PRODUCTION OF CAPRINE AND BOVINE *IN VITRO*-FERTILISED AS WELL AS PARTHENOGENETIC EMBRYOS AND AN ATTEMPT TO VITRIFY *IN VIVO*- AND *IN VITRO*-DERIVED EMBRYOS

TAN WEI LUN

FACULTY OF SCIENCE UNIVERSITY OF MALAYA KUALA LUMPUR

2011

PRODUCTION OF CAPRINE AND BOVINE *IN VITRO*-FERTILISED AS WELL AS PARTHENOGENETIC EMBRYOS AND AN ATTEMPT TO VITRIFY *IN VIVO*- AND *IN VITRO*-DERIVED EMBRYOS

TAN WEI LUN

DISSERTATION SUBMITTED IN FULFILMENT OF THE REQUIREMENT FOR THE DEGREE OF MASTER OF SCIENCE

INSTITUTE OF BIOLOGICAL SCIENCES FACULTY OF SCIENCE UNIVERSITY OF MALAYA KUALA LUMPUR

2011

ABSTRACT

The main objective of this research was to determine the effects of oocyte grading and insemination duration on cleavage rate of embryos obtained from in vitro fertilisation (IVF) in bovine and caprine species. In addition, the effects of oocyte grading in bovine and caprine on production of parthenogenetic embryos as well as an attempt to cryopreserve embryos using vitrification technique were also evaluated. Bovine oocytes were obtained from abattoir while caprine oocytes were retrieved through laparoscopic oocyte pick-up (LOPU) or abattoir source. For laparoscopic oocyte pick-up goats, gonadotrophin injections were involved prior to surgery, which were Estrumate (125 µg), Pregnant Mare's Serum Gonadotrophin (PMSG) (1500 IU) and Ovidrel (250 IU). Following the washing in Phosphate Buffer Saline (PBS) (for laparoscopic oocyte pickup oocytes) or TL-Hepes medium (for abattoir/ovariectomy oocytes), cumulus oocyte complexes (COCs) were washed with in vitro maturation (IVM) medium. Subsequently, the cumulus oocyte complexes were cultured according to the grades in the droplets of in vitro maturation medium which was pre-incubated overnight in carbon dioxide (5%) incubator at 38.5°C for 18 to 21, 24 to 27 and 22 to 24 hours, for laparoscopic oocyte pick-up caprine oocytes as well as abattoir/ovariectomy caprine oocytes and bovine oocytes, respectively. The grades of oocytes were based on the cumulus layers and the maturation of oocytes was based on the presence of the first polar body. For in vitro fertilisation (IVF), oocytes were partially denuded and co-incubated with post-thawed sperm $(1 \times 10^6 \text{ sperm/ml})$. In vitro culture (IVC) of presumptive zygotes was performed after 8 to 14 or 18 to 24 hours after fertilisation. The fertilisation rate was assessed by the presence of the second polar body. The cleavage rates of the embryos were then observed and recorded. For parthenogenetic activation (PA), matured oocytes were completely denuded and washed with 3 droplets of calcium ionophore, subsequently incubated in it for 5 minutes. The oocytes were then washed with 3 droplets of 6dimethylaminopyridine (6-DMAP) and incubated in it for 5 hours. After being washed with 3 droplets of preincubated in vitro culture droplets, the oocytes were cultured and the cleavage rates were recorded daily. In an attempt of vitrifying embryos, embryos were placed into holding medium (1 minute), followed by VS1 (3 minutes) and subsequently VS2 (45 seconds) before being plunged into liquid nitrogen. The vitrified embryos were devitrified by being immersed into TS (5 minutes), DS (5 minutes), and finally two holding medium (5 minutes each), stepwise. After being washed thrice in pre-incubated in vitro culture droplets, the oocytes were cultured and the survival rates were recorded daily. The data were analysed by using Analysis of Variance (ANOVA) and Duncan Multiple Range Test (DMRT). In bovine in vitro fertilisation, the maturation rates of Grade A (56.78±6.50%) and Mixed grade (74.69±6.68%) oocytes were significantly (P < 0.05) higher than other grades of oocytes (Grades B: 46.58±5.92% and C: 31.29±7.11). The fertilisation rates of Grade A (70.49±6.47%) and Mixed grade $(68.18\pm7.43\%)$ oocytes and the insemination duration of 8 to 14 hours (77.37±6.52%) were significantly (P<0.05) higher. The cleavage rates of Grade A and Mixed grade oocytes were significantly (P<0.05) higher than that of other groups. However, no significant difference (P>0.05) was observed in both insemination durations of 8 to 14 and 18 to 24 hours. In caprine in vitro fertilisation, the maturation rate of Grade A (74.19±5.79%) oocytes was significantly higher than Grades B (54.66±7.42%) and C (42.50±7.20%) oocytes. The fertilisation rate of Grade A oocytes (40.54±8.23%) was significantly higher than that of Grade C (16.26±5.99%) oocytes. The cleavage rates of Grades A (38.39±8.89%) and B (35.90±9.23%) oocytes were significantly higher than Grade C $(10.83\pm5.10\%)$ oocytes; however, no significant differences (P>0.05) were found in the fertilisation and cleavage rates among all grades of oocytes as well as with both insemination durations. In parthenogenetic activation, the cleavage rate of bovine was significantly (P<0.05) higher than that of caprine with the percentages of 63.90 ± 7.30 and $26.77\pm9.75\%$, respectively. For the developmental competence of caprine embryos exposed to vitrification solution (toxicity screening) at blastocyst, 75.00% of survival rate for blastocyst up to hatched blastocyst was obtained. The survival rate of 33.33% was achieved in the vitrification of blastocyst. In conclusion, *in vitro* fertilisation protocols for both bovine and caprine species have been successfully developed, producing satisfactory development of embryos *in vitro*. However, intrinsic and extrinsic factors (especially those pertaining to specific laboratory situation of a country) that influence the developmental competence of embryos after *in vitro* fertilisation should be studied in detail, to ensure optimum outcomes of subsequent cleavage, pregnancy and birth.

