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ABSTRACT   

 

The discovery of mesoporous molecular sieves has created a tremendous interest in 

the synthesis of these materials, particularly MCM-41 and its analogue, because of 

their very high surface areas and possibility of precisely tuned pore sizes (20-100 Å).  

These mesoporous materials have a wide range of potential applications starting 

from selective adsorption to heterogeneous catalysis, particularly for bulky 

molecules.  Ti-MCM-41 has been widely developed as a catalyst for olefin 

epoxidation because of the active sites of Ti can acts as a very reactive compound for 

this reaction besides MCM-41 plays an important role as a support which is in the 

mesopore range.  The research done provides an optimal reaction condition for 

epoxidation of Methyl Oleate using Ti-MCM-41 samples, based on the study of 

epoxidation of model compound, 1-Octene.  The optimized reaction conditions lead 

to a maximum of epoxide selectivity and yield and also alkene conversion. 

 

In this study, a series of mesoporous titanosilicate Ti-MCM-41 molecular sieves with 

various Si/Ti ratios, 25, 55, 66, 80 and 100 have been hydrothermally synthesized at 

100
O
C for 48 hours, using surfactant namely hexadecyl-trimethylammonium 

bromide as template and tetramethylammonium hydroxide as mineralizer.  Chemical 

and physical properties of products obtained were characterized using powder X-ray 

diffraction (XRD), FTIR spectroscopy, DRUV-visible spectroscopy, nitrogen 

sorption measurements, differential thermal analysis (TGA-DTG), and scanning 

electron microscopy (SEM).  XRD analysis shows that Ti-MCM-41 is a 

semicrystalline material with ordered mesoporous hexagonal structure which is 

indicated by a reflection peak at 2θ in the range of 1.6˚ to 2.6˚.  The crystallinity of 



Ti-MCM-41 after calcinations was almost two-fold higher than that of the as-

synthesized one.  Calcination in nitrogen leads to desorption of organic templates 

from the pores of Ti-MCM-41 in contrast to template burning in air.  The 

crystallinity and surface area of Ti-MCM-41 both decrease with an increase of 

titanium content.  Nitrogen sorption measurements exhibit BET surface area of Ti-

MCM-41 are in the range of 880 m
2
g

-1
 to 1075.163 m

2
g

-1
.  Quite high BET surface 

areas with isotherms of type IV of the samples are typical for hexagonal MCM-41 

type ordered mesoporous materials.  The results of XRD and FTIR show that the 

solid products have the MCM-41 structure and contained only atomically dispersed 

titanium, consistent with framework titanium in Ti-MCM-41.  All of the materials 

had a uniform pore size distribution which is around 3.0 nm.  DRUV-visible analysis 

shows that Ti-MCM-41 has two types of titanium species; one species is titanium 

isolated tetrahedral which is active to catalyze epoxidation of alkenes and the other is 

titanium isolated octahedral.  Catalytic activities of Ti-MCM-41 were tested in the 

epoxidation of 1-Octene and methyl oleate using tert-butyl hydroperoxide as 

peroxide in a batch reactor.  Catalyst with high titanium content (Si/Ti = 25) is prone 

to deactivate due to high side compounds although at one hand, the hydrophobicity is 

improved.  The titanium sites in MCM-41 catalysts are buried on the silica walls, 

being non-accessible to the reactants, thus lower the catalytic activity and turnover.  

The best is to use catalysts with average amount of titanium (Si/Ti = 80).  When 

comparing between silylated and non-silylated samples, it was found that silylated 

samples exhibit higher catalyst activity, and the conversion and TON increased three 

times as compared to non-silylated samples.  Silylation increases greatly the 

hydrophobicity of Ti-MCM-41 catalysts and therefore, water concentration on the 

surface of catalyst is reduced, and subsequent glycol formation which is one of the 



side products is nearly avoided.  Silylation also decreases the number of silanol 

groups (and very probable Ti-OH groups) in the catalyst whereby these groups 

posses a weak acid character, but strong enough to catalyze the undesired reaction of 

oxirane ring opening.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



ABSTRAK 

 

Dengan penemuan pengayak molekular mesoporos menyedarkan perhatian yang 

khusus diberikan kepada sintesis bahan ini terutamanya MCM-41 dan analognya 

kerana sifat luas permukaannya yang tinggi dan kebolehan melaras saiz liang dengan 

tepat (20-100 Å).  Bahan mesoporos ini merangkumi bidang aplikasi yang luas dan 

berpotensi besar bermula daripada sebagai penjerapan selektif sehingga kepada 

mangkin heterogenous, khususnya bagi molekul bersaiz besar.  Mangkin Ti-MCM-

41 telah banyak dikembangkan untuk tindak balas pengepoksidaan olefin disebabkan 

sifat titanium yang reaktif bagi tindak balas ini manakala MCM-41 bertindak sebagai 

penyokong yang bersifat mesoporos.  Kajian ini menyediakan suatu keadaan tindak 

balas yang optimum bagi tindak balas pengepoksidaan metil oleat menggunakan 

sampel Ti-MCM-41 berdasarkan kepada kajian pengepoksidaan bahan model, 1-

oktena.  Keadaan tindak balas optimum yang diperolehi terarah kepada peningkatan 

secara maksimum di dalam keselektifan untuk hasil epoksida dan penukaran alkena. 

