195 0.1207 0.3349 -0.1759 0.1130 0.0454 -0.0685 -0.4880 -0.3366 0.2617 0.1208 1 

  UK 0.1176 0.5108 0.5874 0.0367 0.1542 0.2463 -0.2279 0.6155 0.2976 -0.3293 0.4553 0.7352 0.5798 -0.1431 0.0195 -0.4878 1 

 US -0.0044 0.6397 0.4320 0.1789 0.1938 0.4333 -0.4969 0.3221 0.5451 0.0056 0.3272 0.5258 0.3841 0.3356 0.1560 -0.3288 0.5938  1 

ij̂  is computed as 
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Before estimating the model in (6.3), the presence of CD is investigated among the 

innovations in the model. The results are reported in Tables 6.2 and 6.3.  From Table 

6.2, some countries provide very small correlations, for example: between Belgium and 

Canada, and Belgium and Japan, indicating that these countries are independent to each 

other. The US, UK and Italy yield strong cross dependency within most of these 18 

OECD countries.  The LM, RLM1, RLM2, PCD, RPCD1 and RPCD2 (showed in Table 

6.3) are compared at 5% significant levels based on the respective critical values. All 

tests provide significant evidence of the presence of the CD in model (6.3) and this 

result is comparable with the value of the absolute correlation 266.0ˆ  . In view of the 

presence of the CD, the parameter estimation procedure that relaxes the independence 

assumption should really be considered. 

 

Table 6.3: Cross Dependency Test Results of Gasoline Data 

Test Test statistics 

̂ 60
 0.266 

LM 303.296* 

RLM1 314.660* 

RLM2 282.630* 

PCD 7.795* 

RPCD1 7.382* 

RPCD2 5.925* 

*The test is significant when   865.182RLM2RLM1,LM, 2
2/)1(  NN and 

96.1)1,0(2RPCD,RPCD1,PCD  N  at 5% significant levels. 

 

 

 

 

 

 

 

 

 

 

                                                 

60 ̂  is computed as 
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Table 6.4: Estimation Results of Gasoline Data 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: * significant at 5% significant level 

 

The estimators used to estimate the model parameters are (1) Pooled, (2) CMG, 

and (3) RCMG.  The results are reported in Table 6.4.  For the pooled estimator, 21
ˆ,ˆ   

and 3̂  show significant test statistics with low 685.02 R . These results are consistent 

with the fact that the cross sectional independence is violated since the CD test results 

provides evidence on the presence of the CD. On the other hand, the CMG and RCMG 

estimators which relax the independent assumption show that only 32
ˆ and ˆ   are 

significant. This suggests the importance of the real motor gasoline price and the stock 

of cars per capita variables (predictor) in predicting the gasoline consumption per car 

(response). The coefficient of determination 2R  and the robust version 2RR  indicate a 

good fit for both the CMG and RCMG estimator. Further checks on the residual plots 

illustrate the bell-shaped residuals distributed around 0 (see Figure 6.1) with slightly 

deviates from the normal distribution.  

 

 
Methods Pooled CMG RCMG 

Parameter 

Estimates  
1̂  0.195 0.123 -0.059 

t-stats 
7.654* 

(0.000) 

1.386 

(0.917) 

-0.602 

(0.274) 

2̂  -0.512 -0.214 -0.316 

t-stats 
-15.619* 

(0.000) 

-4.716* 

(0.000) 

-7.604* 

(0.000) 

3̂  -0.575 -0.593 -0.410 

t-stats 
-35.691* 

(0.000) 

-6.221* 

(0.000) 

-5.986* 

( 0.000) 

Goodness-

of-fit 

2R  0.685 0.986 0.977 

2RR  0.645 0.999 0.999 
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Figure 6.1: QQ and Density Plots of Gasoline Data  

 

 The CV  and 2CV  for the respective estimation procedure are reported in Table 6.5. 

Both CMG and RCMG provide a comparable value of CV  and 2CV when the i
th

 pair 

of the dependent and independent variables are omitted.  