ABSTRAK

Objektif utama penyelidikan ini adalah untuk menentukan kesan penggredan oosit dan tempoh inseminasi ke atas kadar pembelahan embrio yang diperolehi daripada persenyawaan in vitro (IVF) dalam spesies bovin dan kaprin. Selain itu, kesan penggredan oosit dalam bovin dan kaprin ke atas penghasilan embrio partenogenetik serta sebagai suatu percubaan untuk mengkrioawet embrio dengan menggunakan teknik vitrifikasi juga dinilai. Oosit bovin telah diperolehi daripada rumah sembelihan manakala oosit kaprin diperolehi melalui laparoscopic oocyte pick-up (LOPU) atau sumber rumah sembelihan. Bagi kambing laparoscopic oocyte pick-up, suntikan gonadotrofin terlibat sebelum surgeri iaitu Estrumate (125 µg), Pregnant Mare's Serum Gonadotrophin (PMSG) (1500 IU) and Ovidrel (250 IU). Selepas pembersihan dalam Phosphate Buffer Saline (PBS) (untuk oosit laparoscopic oocyte pick-up) atau medium TL-Hepes (bagi oosit dari sumber rumah sembelihan/ovariektomi), kompleks oosit kumulus (COCs) dibasuh dengan medium pematangan in vitro (IVM). Kemudian, kompleks oosit kumulus dikultur mengikut gred dalam titisan medium pematangan in vitro yang telah dipreinkubasi semalaman dalam inkubator karbon dioksida (5%) pada 38.5°C selama 18 ke 21, 24 ke 27 dan 22 ke 24 jam, untuk oosit kaprin laparoscopic oocyte pick-up serta oosit kaprin dan bovin dari rumah sembelihan/ovariektomi, masing-masing. Gred oosit adalah berasaskan kepada lapisan kumulus dan pematangan oosit adalah berasaskan kepada kehadiran jasad kutub pertama. Bagi persenyawaan in vitro (IVF), oosit ditanggal sebahagian kumulusnya dan dieram bersama dengan sperma telah dinyahsejukbeku (1x10⁶ sperma/ml). Pengkulturan in vitro (IVC) zigot andaian dilakukan 8 ke 14 atau 18 ke 24 jam selepas persenyawaan. Kadar persenyawaan telah dinilai dengan kehadiran jasad kutub kedua. Kadar pembelahan embrio seterusnya diperhati dan direkodkan. Bagi pengaktifan partenogenetik (PA), oosit matang ditanggal kumulus sepenuhnya dan dibasuh dengan 3 titisan kalsium ionofor, dan seterusnya dieramkan di dalamnya selama 5 minit. Oosit tersebut kemudian dibasuh dengan 3 titisan 6-dimetilaminopiridin (6-DMAP) dan dieramkan di dalamnya selama 5 jam. Selepas dibasuh dengan 3 titisan daripada titisan kultur in vitro preinkubasi, oosit dikultur dan kadar pembelahan direkod setiap hari. Dalam suatu percubaan mengvitrifikasi embrio, embrio diletakkan ke dalam medium sementara (1 minit), diikuti dengan VS1 (3 minit) dan seterusnya VS2 (45 saat) sebelum dijunam ke dalam nitrogen cecair. Embrio divitrifikasi telah didevitrifikasi dengan cara rendaman ke dalam medium TS (5 minit), DS (5 minit), dan akhirnya dua medium sementara (5 minit setiap satu) secara berperingkat. Selepas dibasuh 3 kali dalam titisan kultur in vitro preinkubasi, oosit dikultur dan kadar hidup direkodkan setiap hari. Data dianalisis dengan menggunakan Analysis of Variance (ANOVA) dan Duncan Multiple Range Test (DMRT). Dalam persenyawaan in vitro bovin, kadar pematangan bagi oosit Gred A (56.78±6.50%) dan Gred Campuran (74.69±6.68%) adalah lebih tinggi dengan signifikan (P<0.05) berbanding dengan oosit gred lain (Gred B: 46.58±5.92% dan C: 31.29±7.11). Kadar persenyawaan oosit Gred A (70.49±6.47%) dan Gred Campuran (68.18±7.43%) serta tempoh inseminasi selama 8 ke 14 jam (77.37±6.52%) adalah lebih tinggi dengan signifikan (P<0.05). Kadar pembelahan bagi oosit Gred A dan Gred Campuran adalah lebih tinggi dengan signifikan (P<0.05) berbanding dengan kumpulan lain. Walau bagaimanapun, tiada perbezaan signifikan (P>0.05) diperhatikan dalam kedua-dua tempoh inseminasi selama 8 ke 14 dan 18 ke 24 jam. Dalam persenyawaan in vitro kaprin, kadar pematangan bagi oosit Gred A (74.19±5.79%) adalah lebih tinggi dengan signifikan berbanding dengan oosit Gred B (54.66±7.42%) dan C (42.50±7.20%). Kadar persenyawaan oosit Gred A (40.54±8.23%) adalah lebih tinggi dengan signifikan daripada oosit Gred C (16.26±5.99%). Kadar pembelahan oosit Gred A (38.39±8.89%) and B (35.90±9.23%) adalah lebih tinggi dengan signifikan daripada

oosit Gred C (10.83 \pm 5.10%); walau bagaimanapun, tiada perbezaan signifikan (P>0.05) yang ditemui dalam kadar persenyawaan dan pembelahan antara semua gred oosit serta bagi kedua-dua tempoh inseminasi. Dalam aktivasi partenogenetik, kadar pembelahan bovin adalah lebih tinggi dengan signifikan (P<0.05) daripada kaprin dengan peratusan 63.90 ± 7.30 dan $26.77\pm9.75\%$, masing-masing. Bagi keupayaan untuk hidup untuk embrio kaprin yang telah didedahkan kepada larutan vitrifikasi (penskrinan ketoksikan) pada tahap blastosit, 75.00% kadar hidup bagi blastosis ke blastosis tetas telah dicapai. Kadar hidup sebanyak 33.33% telah dicapai dalam vitrifikasi blastosis. Kesimpulannya, protokol persenyawaan *in vitro* bagi kedua-dua spesies bovin dan kaprin telah berjaya dibangunkan, menghasilkan perkembangan embrio *in vitro* yang memuaskan. Walau bagaimanapun, faktor-faktor intrinsik dan ekstrinsik (terutamanya yang berkaitan dengan keadaan makmal-makmal khusus bagi sesebuah negara) yang mempengaruhi keupayaan perkembangan embrio selepas persenyawaan *in vitro* patut dikaji dengan terperinci, bagi memastikan penghasilan optimum pada pembelahan, kebuntingan dan kelahiran berikutnya.

UNIVERSITY OF MALAYA

ORIGINAL LITERARY WORK DECLARATION

Name of Candidate	:	Tan Wei Lun	IC No.: 850528-07-5862
Matric No.	:	SGR 080107	
Name of Degree	:	Master of Science	
Title of Dissertation	:	roduction of caprine and bovine <i>in vitro</i> -fertilised as vell as parthenogenetic embryos and an attempt to vitrify <i>n vivo</i> - and <i>in vitro</i> -derived embryos	
Field of Study	:	Reproductive Biotechnology	

I do solemnly and sincerely declare that:

- 1. I am the sole author/writer of this Work;
- 2. This Work is original;
- 3. Any use of any work in which copyright exists was done by way of fair dealing and for permitted purposes and any purposes and any excerpt or extract from, or reference to or reproduction of any copyright work has been disclosed expressly and sufficiently and the title of the Work and its authorship has been acknowledged in this Work;
- 4. I do not have any actual knowledge nor do I ought reasonably to know that the making of this Work constitutes an infringement of any copyright work;
- 5. I hereby assign all and every rights in the copyright to this Work to the University of Malaya ('UM'), who henceforth shall be owner of the copyright in this Work and that any reproduction or use in any form or by any means whatsoever is prohibited without the written consent of UM having been first had and obtained;
- 6. I am fully aware that if in the course of making this Work I have infringed any copyright whether intentionally or otherwise, I may be subject to legal action or any other action as may be determined by UM.

