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CHAPTER 7 

CONCLUSION AND FURTHER WORK 

 

 

The 3,1GIT  distribution has a stochastic origin as a first-passage time distribution 

of a modified random walk on the half plane and is seen to be a model that is able to 

cater for under-, equi- and over-dispersion. Compared to the other models (GPD, COM-

Poisson, double Poisson and so on) currently available with such capability, the 3,1GIT  

distribution has an interesting feature in that it reduces to a non-Poisson distribution for 

the particular case of equi-dispersion. However it does have the Poisson distribution as a 

limiting distribution. Furthermore the 3,1GIT  distribution, unlike the GPD, does not 

encounter problem with range of the parameters for it to be a legitimate distribution. 

 

 Although the COM-Poisson distribution has a simple pmf, computation of the 

normalizing constant could be difficult for extreme values of the parameters. In Chapter 

5, the accuracy of the infinite sum, ( , )Z vλ  is studied. It is found that the formula 

obtained through a direct differentiation of ( , )Z vλ  is favoured if higher accuracy is 

required.   

 

Even though the
3,1GIT distribution has a complicated pmf in terms of the Gauss 

hypergeometric function, its pmf has a simple three-term recurrence formula to facilitate 

computation. Furthermore the 3,1GIT  distribution has a simple probability generating 

function which allows parameter estimation by an alternative procedure, the pgf-based 

minimum Hellinger-type distance estimation (Sim and Ong, 2010), which is much 

simpler than maximum likelihood estimation. For the four count frequency data sets, the 
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pgf-based estimation method is seen to be consistently as good as or better than MLE or 

MHD. 

 

 Apart from the considerations above, the good fits shown by 
3,1GIT  distribution 

relative to the well-known GPD and COM-Poisson distribution justify its inclusion by 

data analysts as a viable and flexible model for over-, equi- and under-dispersion. For 

future work more statistical inference can be conducted on the COM-Poisson and 
3,1GIT  

distributions with extensions to zero-inflated and regression models and their 

applications. 

 

It is of interest to consider the bivariate extensions of the 
3,1GIT  distribution. 

Two new bivariate 3,1GIT  which appear as alternative choices of bivariate distributions 

for data analysis, are defined and named as the Type I and Type II BGITD. Figures 4.1 

to 4.10 in Chapter 4 clearly showed the attractive characteristics of the proposed 

bivariate distributions where the shape of the distribution changes as the positive-integer 

parameters are varied. It is observed in Chapter 4 that we have two positive-integer 

parameters under Type I BGITD and three positive-integer parameters under Type II 

BGITD. The Type I BGITD has four parameters when the two positive-integer 

parameters are fixed. While for the Type II BGITD, we have six parameters by fixing 

the three positive-integer parameters.  To improve the utility of the distributions, the 

extension of these positive-integer parameters to real numbers may be studied. 

 

In addition, the correlation derived under the Type I BGITD allows a very 

flexible structure where it provides a full range of the correlation coefficient from -1 to 

1. On the other hand, the correlation derived under the Type II BGITD only permits 

positive correlation among the two random variables. By having a less restrictive 

correlation structure, the Type I BGITD is more flexible for empirical modelling 
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compared with the Type II BGITD. For limitations of bivariate distributions based on 

trivariate reduction; see Mitchell and Paulson (1981) and Lee (1999).  

 

The properties and the statistical inference of the Type I and Type II BGITD can 

be explored further. Besides that, more interesting and flexible bivariate 

3,1GIT distributions may also be constructed.  

 

Frequently, the complicated form of the joint probability mass function of the 

bivariate distribution is a major stumbling block in applications. The computation time 

for parameter estimation based on the probability mass function is clearly affected by its 

complexity. Hence, when the distribution possesses a simple form for the probability 

generating function, the pgf-based minimum Hellinger-type distance estimation is 

proposed. As illustrated by the real life data sets (Table 6.14 to 6.17), the pgf-based 

minimum Hellinger-type distance estimation does not only works as well as the MLE 

and it also shortens the computation time.  

 

In Chapter 6, we have examined the robustness and accuracy of the pgf-based 

minimum Hellinger-type distance estimation under the univariate discrete distribution 

through an intensive simulation study. Six estimators
1 2 3 4 5 6,  ,  ,  ,  ,  T T T T T T  with and 

without weighting factors, have been examined. To illustrate the method, we considered 

the orthogonal-parameter negative binomial distribution. In the simulation study, data 

with and without contamination have been generated; for data with contamination, we 

considered the mixtures of two different distributions. 

 

 The simulation results suggest that for small sample sizes, the proposed 

estimators may be preferred over MLE and MHDE for data with outliers. For large 

sample sizes the estimators 1 2 5 6,  ,   and T T T T  may be considered. 1T  and 2T are 

estimators of choice because they are simpler (without weighting factors) and execute 
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faster. Obviously, our timings show that 1T and 2T  compute quickly compared to the 

other methods. In situations where the formula for the pmf is complicated relative to the 

pgf, 1T and 2T are to be preferred over MLE or MHDE. 

 

 In methods 
3T  and 

4T , it is found that the estimated parameter b falls at the 

upper bound of our setting, indicating the parameter b intends to choose a value which 

is as large as possible in the range (0-4). The same result is achieved by fixing the value 

b at 4.0. This situation is mentioned by Gürtler and Henze (2000) where large value of b 

means more weight is put near to the endpoint of 1t = . Estimators 5T  and 6T  are not 

favoured as they take longer computation time than the other estimators.  

 

 Since we have only considered the existence of outliers in Chapter 6, further 

work can be done by examining the performance of the pgf-based minimum Hellinger-

type distance estimation under the existence of inliers. An inlier is a faulty data that lies 

in the interior of a statistical model and it is usually difficult to find and correct. Further 

generalizations of the pgf-based method of estimation and consideration of their 

robustness are also of interest. 

 

 

 