 

 

Table 6.5: Cross-Validation Results of Gasoline Data 

 CV  

i  Pooled CMG RCMG 

1 0.23365 0.01677 0.02323 

2 0.19195 0.01657 0.02299 

3 0.17799 0.01656 0.02264 

4 0.20511 0.01419 0.01993 

5 0.20131 0.01304 0.01668 

6 0.19827 0.01155 0.01555 

7 0.19226 0.01024 0.01409 

8 0.11023 0.01051 0.01479 

9 0.09632 0.00793 0.01277 

10 0.09914 0.00823 0.01391 

11 0.11094 0.00898 0.01488 

12 0.11628 0.01010 0.01610 

13 0.12064 0.01075 0.01686 

14 0.13380 0.01188 0.01842 

15 0.17073 0.01289 0.01944 

16 0.17767 0.01385 0.02037 

17 0.18521 0.01689 0.02358 

18 0.19094 0.01749 0.02434 
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 2CV  

i  Pooled CMG RCMG 

1 0.11603 0.00071 0.00110 

2 0.07434 0.00071 0.00115 

3 0.07064 0.00073 0.00115 

4 0.10965 0.00052 0.00090 

5 0.10692 0.00048 0.00069 

6 0.10695 0.00044 0.00066 

7 0.10485 0.00040 0.00060 

8 0.03090 0.00055 0.00079 

9 0.02674 0.00034 0.00063 

10 0.02779 0.00035 0.00074 

11 0.03170 0.00037 0.00077 

12 0.03244 0.00040 0.00081 

13 0.03297 0.00041 0.00082 

14 0.03889 0.00044 0.00089 

15 0.07349 0.00047 0.00092 

16 0.07445 0.00050 0.00094 

17 0.07587 0.00073 0.00118 

18 0.07655 0.00074 0.00120 

 

 

 

  To illustrate the usefulness of the proposed method in presence of 

contamination, 5% contamination is allowed in 
Car

Gas
 in model (6.2)

61
.  The CD tests 

and parameter estimates are computed based on the three techniques mentioned earlier 

as well as the value of 2R ,  2RR , CV and the results are reported Table 6.7. 

  In the presence of outliers (see Figure 6.3), the LM and PCD tests provide 

insignificant test statistics indicating that there is no cross dependency in the panel 

whereas the cross section dependence exists among the residuals (see the value ̂  in 

Table 6.7). This shows that the cross dependency effect is masked by the presence of 

outliers. The robust versions of these tests however provide a significant result of there 

is cross dependency in the panel. 

 

 

                                                 
61 The contamination chosen is from 2

)20(  so that the band of this value will not exceed some points of d. 
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Table 6.6:  Robust Cross-Validation Results of Gasoline Data 

 RCV  

i  Pooled CMG RCMG 

1 0.1463 0.0106 0.0167 

2 0.1522 0.0113 0.0168 

3 0.1422 0.0121 0.0178 

4 0.1348 0.0118 0.0173 

5 0.1541 0.0118 0.0162 

6 0.1724 0.0112 0.0159 

7 0.1878 0.0103 0.0153 

8 0.1604 0.0098 0.0172 

9 0.1515 0.0094 0.0175 

10 0.1474 0.0098 0.0192 

11 0.1468 0.0097 0.0178 

12 0.1401 0.0099 0.0180 

13 0.1350 0.0098 0.0176 

14 0.1359 0.0102 0.0177 

15 0.1436 0.0105 0.0171 

16 0.1411 0.0106 0.0168 

17 0.1436 0.0113 0.0177 

18 0.1347 0.0112 0.0172 

 