Candidate's Signature

Date

Subscribed and solemnly declared before,

Witness's signature

Name : Designation : Date

ACKNOWLEDGEMENTS

I would like to express my utmost gratitude and appreciation to my supervisor Professor Dr. Ramli Abdullah for his cultivation, advice, patience, guidance and encouragement throughout the pursuit of this Master's degree. I am honoured to have the opportunity to study in his laboratory with challenging academic atmosphere that made me continually improving and striving for excellence. I would also like to thank him for his diligence and efficiency in all the oocyte-retrieval and embryo flushing surgeries as well as great effort in helping me to complete the dissertation write-up.

A great gratitude was to be given to Puan Edah Mohd. Aris who is my cosupervisor. I would like to thank her for the encouragement that she has given throughout my study. With her advice and encouragement, I was able to pull myself together again to work through the various difficulties.

I would like to express my heartfelt appreciation to Professor Dr. Wan Khadijah Wan Embong for her constructive comments and suggestions during the progress of this study as well as tremendous help in the oocyte-retrieval and embryo flushing surgeries. Sincere gratitude is expressed to Mr. Parani Baya for providing help in the ordering and purchasing of general laboratory supplies. My deep appreciations are also expressed to members and former members of the Animal Biotechnology-Embryo Laboratory (ABEL) who made this Master's study successful by giving encouragement and offering help in surgery, farm and laboratory. They are Mrs. Alice Phua Choon Yen, Mdm. Nor Fadillah Awang, Mdm. Sharrifah Nazari, Ms. Kong Sow Chan, Kwong Phek Jin, Mr. Shahrulzaman B. Shaharuddin, Mdm. Nor Farizah Abdul Hamid, Ms. Soh Hui Hui, Ms. Goh Siew Ying, Mdm. Azieatul Ashikin Bt. Abdul Aziz, Ms. Siti Khadijah Bt. Idris, Ms. Nor Azlina Bt. Kamaluding, Ms. Raja Ili Airina Bt. Raja Khalif, Mr. Mohd Nizam B. Abdul Rashid, Mr. Xiao Zhi Chao, Mr. Md. Rokibur Rahman, Ms. Asdiana Bt. Amri, Mr. Razali Jonit and Mr. Mohd Nor Azman B. Mat Nong. I would like to thank Institute of Biological Sciences (ISB), Faculty of Science and Institute of Research Management and Monitoring (IPPP), University of Malaya for funding my research experiments under Postgraduate Research Grant (PJP) in the department. My gratitude is expressed to Institute of Graduate Studies (IPS), University of Malaya for providing me the 'University of Malaya Fellowship Scheme' to pursue my Master's degree. I would like to express my thanks to all the staff at the ISB Mini Farm for the constant help in animal management and handling as well as the staff at the Department of Veterinary Services and Abattoir Complex, Shah Alam and Senawang for allowing me to their abattoirs for getting the ovaries for my experiments as well as National Animal Biotechnology Institute, Jerantut, Pahang for the frozen bull semen.

Lastly, I would like to thank my family members. Their love and continuous support and encouragement have led me through the difficulties throughout the study. Not forgetting to thank those who have directly or indirectly contributed to the success of this project. Without their understanding and support, I would not have completed my Master's degree.

TABLE OF CONTENTS

ABSTRACT	Page ii
ABSTRAK	v
DECLARATION	viii
ACKNOWLEDGEMENTS	ix
TABLE OF CONTENTS	xi
LIST OF TABLES	xviii
LIST OF FIGURES	xxvi
LIST OF SYMBOLS AND ABBREVIATIONS	xxviii
CHAPTERS	
1.0 INTRODUCTION	1
1.1 BACKGROUND	1
1.2 STATEMENT OF PROBLEMS	4
1.3 JUSTIFICATION	5
1.4 APPLICATION	7
1.5 OBJECTIVES	7
2.0 REVIEW OF LITERATURE	9
2.1 BACKGROUND	9
2.2 OESTRUS SYNCHRONISATION AND SUPEROVULATION	13
2.2.1 Methodology of Oestrus Synchronisation and Superovulation in Goats	14
2.2.2 Age of Donor	19
2.3 RETRIEVAL OF OOCYTES AND EMBRYOS	20
2.3.1 Laparoscopic Oocyte Pick-up (LOPU)	20
2.3.2 Ovary Slicing and Follicle Aspiration	21
2.3.3 Classification and Selection of Oocyte	21

2.3.4 Embryo Flushing	25
2.4 IN VITRO MATURATION (IVM)	25
2.4.1 Medium	25
2.4.2 Duration	28
2.4.3 Follicle and Oocyte Size	29
2.5 IN VITRO FERTILISATION (IVF)	31
2.5.1 Sperm Preparation Methods	31
2.5.2 Sperm Preparation Medium	33
2.5.3 Sperm Capacitation	34
2.5.4 Acrosome Reaction	38
2.5.5 Oocyte Quality	39
2.5.6 Co-incubation Duration	40
2.6 PARTHENOGENETIC ACTIVATION	41
2.6.1 Activation Chemicals	41
2.6.2 Mechanisms Inhibiting Parthenote Development	43
2.7 IN VITRO CULTURE (IVC)	44
2.7.1 Medium Supplementation	44
2.7.2 Co-culture	45
2.7.3 Gas Atmosphere	49
2.8 VITRIFICATION	49
2.8.1 Cryoprotectant	50
2.8.2 Cooling and Warming Rate	53
2.8.3 Embryo Cell Stage	56
3.0 MATERIALS AND METHODS	58
3.1 GENERAL INTRODUCTION	58
3.2 FACILITIES	58

3.3	EXPERIMENTAL ANIMALS	59
3.4	MATERIALS	59
3.4.1	Equipment and Instruments	59
3.4.2	Glass-wares, Lab-wares and Disposable Items	60
3.4.3	Chemicals, Reagents and Media	60
3.5	METHODS	60
3.5.1	Maintenance of Research Laboratory	60
3.5.2	Preparation of Stocks and Media	61
3.5.2.1	Preparation of oestrus goat serum (OGS)	62
3.5.2.1 ((a) Blood collection	62
3.5.2.1 (b) Heat-inactivation	63
3.5.2.2	Preparation of media for laparoscopic oocyte pick-up	63
3.5.2.2 ((a) Heparinised saline	64
3.5.2.2 (b) Flushing medium	64
3.5.2.3	Preparation of media for ovary slicing	65
3.5.2.3 ((a) Saline	65
3.5.2.3 (b) TL-Hepes	65
3.5.2.4	Preparation of in vitro maturation (IVM) medium	67
3.5.2.5	Preparation of <i>in vitro</i> fertilisation (IVF) medium for caprine	68
3.5.2.5 (a) Preparation of synthetic oviductal fluid (SOF) medium	68
3.5.2.5 (b) Medium for sperm preparation (sperm-SOF medium)	70
3.5.2.5 ((c) Medium for <i>in vitro</i> fertilisation (IVF-SOF medium)	70
3.5.2.6	Preparation of in vitro fertilisation medium for bovine	71
3.5.2.6 ((a) Preparation of Brackett-Oliphant (BO) medium	71
3.5.2.6 (b) Medium for sperm preparation (BO-sperm preparation medium)	72
3.5.2.6 (c) Medium for <i>in vitro</i> fertilisation (BO-IVF medium)	73

3.5.2.7	Preparation of medium for parthenogenetic activation	73
3.5.2.7 (a)) Preparation of calcium ionophore (CI)	73
3.5.2.7 (b)) Preparation of 6-dimethylaminopyridine (6-DMAP)	74
3.5.2.8	Preparation of <i>in vitro</i> culture (IVC) medium	75
3.5.2.8 (a)) IVC-SOF medium	75
3.5.2.8 (b)) KSOM medium	75
3.5.3	Preparation of Hand-controlled Pipette and Mouthpiece	76
3.5.3.1	Cleaning and sterilisation of pipette	77
3.5.3.2	Preparation of hand-controlled pipette	77
3.5.4	Preparation of Silicone Oil	78
3.5.5	Oocyte Retrieval and Embryo Flushing	79
3.5.5.1	Preparation of donor goat for laparoscopic oocyte pick-up	79
3.5.5.1 (a)) Oestrus synchronisation of donor goat for laparoscopic oocyte pick-up	79
3.5.5.1 (b)) Hyperstimulation of donor goat for laparoscopic oocyte pick-up	81
3.5.5.2	Preparation of donor goat for embryo flushing	81
3.5.5.2 (a)) Oestrus synchronisation and hyperstimulation of donor goat for embryo flushing	82
3.5.5.2 (b)) Detection of oestrus and mating	82
3.5.5.3	Setting up of surgical instruments, CO_2 insufflator system, light system, imaging device and aspiration-flushing system for laparoscopic oocyte pick-up	82
3.5.5.4	Setting up of surgical instruments, CO_2 insufflator system, light system and imaging device for embryo flushing	86
3.5.5.5	Sedation and anaesthetisation of donor goat	87
3.5.5.6	Laparoscopic oocyte pick-up (LOPU)	87
3.5.5.7	Ovariectomy	89
3.5.5.8	Abattoir	91
3.5.5.9	Embryo flushing	92

3.5.5.10	Post-surgery management	97
3.5.6	In Vitro Production (IVP) of Embryos	97
3.5.6.1	In vitro maturation (IVM)	97
3.5.6.2	In vitro fertilisation (IVF)	99
3.5.6.2 (a) Sperm swim-up	100
3.5.6.2 (b) Sperm washing	100
3.5.6.2 (c) Assessment of sperm concentration	101
3.5.6.2 (d) Preparation of oocytes for <i>in vitro</i> fertilisation	103
3.5.6.2 (e) Sperm capacitation and insemination	104
3.5.6.3	In vitro culture of in vitro fertilised zygotes	104
3.5.6.4	Parthenogenesis	105
3.5.7	Vitrification of Embryos	105
3.5.7.1	Preparation of vitrification and warming solutions	105
3.5.7.2	Construction of cryoleaf	106
3.5.7.3	Vitrification	107
3.5.7.4	Warming	108
3.6	EXPERIMENTAL DESIGN	111
3.6.1	Effect of Oocyte Grading and Insemination Duration on Cleavage Rate of Embryos Obtained from <i>In Vitro</i> Fertilisation in Bovine (Experiment 1)	111
3.6.2	Effect of Oocyte Grading and Insemination Duration on Cleavage Rate of Embryos Obtained from <i>In Vitro</i> Fertilisation in Caprine (Experiment 2)	113
3.6.3	Effect of Oocyte Grading in Bovine and Caprine on Production of Parthenogenetic Embryos (Experiment 3)	115
3.6.4	An Attempt to Cryopreserve Caprine and Bovine Embryos Using Vitrification Technique (Experiment 4)	115
3.7	STATISTICAL ANALYSIS	116
4.0	RESULTS	118

4.1	EFFECT OF OOCYTE GRADING AND INSEMINATION DURATION ON CLEAVAGE RATE OF EMBRYOS OBTAINED FROM <i>IN VITRO</i> FERTILISATION IN BOVINE (EXPERIMENT 1)	118
4.2	EFFECT OF OOCYTE GRADING AND INSEMINATION DURATION ON CLEAVAGE RATE OF EMBRYOS OBTAINED FROM <i>IN VITRO</i> FERTILISATION IN CAPRINE (EXPERIMENT 2)	130
4.3	EFFECT OF OOCYTE GRADING IN BOVINE AND CAPRINE ON PRODUCTION OF PARTHENOGENETIC EMBRYOS (EXPERIMENT 3)	138
4.4	AN ATTEMPT TO CRYOPRESERVE CAPRINE AND BOVINE EMBRYOS USING VITRIFICATION TECHNIQUE (EXPERIMENT 4)	151
5.0	DISCUSSION	155
5.1	EFFECT OF OOCYTE GRADING AND INSEMINATION DURATION ON CLEAVAGE RATE OF EMBRYOS OBTAINED FROM <i>IN VITRO</i> FERTILISATION IN BOVINE (EXPERIMENT 1)	155
5.2	EFFECT OF OOCYTE GRADING AND INSEMINATION DURATION ON CLEAVAGE RATE OF EMBRYOS OBTAINED FROM <i>IN VITRO</i> FERTILISATION IN CAPRINE (EXPERIMENT 2)	163
5.3	EFFECT OF OOCYTE GRADING IN BOVINE AND CAPRINE ON PRODUCTION OF PARTHENOGENETIC EMBRYOS (EXPERIMENT 3)	168
5.4	AN ATTEMPT TO CRYOPRESERVE CAPRINE AND BOVINE EMBRYOS USING VITRIFICATION TECHNIQUE (EXPERIMENT 4)	171
5.5	GENERAL DISCUSSION	175
5.5.1	Oestrus Synchronisation and Hyperstimulation	175
5.5.2	Temperature	176
5.5.3	In Vitro Maturation	178
5.5.4	In Vitro Fertilisation	179
5.5.5	Parthenogenetic Activation	180
5.5.6	Follicle Diameter	184

5.5.7	In Vitro Culture	185
5.5.8	Vitrification	187
6.0	CONCLUSIONS	191
REFERENCES		193
APPENDICES		247
APPENDIX 1: LIST OF MATERIALS		247
APPEND	APPENDIX 2: STATISTICAL DATA	
APPEND	DIX 3: SELECTED PUBLISHED ARTICLE	353