 2RCV  

i  Pooled CMG RCMG 

1 0.00602 0.00003 0.00009 

2 0.00636 0.00004 0.00009 

3 0.00550 0.00005 0.00011 

4 0.00526 0.00004 0.00010 

5 0.00685 0.00004 0.00008 

6 0.00947 0.00003 0.00008 

7 0.01128 0.00003 0.00007 

8 0.01014 0.00003 0.00009 

9 0.00886 0.00003 0.00010 

10 0.00901 0.00003 0.00011 

11 0.00827 0.00003 0.00010 

12 0.00726 0.00003 0.00010 

13 0.00619 0.00003 0.00010 

14 0.00603 0.00003 0.00010 

15 0.00636 0.00003 0.00009 

16 0.00598 0.00004 0.00009 

17 0.00619 0.00004 0.00010 

18 0.00575 0.00004 0.00009 
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Figure 6.2: Residual Plots of Gasoline Data;  

(1)Pooled model; (2) CMG; (3) RCMG 

 

Table 6.7: Cross Dependency Test Results of Gasoline Data 

with 5% contamination 

Test Test statistics 

̂ 62
 0.143 

LM 139.253 

RLM1 239.520* 

RLM2 278.440* 

PCD 1.028 

RPCD1 8.023* 

RPCD2 7.631* 

*The test is significant when   865.182RLM2RLM1,LM, 2
2/)1(  NN and 

96.1)1,0(2RPCD,RPCD1,PCD  N  at 5% significant levels. 

 

 

 

 

 

 

 

                                                 

62 ̂  is computed as 
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Table 6.8: Estimation Results of Gasoline Data with 5% contamination 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: * significant at 5% significant level 
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Figure 6.3: Residual Plots of Gasoline Data 

with 5% contamination; (1)Pooled model; (2) CMG; (3)RCMG. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Methods Pooled CMG RCMG 

Parameter 

Estimates  
1̂  0.246 0.331 0.141 

t-stats 
7.642* 

 (0.000) 

0.463 

(0.678) 

0.416 

(0.661) 

2̂  -0.461 -0.617 -0.346 

t-stats 
-11.141* 

(0.000) 

-1.290 

(0.099) 

-1.993* 

(0.023) 

3̂  -0.484 -1.279 -0.535 

t-stats 
-19.603* 

(0.000) 

-2.152* 

(0.016) 

-2.029* 

(0.021) 

Goodness-

of-fit 

2R  0.549 0.580 0.492 

2RR  0.575 0.999 0.999 
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Table 6.9: Cross-Validation Results of Gasoline Data 

with 5% contamination 

 CV  

i  Pooled CMG RCMG 

1 0.28895 0.12092 0.13144 

2 0.23529 0.11436 0.11705 

3 0.21772 0.10577 0.10756 

4 0.25276 0.10343 0.11300 

5 0.24811 0.10419 0.11213 

6 0.24562 0.10355 0.11197 

7 0.23017 0.08373 0.09289 

8 0.13545 0.07032 0.07932 

9 0.12139 0.06720 0.07417 

10 0.12626 0.06191 0.07038 

11 0.14170 0.07177 0.07932 

12 0.14846 0.07307 0.08057 

13 0.15748 0.08361 0.09138 

14 0.17900 0.09333 0.10078 

15 0.21827 0.10371 0.11175 

16 0.22741 0.11265 0.12017 

17 0.23653 0.11677 0.12443 

18 0.24663 0.12436 0.13424 

 

 

 2CV  

i  Pooled CMG RCMG 

1 0.19140 0.05080 0.06313 

2 0.14241 0.04856 0.05303 

3 0.13030 0.04062 0.04718 

4 0.17074 0.03941 0.05059 

5 0.16745 0.04144 0.05089 

6 0.17060 0.04601 0.05379 

7 0.15525 0.03705 0.04451 

8 0.06689 0.02853 0.03731 

9 0.06394 0.02938 0.03711 

10 0.06436 0.02768 0.03541 

11 0.07173 0.03089 0.04028 

12 0.07310 0.03093 0.04032 

13 0.08036 0.03671 0.04606 

14 0.09696 0.03990 0.04963 

15 0.13990 0.04697 0.05679 

16 0.14490 0.05010 0.05897 

17 0.14755 0.05061 0.05948 

18 0.15428 0.05264 0.06391 
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Table 6.10:  Robust Cross-Validation Results of Gasoline Data 