LIST OF TABLES

		Page
Table 2.1	Timeline of selected significant findings of oestrus synchronisation, oocyte recovery, <i>in vitro</i> maturation, fertilisation and culture, parthenogenetic activation and vitrification in caprine and bovine	9
Table 2.2	Grading of oocytes based on the cumulus investment and cytoplasmic distribution (adapted from Kharche <i>et al.</i> , 2009)	23
Table 2.3	Grading of oocytes based on the cumulus investment and cytoplasmic distribution (adapted from Li <i>et al.</i> , 2009)	23
Table 2.4	Classification of bovine COC ^a	24
Table 3.1	Composition of heparinised saline solution	64
Table 3.2	Composition of flushing medium	65
Table 3.3	Composition of saline supplemented with streptomycin and penicillin	65
Table 3.4	Composition of TL-Hepes stock with a shelf life of 2 weeks (stored at 4°C)	66
Table 3.5	Composition of TL-Hepes working solution with a shelf life of 1 week (stored at 4°C)	66
Table 3.6	Preparation of stock solutions for <i>in vitro</i> maturation medium	67
Table 3.7	Composition of <i>in vitro</i> maturation medium	68
Table 3.8	Composition of Stock-A for SOF medium (10x) with a shelf life of 3 months (stored at 4°C)	69
Table 3.9	Composition of Stock-B for SOF medium (10x) with a shelf life of 1 week (stored at 4°C)	69
Table 3.10	Composition of Stock-C for SOF medium (100x) with a shelf life of 1 week (stored at -20°C)	69
Table 3.11	Composition of Stock-D for SOF medium (100x) with a shelf life of 3 months (stored at 4°C)	70
Table 3.12	Composition of sperm-SOF medium (10 ml)	70
Table 3.13	Composition of IVF-SOF medium (10 ml)	71

Table 3.14	Composition of BO stock solution with a shelf life of 3 months (stored at 4°C)	72
Table 3.15	Composition of BO working solution with a shelf life of 2 weeks (stored at 4°C)	72
Table 3.16	Composition of BO-sperm preparation medium with a shelf life of 2 weeks (stored at 4°C)	73
Table 3.17	Composition of BO-IVF medium with a shelf life of 1 week (stored at 4°C)	73
Table 3.18	Composition of calcium ionophore stock solution	74
Table 3.19	Composition of calcium ionophore working solution	74
Table 3.20	Composition of 6-dimethylaminopyridine stock solution	74
Table 3.21	Composition of 6-dimethylaminopyridine working solution	74
Table 3.22	Composition of IVC-SOF medium (10 ml)	75
Table 3.23	Composition of KSOM stock solution with a shelf life of 1 month (stored at 4°C)	76
Table 3.24	Composition of KSOM working solution with a shelf life of 1 week (stored at 4°C)	76
Table 3.25	Oocyte grading based on the cumulus cellular vestments and cytoplasm uniformity	98
Table 3.26	Calculating sperm concentration	103
Table 3.27	Solutions for vitrification and warming procedures	106
Table 3.28	Experimental outline of vitrification	107
Table 3.29	Experimental outline of warming	109
Table 4.1	Percent distribution (mean±SEM) of oocyte quality in bovine <i>in vitro</i> fertilisation	122
Table 4.2	Maturation rate (%, mean±SEM) of bovine oocytes at different grades in <i>in vitro</i> fertilisation	122
Table 4.3	Fertilisation rate (%, mean±SEM) of bovine oocytes at different grades in <i>in vitro</i> fertilisation	123
Table 4.4	Cleavage rate (%, mean±SEM) of bovine oocytes at different grades in <i>in vitro</i> fertilisation	124

Table 4.5 125 Maturation rate (%, mean±SEM) of bovine oocytes for different insemination durations in in vitro fertilisation Table 4.6 Fertilisation rate (%, mean±SEM) of bovine oocytes for 125 different insemination durations in in vitro fertilisation Table 4.7 Cleavage rate (%, mean±SEM) of bovine oocytes for 126 different insemination durations in *in vitro* fertilisation Table 4.8 Maturation rate (%, mean±SEM) of bovine oocytes with 126 different gradings and insemination durations in in vitro fertilisation Table 4.9 Fertilisation rate (%, mean±SEM) of bovine oocytes with 127 different gradings and insemination durations in in vitro fertilisation Table 4.10 Cleavage rate (%, mean±SEM) of bovine oocytes with 128 different gradings and insemination durations in in vitro fertilisation Table 4.11 Percent distribution (mean±SEM) of oocyte quality in 133 caprine *in vitro* fertilisation Table 4.12 Maturation rate (%, mean±SEM) of caprine oocytes at 133 different grades in in vitro fertilisation Table 4.13 Fertilisation rate (%, mean±SEM) of caprine oocytes at 133 different grades in in vitro fertilisation Table 4.14 Cleavage rate (%, mean±SEM) of caprine oocytes at 134 different grades in in vitro fertilisation Table 4.15 Maturation rate (%, mean±SEM) of caprine oocytes for 134 different insemination durations in *in vitro* fertilisation Fertilisation rate (%, mean±SEM) of caprine oocytes for Table 4.16 135 different insemination durations in in vitro fertilisation Table 4.17 Cleavage rate (%, mean±SEM) of caprine oocytes for 135 different insemination durations in in vitro fertilisation Table 4.18 Cleavage rate (%, mean±SEM) of caprine oocytes with 136 different gradings and insemination durations in in vitro fertilisation Table 4.19 Distribution rate (%, mean±SEM) of oocyte quality in 142 bovine parthenogenesis Maturation rate (%, mean±SEM) of bovine oocytes at Table 4.20 142 different grades in parthenogenesis

Table 4.21	Cleavage rate (%, mean±SEM) of bovine oocytes at different grades in parthenogenesis	143
Table 4.22	Distribution rate (%, mean±SEM) of oocyte quality in caprine parthenogenesis	144
Table 4.23	Maturation rate (%, mean±SEM) of caprine oocytes at different grades in parthenogenesis	144
Table 4.24	Cleavage rate (%, mean±SEM) of caprine oocytes at different grades in parthenogenesis	145
Table 4.25	Cleavage rate (%, mean±SEM) of oocytes in parthenogenesis for different species	146
Table 4.26	Cleavage rate (%, mean±SEM) of Grade A oocytes in parthenogenesis for different species	146
Table 4.27	Cleavage rate (%, mean±SEM) of Grade B oocytes in parthenogenesis for different species	147
Table 4.28	Cleavage rate (%, mean±SEM) of Grade C oocytes in parthenogenesis for different species	147
Table 4.29	Cleavage rate (%, mean±SEM) of mixed grades oocytes in parthenogenesis for different species	148
Table 4.30	Developmental competence of bovine embryos exposed to vitrification solution (TS, toxicity screening) at different developmental stages	151
Table 4.31	Developmental competence of caprine embryos exposed to vitrification solution (TS, toxicity screening) at different developmental stages	151
Table 4.32	Developmental competence of bovine embryos vitrified at different developmental stages	152
Table 4.33	Developmental competence of caprine embryos vitrified at different developmental stages	152
Appendix Table 1.1	List of equipment and instruments	247
Appendix Table 1.2	List of glass-wares, lab-wares and disposables	248
Appendix Table 1.3	List of chemicals, reagents and media	248
Appendix Table 2.1	Number of oocytes per ovary in bovine <i>in vitro</i> fertilisation	250