with 5% contamination 

 RCV  

i  Pooled CMG RCMG 

1 0.15811 0.06785 0.07478 

2 0.14563 0.07029 0.06674 

3 0.13439 0.06871 0.06657 

4 0.15829 0.07617 0.08221 

5 0.16648 0.08121 0.09067 

6 0.22535 0.09010 0.10357 

7 0.25329 0.07983 0.08575 

8 0.16867 0.06986 0.06980 

9 0.15890 0.07004 0.06680 

10 0.18326 0.05150 0.06358 

11 0.19528 0.06458 0.07233 

12 0.18251 0.04905 0.05736 

13 0.17708 0.05196 0.06365 

14 0.15656 0.05905 0.06680 

15 0.15109 0.06784 0.07487 

16 0.14308 0.07004 0.07670 

17 0.15052 0.06986 0.07487 

18 0.14796 0.07054 0.07670 

 

 

 2RCV  

i  Pooled CMG RCMG 

1 0.00839 0.00079 0.00142 

2 0.00623 0.00081 0.00119 

3 0.00546 0.00075 0.00115 

4 0.00788 0.00113 0.00187 

5 0.00968 0.00158 0.00239 

6 0.01333 0.00218 0.00321 

7 0.01624 0.00119 0.00204 

8 0.01025 0.00099 0.00137 

9 0.00782 0.00095 0.00121 

10 0.01186 0.00049 0.00091 

11 0.01226 0.00071 0.00116 

12 0.01053 0.00048 0.00075 

13 0.00854 0.00057 0.00092 

14 0.00856 0.00063 0.00103 

15 0.00800 0.00073 0.00123 

16 0.00719 0.00081 0.00136 

17 0.00756 0.00082 0.00135 

18 0.00707 0.00088 0.00146 

 

 

  For the estimation results (see Table 6.8), the RCMG estimator yields significant 

values of 2̂  and 3̂  in the presence of outliers whereas the CMG reports a 
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significant 3̂ . 21
ˆ,ˆ  and 3̂  are significant for the pooled model due of the presence of 

positive and negative large residuals which are averaged out (see residual plot for 

pooled model in Figure 6.3). These results however are unreliable due to the smaller 

values of 2R  and 2RR , indicating a poor fit. Both the CMG and RCMG provide a large 

value of 2RR , indicating a good fit. The values of CV and 2CV (see Table 6.9) for all 

the estimators are slightly large compared to the uncontaminated panel. The robust 

RCV  is also large but not the 2RCV  (see Table 6.10).  Based on these results, the 

RCMG provides comparable estimates with its uncontaminated panel, which illustrates 

its robustness.  

 

6.3 Panel Unit Root Tests 

  To investigate the presence of the CD and unit root in the dynamic panel 

framework, the PPP data are suggested. The panel unit root tests used include: (1) ADF 

unit root test, (2) CIPS and (3) RCIPS. The CD is first examined prior to testing the unit 

root.   

 

6.3.1Purchasing Power Parity (PPP) 

The PPP is a criterion for an appropriate exchange rate between currencies. It is 

a rate that a representative basket of goods in country A costs the same as in country B 

if the currencies are exchanged at that rate.  This PPP is related to the exchange rates 

where the equilibrium exchange rates are often defined in terms of the PPP (see 

Gökcan, 2002; Haw and Baharumshah, 2002). A constant real exchange is required for 

PPP to hold. One should expect PPP to hold in a world where the transportation and 

transaction costs are negligible, consumption basket is identical and no arbitrage profit 

existed. The real exchange rate will vary without these conditions. So, the most 

common way to test for PPP is investigating the presence of unit roots in RERs. 
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 In the time series model, the most common definition of the RER is the nominal 

exchange rate ( tq ) adjusted by the price levels ( tp ) and is given as follows: 

tttt ppsq  *           (6.4) 

where the PPP condition is defined by  

*

ttt pps             (6.5) 

Here, ts  is the log exchange rate, tp and *

tp   are the log domestic and foreign price 

levels respectively.  

Note that, if relative PPP holds, then tq  in (6.4) is a constant. This is clearly not 

true in the short run, but it could happen in the long run empirically.  The PPP holds 

when it achieves mean stationary in the long run and it can be evaluated by application 

of the unit root tests. Generally, the panel methods with long time spans provide more 

evidence in favour of a trend reverting q   than the pure time series methods.  

 

 

6.3.2 Data and Model 

   Two examples are considered on PPP real data set: (1) Asian and (2) Central and 

Eastern Europe (CEEC) countries. The data employed are on the monthly RER of 13 

countries in both examples
63

. The first covers the period M1 1986 to M4 2010 in which 

the time dimension is equals to 290 while in the second it consists the data from M1 

1996 to M4 2010 which is equivalent to 170T .  

 The following equation is used to model RER: 

  itititit ppsq  *                 (6.6) 

where itq   is the logarithm nominal exchange rate at country i
th 

currency in terms of US 

dollar, itp  and *

itp  are the logarithm of consumer price indices in the US  and country 

i , respectively.  

                                                 
63 The data is available upon request. 
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For a panel of countries ),,2,1( Ni  the RER can be represented by,  

   ;1 ititiiit sbs     

where 1 ititit sss ; is the first difference of RER; i  is the intercept which varies 

across i . Accordingly, if 0ib , then is  is stationary and if  0ib  then the series is 

nonstationary or has a unit root. For the ADF test, the following model is used; 

   ;11 ititiitiiit ssbs     

while for the CIPS and RCIPS unit root tests, the following model is considered: 

   ;1 ittiitiiit fsbs     

Here, i  is the common factor, tf is unobserved factor and it  is the disturbances and 

the CD is explained by the tf  has been derived in (3.10) to (3.14) in Chapter 3. 

 

6.3.3 Critical values 

Critical values are computed based on two procedures: (1) DGP in Chapter 5, 

Section 5.4 and (2) the idea in Breuer et al. (1999). The simulated critical values of the 

second procedure are based on the exact values of the parameter estimates in PPP for 

each group of countries using Pesaran’s (2007) method of estimation. The error series 

are generated from the standard normal distributions with the variance covariance 

matrix:     TT

t HHHHΙM
1

   with   ),,( 1 tt yy1H  . tΙ  is a unit matrix of order 

TT   and H is the combination of the dummy variables, average of cross section of the 

first difference of  ity  and its first lagged value,  1ity . Here,  ity is the RER. 

  Then, each simulated data is generated from the error series using the parameter 

estimates with intercept set at zero since the null hypothesis has a unit root. For each 

series, 50T  are generated for each group, and the first 50 observations are discarded 

in order to reduce the initial effects of data generation. The remaining T observations 
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are then used to compute the critical values of the unit root test at 0.05 significant levels. 

The critical values produced in Table 6.15 are based on 5000 replications.  

 

6.3.4 Results and Discussion 

First, the pair-wise cross section coefficient of the residuals which consists of 

7813
2

C  pairs is computed and these coefficients are tabulated in Tables 6.11 and 

6.13.  From Table 6.11, China (CHN), Hong Kong (HK), India (IND), Pakistan (PAK) 

and Sri Lanka (LKA) yield small ij̂  that is less than 0.2 among the other countries. The 

PPP of these countries are almost independent of the other ASIAN countries especially 

China (CHN). The PPP of Malaysia (MYS), Singapore (SGP), Thailand (THA), 

Indonesia (IDN) and Philippines (PHI) yield strong cross dependency among each other 

and it is observed that Korea (KOR) and Taiwan (TWN) are also dependent to each 

other. The absolute pair-wise correlation 171.0ˆ   and cross dependency tests 

(reported in Table 6.12) provide significant evidence of the CD that is to reject the null 

cross sectional independence among ASIAN countries.  