Appendix Table 2.2	Percent distribution of bovine oocyte in <i>in vitro</i> fertilisation	251
Appendix Table 2.3	Maturation rate of different grades of oocytes in bovine <i>in vitro</i> fertilisation	252
Appendix Table 2.4	Fertilisation rate of different grades of oocytes in bovine <i>in vitro</i> fertilisation	253
Appendix Table 2.5	Cleavage rate of bovine <i>in vitro</i> fertilisation with different grades of oocytes in different embryo developmental stages	254
Appendix Table 2.6	Cleavage rate of bovine <i>in vitro</i> fertilisation in different grades of oocytes	257
Appendix Table 2.7	Maturation rate of bovine <i>in vitro</i> fertilisation in different insemination durations	260
Appendix Table 2.8	Fertilisation rate of bovine <i>in vitro</i> fertilisation in different insemination durations	261
Appendix Table 2.9	Cleavage rate of bovine <i>in vitro</i> fertilisation with different insemination durations in different embryo developmental stages	262
Appendix Table 2.10	Cleavage rate of bovine <i>in vitro</i> fertilisation in different insemination durations	264
Appendix Table 2.11	Maturation rate of bovine oocytes <i>in vitro</i> fertilisation with different gradings in different insemination durations	266
Appendix Table 2.12	Maturation rate of bovine oocytes <i>in vitro</i> fertilisation with different insemination durations in different oocyte gradings	268
Appendix Table 2.13	Fertilisation rate of bovine oocytes <i>in vitro</i> fertilisation with different gradings in different insemination durations	270
Appendix Table 2.14	Fertilisation rate of bovine oocytes <i>in vitro</i> fertilisation with different insemination durations in different oocyte gradings	272
Appendix Table 2.15	Cleavage rate of bovine oocytes <i>in vitro</i> fertilisation with different gradings and different insemination durations in different embryo developmental stages	274
Appendix Table 2.16	Cleavage rate of bovine oocytes <i>in vitro</i> fertilisation with different insemination durations and oocyte gradings	279
Appendix Table 2.17	Number of oocytes per ovary in caprine <i>in vitro</i> fertilisation	284

Appendix Table 2.18	Percent distribution of caprine oocyte in <i>in vitro</i> fertilisation	285
Appendix Table 2.19	Maturation rate of different grades of oocytes in caprine <i>in vitro</i> fertilisation	286
Appendix Table 2.20	Fertilisation rate of different grades of oocytes in caprine <i>in vitro</i> fertilisation	287
Appendix Table 2.21	Cleavage rate of caprine <i>in vitro</i> fertilisation with different grades of oocytes in different embryo developmental stages	288
Appendix Table 2.22	Cleavage rate of caprine <i>in vitro</i> fertilisation in different grades of oocytes	290
Appendix Table 2.23	Maturation rate of caprine <i>in vitro</i> fertilisation in different insemination durations	293
Appendix Table 2.24	Fertilisation rate of caprine <i>in vitro</i> fertilisation in different insemination durations	294
Appendix Table 2.25	Cleavage rate of caprine <i>in vitro</i> fertilisation in different insemination durations	295
Appendix Table 2.26	Cleavage rate of caprine <i>in vitro</i> fertilisation with different insemination durations in different embryo developmental stages	297
Appendix Table 2.27	Cleavage rate of caprine oocytes <i>in vitro</i> fertilisation with different gradings and different insemination durations in different embryo developmental stages	299
Appendix Table 2.28	Cleavage rate of caprine oocytes <i>in vitro</i> fertilisation with different insemination durations and oocyte gradings	304
Appendix Table 2.29	Number of oocytes per ovary in bovine parthenogenetic activation	309
Appendix Table 2.30	Percent distribution of bovine oocyte in parthenogenetic activation	310
Appendix Table 2.31	Maturation rate of bovine oocyte in parthenogenetic activation	311
Appendix Table 2.32	Cleavage rate of bovine oocyte in parthenogenetic activation in different embryo developmental stages	312
Appendix Table 2.33	Cleavage rate of bovine oocyte in parthenogenetic activation with different oocyte gradings	317

Appendix Table 2.34	Number of oocytes per ovary in caprine parthenogenetic activation	321
Appendix Table 2.35	Percent distribution of caprine oocyte in parthenogenetic activation	322
Appendix Table 2.36	Maturation rate of caprine oocyte in parthenogenetic activation	323
Appendix Table 2.37	Cleavage rate of caprine oocyte in parthenogenetic activation in different embryo developmental stages	324
Appendix Table 2.38	Cleavage rate of caprine oocyte in parthenogenetic activation with different oocyte gradings	329
Appendix Table 2.39	Cleavage rate of oocyte in parthenogenetic activation in different species in different embryo developmental stages	334
Appendix Table 2.40	Cleavage rate of oocyte in parthenogenetic activation for different species	336
Appendix Table 2.41	Cleavage rate of Grade A oocyte in parthenogenetic activation for different species in different embryo developmental stages	338
Appendix Table 2.42	Cleavage rate of Grade A oocyte in parthenogenetic activation for different embryo developmental stages in different species	340
Appendix Table 2.43	Cleavage rate of Grade B oocyte in parthenogenetic activation for different species in different embryo developmental stages	342
Appendix Table 2.44	Cleavage rate of Grade B oocyte in parthenogenetic activation for different embryo developmental stages in different species	344
Appendix Table 2.45	Cleavage rate of Grade C oocyte in parthenogenetic activation for different species in different embryo developmental stages	346
Appendix Table 2.46	Cleavage rate of Grade C oocyte in parthenogenetic activation for different embryo developmental stages in different species	348
Appendix Table 2.47	Cleavage rate of mixed grades oocyte in parthenogenetic activation for different species in different embryo developmental stages	349

Appendix Cleavage rate of mixed grades oocyte in parthenogenetic 351

Table 2.48activation for different embryo developmental stages in
different species

LIST OF FIGURES

Figure 2.1	Gradings of oocytes.	Page 24
Figure 3.1	Blood collection was being carried out.	63
Figure 3.2	Hand-controlled pipette with mouthpiece.	77
Figure 3.3	A schematic representation of the treatments performed on a donor goat for laparoscopic oocyte pick-up.	79
Figure 3.4	Devices used during CIDR insertion.	80
Figure 3.5	A schematic representation of the treatments performed on a donor goat for embryo flushing.	81
Figure 3.6	Setting up of surgical instruments on surgical trolley for laparoscopic oocyte pick-up.	85
Figure 3.7	Setting up of surgical instruments on surgical trolley for embryo flushing.	86
Figure 3.8	Laparoscopic oocyte pick-up was being carried out.	89
Figure 3.9	The slicing of ovary.	92
Figure 3.10	The uterine horn and ovaries were exteriorised for observation of the ovarian morphology.	94
Figure 3.11	A 2-way Foley catheter was inserted through the puncture towards the utero-tubal junction and the catheter balloon was sufficiently inflated to completely obstruct the lumen at the caudal end of each uterine horn.	95
Figure 3.12	Teflon intravenous catheter placement unit was inserted at the anterior end of the uterine horn.	96
Figure 3.13	Photomicrographs of immature oocyte at different grades.	99
Figure 3.14	The 'Neubauer' type chamber of haemacytometer.	102
Figure 3.15	Assessment of sperm concentration using haemacytometer.	103
Figure 3.16	Hand-made cryoleaf.	107
Figure 3.17	A schematic representation of the steps involved in vitrification procedure.	110
Figure 3.18	A schematic representation of the steps involved in warming procedures.	110