High cross correlation coefficient is obtained in the CEEC panel with 3.0ˆ ij  

and these results are comparable with 570.0ˆ   (see Tables 6.13 to 6.14). The test 

statistics of the CD unanimously rejects the null hypothesis of the cross sectional 

independence among the group of CEEC members at 5% significant levels. This clearly 

means that the CD among the CEEC countries exists and is strong. 

 The unit root tests are computed for each ASIAN and CEEC panel and the results 

are given in Table 6.15. Two bases of critical values are provided at 5% significant 

levels as a benchmark to compare the unit root test.  The ADF unit root test provides 

significant results in rejecting the presence of the unit root based on the critical values 

obtained from procedure 1 but fails to reject it based on the second procedure. These 
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results however are unreliable due to the presence of the significant CD (from Tables 

6.12 and 6.14). As such, the CIPS and RCIPS unit root tests are employed as the 

alternative approach which accommodates the CD. Both tests give insignificant results 

of a unit root test i.e. do not reject the null of the unit root at 5% significant levels, with 

respect to both the critical values. This means that the PPP hypothesis is no longer valid 

in the presence of a unit root. Likewise, for the CEEC panels, all the unit root tests fail 

to reject the null hypothesis of a unit root and therefore, this provides some evidence 

against PPP. 
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Table 6.11: The Correlation Results among the ),( ji
th

    
ij̂ Cross Sectional Units of the ASIAN Data

64
. 

 ),( ji  CHN HKG IDN IND KOR LKA MYS PAK PHL WSM SGP TWN THA 

CHN 1             

HKG 0.0809 1            

IDN 0.0098 0.0037 1           

IND 0.0245 0.0696 0.0310 1          

KOR 0.0278 0.0386 0.1342 0.2058 1         

LKA -0.0291 0.0290 -0.2859 -0.0495 -0.1959 1        

MYS 0.0353 0.1053 0.5682 0.0678 0.1339 -0.0965 1       

PAK 0.0236 0.1338 0.1129 0.1629 0.0547 -0.0035 0.1505 1      

PHL 0.0241 -0.0060 0.3615 0.0374 0.3052 0.0664 0.3833 0.1032 1     

WSM -0.1051 -0.0343 0.1814 0.1122 0.2587 -0.0278 0.1407 0.1097 0.1972 1    

SGP -0.0212 0.1541 0.5015 0.1687 0.3253 -0.0919 0.6092 0.2157 0.3282 0.2972 1   

TWN 0.0896 0.2209 0.1995 0.1254 0.2586 -0.0457 0.2783 0.0925 0.1197 0.0996 0.3299 1  

THA 0.0050 0.0339 0.5759 0.0386 0.2659 -0.1160 0.7057 0.1340 0.5474 0.1482 0.6186 0.2653 1 

 

Table 6.12 : Cross Dependency Test Results of the ASIAN Data 

Test Test statistics 

̂  0.171 

LM 1269.020* 

RLM1 335871.716* 

RLM2 36970.724* 

PCD 21.458* 

RPCD1 483.919* 

RPCD2 245.817* 

*The test is significant when   99.617RLM2RLM1,LM, 2
2/)1(  NN and 96.1)1,0(2RPCD,RPCD1,PCD  N  at 5% significant levels. ̂  is computed as 

)1(

ˆ

ˆ

1

1 1




 


 

NN

N

i

N

ij

ij

  

 

                                                 
64 Abbreviations of the ASIAN country are given in Appendix D. 
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Table 6.13: The Correlation Results among the ),( ji
th

,  
ij̂ Cross Sectional Units of the CEEC Data

65
. 

),( ji   AL BG CR CZ EE HU LV LT MK PL RO SK SL 

AL 1             

BG 0.3696 1            

CR 0.4711 0.3589 1           

CZ 0.4552 0.2987 0.7447 1          

EE 0.5281 0.4152 0.8928 0.7778 1         

HU 0.4746 0.3084 0.7536 0.6871 0.7990 1        

LV 0.5054 0.3410 0.7720 0.6687 0.8257 0.7091 1       

LT 0.4621 0.2389 0.6893 0.6508 0.7443 0.6650 0.7820 1      

MK 0.3503 0.3591 0.8415 0.6792 0.8374 0.6887 0.7656 0.6592 1     

PL 0.3956 0.2688 0.6112 0.6643 0.6332 0.7616 0.5758 0.5046 0.5576 1    

RO 0.5229 0.3847 0.4338 0.3658 0.4744 0.4308 0.4114 0.3528 0.4145 0.3887 1   

SK 0.3911 0.3127 0.6818 0.6637 0.7463 0.6780 0.6500 0.5900 0.6659 0.5661 0.3734 1  

SL 0.3867 0.3577 0.8214 0.6975 0.8326 0.6251 0.6479 0.6521 0.7708 0.5099 0.3698 0.7420 1 

 

Table 6.14: Cross Dependency Test Results of the CEEC Data 

Test Test statistics 

̂  0.570 

LM 4697.555* 

RLM1 937523.671* 

RLM2 82977.353* 

PCD 65.630* 

RPCD1 952.565* 

RPCD2 720.589* 

The test is significant when   99.617RLM2RLM1,LM, 2
2/)1(  NN and 96.1)1,0(2RPCD,RPCD1,PCD  N  at 5% significant level.

 
̂  is computed as 

)1(

ˆ

ˆ

1

1 1




 


 

NN

N

i

N

ij

ij

  

                                                 
65 Abbreviations of the ASIAN country are given in Appendix D. 
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Table 6.15: The Unit Root Test Results 

  ADF CIPS RCIPS 

ASIAN 

Critical values
a 

-1.9036 -2.2231 -1.7517 

Critical values
b 

-2.4836 -2.6779 -4.2509 

Test statistics -1.9658
a 

-0.7164 -0.3772 

CEEC 

Critical values
a 

-1.8976 -2.2252 -1.7433 

Critical values
b 

-2.1718 -2.1151 -3.9435 

Test statistics -1.0859 -0.4826 -0.0751 
Note: a is the critical value obtained from DGP as in Section 5.4 while b is computed based on the idea in Breuer et al. (1999) and is 
discussed in Section 6.3.3. 

*: significant and rejected if  valuesCritical >  statisticsTest  , based on its corresponding critical values. Critical values are 

computed based on 5000 replications at 5% significant levels. 

 

 

6.4 Discussion 

  In this chapter, The CD tests discussed in Chapter 2 are employed to investigate 

the presence of the CD in the gasoline data. There is strong evidence that the CD is 

present in the gasoline panel and therefore the Generalized M-estimator (named 

RCMG) is adopted to estimate the parameter of the model. The parameter estimates 

obtained are in line with the Pooled and CMG estimator.  However, as the gasoline 

panel is contaminated with outliers, the RCMG provides a good fit with larger values of 

2RR and smallest values of 2, RCVRCV  among other estimation procedures. This 

indicates that the advantage of the RCMG is the ability to handle extreme observations. 

The unit root tests of PPP data find evidence that the ASIAN and CEEC data are 

strongly cross correlated among the group members. The unit root results provide some 

evidence of the non-stationary of the PPP data and conclude that the PPP hypothesis 

does not hold in both the ASIAN and CEEC countries.  
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CHAPTER 7 

Conclusion 

 

This study propose the method to statistical modeling and inferences in the panel 

data model when there exist suspicious observations in the series and cross correlation 

among the group members in the panel. For exploratory purposes, the cross-sectional 

tests are applied to investigate the presence of cross sectional dependence (CD) in the 

panel. In Section 2.3 of Chapter 2, the tests by Breusch and Pagan (1980) and Pesaran 

(2004) are revisited and the residuals obtained by the Least squares estimation are 

known to be sensitive to the outliers. A robust estimation procedure is considered to 

capture the outlier effects and those spurious observations are removed when computing 

pair-wise correlation coefficients, ij̂  using robust filter function, such as the Huber 

function and diagnostic tools. This study supports that the robust version of Pesaran’s 

(2004) (namely RPCD1 and RPCD2) and outperform other tests in detecting the CD 

especially when mild CD is observed.  