- Figure 3.19 A flow chart for schematic overview of the experimental 117 design.
- Figure 4.1 Photomicrographs of bovine embryos produced via *in vitro* 129 fertilisation at different developmental stages.
- Figure 4.2 Photomicrographs of caprine embryos produced via *in vitro* 137 fertilisation at different developmental stages.
- Figure 4.3 Photomicrographs of bovine embryos produced via 149 parthenogenesis at different developmental stages.
- Figure 4.4 Photomicrographs of caprine embryos produced via 150 parthenogenesis at different developmental stages.
- Figure 4.5 Photomicrographs of caprine embryos survived after toxicity 153 screening at blastocyst stage.
- Figure 4.6 Photomicrograph of caprine embryos survived after 154 vitrification-devitrification at blastocyst stage.

LIST OF SYMBOLS AND ABBREVIATIONS

AI	antificial incomination
ANOVA	artificial insemination
ART	analysis of variance
	assisted reproductive technology
BCB	Brilliant cresyl blue
BD	1, 3 butanediol
bFGF	basic fibroblast growth factor
BO	Brackett-Oliphant
BRL	buffalo rat liver
BSA	bovine serum albumin
cAMP	cyclic adenosine monophosphate
CB	cytochalasin B
CCD	charge coupled devices
CHX	cycloheximide
CI	calcium ionophore
CIDR	Controlled Intravaginal Drug Release device
CO_2	carbon dioxide
COCs	cumulus oocyte complexes
CSF	cytostatic factor
CTC	chlortetracycline
6-DMAP	6-dimethylaminopurine
dDMAP	dimethylaminopurine
D-MRT	Duncan's multiple range tests
DMSO	dimethyl sulfoxide
DNA	deoxyribonucleic acid
E_2	oestradiol
eCG	equine chorionic gonadotrophin
EDI	electrodeionisation
EG	ethylene glycol
EGF	epidermal growth factor
EMiL	Embryo Micromanipulation Laboratory
ET	ethanol
FCS	foetal calf serum
FF	follicular fluid
FGA	flurogesterone acetate
FSH	follicle stimulating hormone
g	gramme(s)
g	Gravity, acceleration due to
G6PDH	glucose-6-phosphate dehydrogenase
GnRH	gonadotrophin releasing hormone
GOEC	goat oviduct epithelial cells
GSH	glutathione
GVBD	germinal vesicle breakdown
hCG	human chorionic gonadotrophin
HIS	high ionic strength
HM	holding medium
hr	hour
ICSI	intracytoplasmic sperm injection
IGF-I	insulin-like growth factor
i.m.	intramuscularly
IP3	inositol 1, 4, 5-triphosphate