 

In modeling the panel, the Generalized M-estimator is proposed to minimize the 

objective function of overall error (given in Equation (3.22)) by advocating Pesaran’s 

(2006) estimation procedure named the Common Correlated Effects Mean Group 

(CMG) in purely static model.  The CMG method uses the unobserved factor to explain 

the cross correlation. The modification of the variance-covariance matrix in the CMG 

procedure enables the recovery of reliable estimators which limits the influence of both, 

CD and outliers. This Generalized M-estimator is asymptotically normally distributed as 

 TN  and  . The asymptotic distribution of the Generalized M-estimator is 

used to derive the test statistics which is important in the construction of the hypothesis 
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testing and confidence interval of the parameter estimates.  Furthermore, this study only 

focuses on the properties of estimator in term of asymptotic distribution, thus, future 

studies will be undertaken on qualitative and quantitative robustness such as influence 

function and breakdown point. 

 

Extensive simulation studies of a simple pure static model with one regressor are 

chosen to illustrate the estimation techniques, hypothesis testing and confidence interval 

of parameter estimates. The Pooled, CMG and RCMG procedures are examined and 

this study concludes that the proposed method, RCMG has small mean square error 

(MSE) of the residuals and bias of the parameter estimates, RCMG̂  in the presence of 

CD and outliers. The hypothesis test supports the findings in Section 4.2.1.1 that the 

RCMG is more reliable (powerful) in estimating RCMG̂ , in terms of accuracy. This can 

also be observed from the shorter length of CI in Table 4.31.  

 

In the dynamic framework, the reliability of the unit root tests is investigated in 

the presence of the CD and outliers. An Augmented Dickey Fuller (ADF) unit root test 

is modified (Im et al., 2003) so that it is suitable with the panel framework; however 

this test assumes cross sectional independence in the panel. On the other hand, the 

Pesaran unit root test (2007) which uses the CMG approach is not robust to outliers 

occurring within the panel. The robust Generalized M-estimator, described in Chapter 3, 

is used to investigate the stationary of the series in panel. The Monte Carlo simulation 

studies support the findings of this study that the proposed procedure outperforms the 

ADF and the Pesaran unit root test in terms of size and power of the test in the presence 

of the CD and outliers. In testing for a unit root test, the asymptotic distribution of the 

proposed unit root test is approximated via the Monte Carlo experiment. Future studies 

will be undertaken on the statistical properties of this method.  
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For the illustrations, the gasoline data taken from Baltagi’s work (2005) are 

considered in pure static model. The simulation results support the findings of this study 

that the parameter estimates obtained from RCMG are comparable with uncontaminated 

panel. The value of 2RR  and RCV  and 2RCV  indicate that RCMG is a good fit for the 

gasoline panel. For the dynamic case, the examples of the PPP data are considered and 

the results find that the PPP hypothesis does not hold and this clearly indicates that the 

PPP of ASIAN and CEEC is not mean stationary in the long run. Thus, there is 

evidence against the PPP and for this; it is left as an open study. 

 

A drawback of the Breusch and Pagan (1980) and Pesaran (2004) CD tests is 

that they are sensitive to the influence of outliers especially for the case of mild CD in 

the panel; the presence of the CD being masked by the presence of outliers. Thus, the 

robust estimation procedures are incorporated to the test with some filtration to remove 

the outliers’ effects; similarly, for the estimation procedure of Pesaran’s (2004). As a 

possible alternative, Pesaran’s approach is replaced with the robust Generalized M- 

estimator and the results provide support that the proposed technique is able to yield 

good estimates in the presence of outliers and CD. This technique can also be modified 

to the more complicated panel model such as panel with multiple regressors and 

unobserved factors. Even though the extended and complicated panel model is not 

considered in this study due to the complicated nature of the properties of the model, the 

model is of interest for future work.   With the flexibility of the existing software 

packages that are available today, it is believed that the study can be extended to include 

complicated panel models.  

 

 

 