IPPP	Institute of Research, Management and Consultancy
ISB	Institute of Biological Sciences
IU	international unit
I.V.	intravenous
IVM	<i>in vitro</i> maturation
IVMFC	in vitro maturation, fertilisation and culture
IVF	in vitro fertilisation
IVC	<i>in vitro</i> culture
IVEP	in vitro embryo production
IVP	in vitro embryo production
kg	kilogramme(s)
KSOM	Potassium Simplex Optimised Medium
LH	luteinising hormone
LN ₂	liquid nitrogen
LOPU	laparoscopic oocyte pick-up
M	molar
MAP	methylacetoxyprogesterone
MAPK	mitogen activated protein kinase
	milligramme(s)
mg MGA	medroxyprogesterone acetate
MI	metaphase II
ml	1
	millilitre(s)
mm Moet	millimetre(s)
MOET	multiple ovulation and embryo transfer
MPF	maturation promoting factor
mtDNA	mitochondrial deoxyribonucleic acid
	modified lyrodo's modulim
MTM	modified Tyrode's medium
n	number
	number Nuclear Transfer and Reprogramming Laboratory
n NaTuRe ng	number Nuclear Transfer and Reprogramming Laboratory nanogramme(s)
n NaTuRe ng OGS	number Nuclear Transfer and Reprogramming Laboratory nanogramme(s) oestrus goat serum
n NaTuRe ng OGS OPS	number Nuclear Transfer and Reprogramming Laboratory nanogramme(s) oestrus goat serum open pulled-straw
n NaTuRe ng OGS OPS OR	number Nuclear Transfer and Reprogramming Laboratory nanogramme(s) oestrus goat serum open pulled-straw oocyte revovery
n NaTuRe ng OGS OPS OR OSFs	number Nuclear Transfer and Reprogramming Laboratory nanogramme(s) oestrus goat serum open pulled-straw oocyte revovery oocyte secreted factors
n NaTuRe ng OGS OPS OR OSFs PA	number Nuclear Transfer and Reprogramming Laboratory nanogramme(s) oestrus goat serum open pulled-straw oocyte revovery oocyte secreted factors Parthenogenetic activation
n NaTuRe ng OGS OPS OR OSFs PA PBS	number Nuclear Transfer and Reprogramming Laboratory nanogramme(s) oestrus goat serum open pulled-straw oocyte revovery oocyte secreted factors Parthenogenetic activation Phosphate-buffered saline
n NaTuRe ng OGS OPS OR OSFs PA	number Nuclear Transfer and Reprogramming Laboratory nanogramme(s) oestrus goat serum open pulled-straw oocyte revovery oocyte secreted factors Parthenogenetic activation Phosphate-buffered saline platelet derived growth factor
n NaTuRe ng OGS OPS OR OSFs PA PBS	number Nuclear Transfer and Reprogramming Laboratory nanogramme(s) oestrus goat serum open pulled-straw oocyte revovery oocyte revovery oocyte secreted factors Parthenogenetic activation Phosphate-buffered saline platelet derived growth factor picogramme(s)
n NaTuRe ng OGS OPS OR OSFs PA PBS PDGF	number Nuclear Transfer and Reprogramming Laboratory nanogramme(s) oestrus goat serum open pulled-straw oocyte revovery oocyte secreted factors Parthenogenetic activation Phosphate-buffered saline platelet derived growth factor
n NaTuRe ng OGS OPS OR OSFs PA PBS PDGF Pg	number Nuclear Transfer and Reprogramming Laboratory nanogramme(s) oestrus goat serum open pulled-straw oocyte revovery oocyte secreted factors Parthenogenetic activation Phosphate-buffered saline platelet derived growth factor picogramme(s) penicillamine, hypotaurine and epinephrine protein kinase A
n NaTuRe ng OGS OPS OR OSFs PA PBS PDGF Pg PHE	number Nuclear Transfer and Reprogramming Laboratory nanogramme(s) oestrus goat serum open pulled-straw oocyte revovery oocyte secreted factors Parthenogenetic activation Phosphate-buffered saline platelet derived growth factor picogramme(s) penicillamine, hypotaurine and epinephrine
n NaTuRe ng OGS OPS OR OSFs PA PBS PDGF PBS PDGF PHE PHE PKA	number Nuclear Transfer and Reprogramming Laboratory nanogramme(s) oestrus goat serum open pulled-straw oocyte revovery oocyte secreted factors Parthenogenetic activation Phosphate-buffered saline platelet derived growth factor picogramme(s) penicillamine, hypotaurine and epinephrine protein kinase A
n NaTuRe ng OGS OPS OR OSFs PA PBS PDGF Pg PHE PKA pLH	number Nuclear Transfer and Reprogramming Laboratory nanogramme(s) oestrus goat serum open pulled-straw oocyte revovery oocyte secreted factors Parthenogenetic activation Phosphate-buffered saline platelet derived growth factor picogramme(s) penicillamine, hypotaurine and epinephrine protein kinase A porcine luteinising hormone
n NaTuRe ng OGS OPS OR OSFs PA PBS PDGF PBS PDGF PBS PDGF PKA pLH PMSG	number Nuclear Transfer and Reprogramming Laboratory nanogramme(s) oestrus goat serum open pulled-straw oocyte revovery oocyte secreted factors Parthenogenetic activation Phosphate-buffered saline platelet derived growth factor picogramme(s) penicillamine, hypotaurine and epinephrine protein kinase A porcine luteinising hormone pregnant mare's serum gonadotrophin
n NaTuRe ng OGS OPS OR OSFs PA PBS PDGF PBS PDGF PHE PKA pLH PMSG PVA	number Nuclear Transfer and Reprogramming Laboratory nanogramme(s) oestrus goat serum open pulled-straw oocyte revovery oocyte secreted factors Parthenogenetic activation Phosphate-buffered saline platelet derived growth factor picogramme(s) penicillamine, hypotaurine and epinephrine protein kinase A porcine luteinising hormone pregnant mare's serum gonadotrophin polyvinyl alcohol
n NaTuRe ng OGS OPS OR OSFs PA PBS PDGF PBS PDGF PKA PKA PLH PMSG PVA PVP	number Nuclear Transfer and Reprogramming Laboratory nanogramme(s) oestrus goat serum open pulled-straw oocyte revovery oocyte secreted factors Parthenogenetic activation Phosphate-buffered saline platelet derived growth factor picogramme(s) penicillamine, hypotaurine and epinephrine protein kinase A porcine luteinising hormone pregnant mare's serum gonadotrophin polyvinyl alcohol polyvinylpyrrolidone
n NaTuRe ng OGS OPS OR OSFs PA PBS PDGF PBS PDGF PBS PHE PKA pLH PMSG PVA PVP PZM-3	number Nuclear Transfer and Reprogramming Laboratory nanogramme(s) oestrus goat serum open pulled-straw oocyte revovery oocyte secreted factors Parthenogenetic activation Phosphate-buffered saline platelet derived growth factor picogramme(s) penicillamine, hypotaurine and epinephrine protein kinase A porcine luteinising hormone pregnant mare's serum gonadotrophin polyvinyl alcohol polyvinylpyrrolidone porcine zygote medium
n NaTuRe ng OGS OPS OR OSFs PA PBS PDGF PBS PDGF PHE PKA PLH PMSG PVA PVP PZM-3 RO	number Nuclear Transfer and Reprogramming Laboratory nanogramme(s) oestrus goat serum open pulled-straw oocyte revovery oocyte secreted factors Parthenogenetic activation Phosphate-buffered saline platelet derived growth factor picogramme(s) penicillamine, hypotaurine and epinephrine protein kinase A porcine luteinising hormone pregnant mare's serum gonadotrophin polyvinyl alcohol polyvinylpyrrolidone porcine zygote medium reverse-osmosis
n NaTuRe ng OGS OPS OR OSFs PA PBS PDGF PBS PDGF PKA PLH PKA PLH PMSG PVA PVP PZM-3 RO ROS	number Nuclear Transfer and Reprogramming Laboratory nanogramme(s) oestrus goat serum open pulled-straw oocyte revovery oocyte secreted factors Parthenogenetic activation Phosphate-buffered saline platelet derived growth factor picogramme(s) penicillamine, hypotaurine and epinephrine protein kinase A porcine luteinising hormone pregnant mare's serum gonadotrophin polyvinyl alcohol polyvinyl pyrrolidone porcine zygote medium reverse-osmosis reactive oxygen species
n NaTuRe ng OGS OPS OR OSFs PA PBS PDGF PBS PDGF PBS PDGF PKA PLH PMSG PVA PVP PZM-3 RO ROS SAC SiO ₂	number Nuclear Transfer and Reprogramming Laboratory nanogramme(s) oestrus goat serum open pulled-straw oocyte revovery oocyte secreted factors Parthenogenetic activation Phosphate-buffered saline platelet derived growth factor picogramme(s) penicillamine, hypotaurine and epinephrine protein kinase A porcine luteinising hormone pregnant mare's serum gonadotrophin polyvinyl alcohol polyvinyl pyrrolidone porcine zygote medium reverse-osmosis reactive oxygen species soluble adenylyl cyclase
n NaTuRe ng OGS OPS OR OSFs PA PBS PDGF PBS PDGF PBS PDGF PKA PLH PMSG PVA PVP PZM-3 RO ROS sAC SiO ₂ SM	number Nuclear Transfer and Reprogramming Laboratory nanogramme(s) oestrus goat serum open pulled-straw oocyte revovery oocyte secreted factors Parthenogenetic activation Phosphate-buffered saline platelet derived growth factor picogramme(s) penicillamine, hypotaurine and epinephrine protein kinase A porcine luteinising hormone pregnant mare's serum gonadotrophin polyvinyl alcohol polyvinylpyrrolidone porcine zygote medium reverse-osmosis reactive oxygen species soluble adenylyl cyclase silica sucrose medium
n NaTuRe ng OGS OPS OR OSFs PA PBS PDGF PBS PDGF PBS PDGF PKA PLH PMSG PVA PVP PZM-3 RO ROS SAC SiO ₂	number Nuclear Transfer and Reprogramming Laboratory nanogramme(s) oestrus goat serum open pulled-straw oocyte revovery oocyte secreted factors Parthenogenetic activation Phosphate-buffered saline platelet derived growth factor picogramme(s) penicillamine, hypotaurine and epinephrine protein kinase A porcine luteinising hormone pregnant mare's serum gonadotrophin polyvinyl alcohol polyvinylpyrrolidone porcine zygote medium reverse-osmosis reactive oxygen species soluble adenylyl cyclase silica

SSV	solid surface vitrification
TALP	Tyrode's albumin-lactate-pyruvate
TGF β1β2	transforming growth factor
TS	thawing solution
UV	ultraviolet
VS.	versus
μg	microgramme(s)
μl	microlitre(s)
μΜ	micromolar(s)
%	percentage