 

Di dalam ujikaji ini, satu siri titanosilikat mesoporos, pengayak molekular Ti-MCM-

41 dengan pelbagai nisbah mol Si/Ti 25, 55, 66, 80 dan 100 disintesis secara 

hidroterma pada suhu 100
O
C selama 48 jam, menggunakan surfaktan seperti 

heksadesiltrimetilammonium bromida sebagai templat dan tetrametilammonium 

hidroksida sebagai bahan mineral.  Sifat kimia dan fizikal mangkin terbentuk 

dicirikan menggunakan teknik seperti pembelauan sinar-X (XRD), spektroskopi 

FTIR, spektroskopi DRUV-vis, ukuran penjerapan/ penyerapan nitrogen, analisis 

terma pembezaan (TGA-DTG) dan mikroskopi imbasan elektron (SEM).  Analisis 

XRD menunjukkan Ti-MCM-41 yang dihasilkan bersifat semi-kristal dengan aturan 



struktur heksagonal mesoporos seperti yang ditunjukkan oleh puncak pembelauan 

pada sudut 2 antara 1.6˚ hingga 2.6˚.  Mangkin Ti-MCM-41 selepas pengkalsinan 

menunjukkan penghabluran dua kali ganda lebih tinggi berbanding mangkin tanpa 

pengkalsinan.  Ini disebabkan pengkalsinan di dalam nitrogen dapat mengeluarkan 

templat organik yang terdapat di dalam liang Ti-MCM-41 sementara pembakaran 

templat berlaku di dalam udara semasa proses pengkalsinan.  Pembentukan hablur 

dan luas permukaan berkurang dengan penambahan kandungan titanium.  Daripada 

ukuran penjerapan/ penyerapan nitrogen, luas permukaan Ti-MCM-41 adalah dalam 

julat 880 m
2
g

-1
 to 1075 m

2
g

-1
.  Sampel menunjukkan luas permukaan BET yang agak 

tinggi dengan isoterma jenis IV, merupakan parameter biasa bagi unsur aturan 

mesoporos jenis MCM-41 heksagonal.  Keputusan XRD dan FTIR menunjukkan 

pepejal yang terhasil mengandungi struktur MCM-41 dan juga titanium terlarut 

secara atomik, selari dengan kerangka titanium di dalam Ti-MCM-41.  Kesemua 

sampel mempunyai penyerakan saiz liang yang seragam iaitu dalam lingkungan 3.0 

nm.  Analisis DRUV-visible menunjukkan Ti-MCM-41 mempunyai dua spesis 

titanium; iaitu titanium terisolasi secara tetrahedral yang aktif di dalam tindak balas 

pengepoksidaan alkena dan titanium terisolasi secara oktahedral.  Aktiviti 

pemangkinan Ti-MCM-41 ditentukan di dalam tindak balas pengepoksidaan 1-

oktena dan metil oleat di dalam reaktor sekumpul dengan menggunakan tert-butil 

hidroperoksida sebagai agen peroksida.  Mangkin dengan kandungan titanium yang 

tinggi (Si/Ti = 25) cenderung untuk mengalami penyahaktifan, akibat pertambahan 

produk sampingan walaupun pada masa yang sama, sifat kehidrofobikan diperbaiki.  

Kawasan titanium di dalam mangkin MCM-41 tertanam pada dinding silika, 

menyebabkan ia tidak dapat bertindak balas dengan reaktan, seterusnya 



merendahkan aktiviti pemangkinan.  Komposisi titanium terbaik ialah menggunakan 

kuantiti titanium yang sederhana (Si/Ti = 80).  Apabila membandingkan sampel yang 

tersililat dan tidak tersililat, didapati sampel yang tersililat menunjukkan peningkatan 

sebanyak tiga kali ganda aktiviti pemangkinan berbanding sampel yang tidak 

tersililat.    Pensililan sangat membantu meningkatkan sifat kehidrofobikan mangkin 

Ti-MCM-41 kesan daripada pengurangan kepekatan air pada permukaan mangkin 

dan seterusnya menghindar penghasilan glikol yang merupakan salah satu produk 

sampingan.  Proses pensililan dapat mengurangkan jumlah kumpulan silanol di 

dalam mangkin (besar kemungkinan kumpulan Ti-OH) yang mana kumpulan ini 

memiliki ciri-ciri asid lemah, tetapi cukup kuat untuk menjadi pemangkin bagi 

tindak balas pembukaan gelang oksiran yang tidak diperlukan pada peringkat ini.    
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Figure 4.51: Effect of reaction temperature on the selectivity 

towards epoxide. Reaction conditions: Catalyst 80Ti-

MCM-41 (1.24 wt% of Ti with respect to 1-octene); 

C=C / TBHP = 4 : 1; reaction time = 7 hrs. 
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Figure 4.52: Effect of 1-octene to TBHP molar ratios on the 

epoxidation of 1-octene.  Reaction conditions: 
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Temperature = 60 
O
C; wt. % of Ti = 1.68 % and 1.24 

%, time = 7 hrs. 

 

 

   

Figure 4.53: Selectivity to epoxide vs 1-octene conversion at 60 

o
C for different 1-C8H16: TBHP molar ratio of 3:1, 

4:1& 5:1 on 66Ti-MCM-41. 
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Figure 4.54: Selectivity to epoxide vs 1-octene conversion at 60 

o
C for different 1-C8H16: TBHP molar ratio of 3:1, 

4:1& 5:1 on 80Ti-MCM-41. 
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Figure 4.55: Proposed mechanism of epoxidation of methyl oleate 

to epoxide.  Reaction condition: C=C / TBHP = 4 : 1, 

catalyst = 0.5 g, wt. % of Ti = 1.68 %, time = 7 hrs. 
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Figure 4.56: Proposed surface reaction to enhance hydrophobicity 

of MCM-41 by silylation of the surface silanols (Si-

OH). 
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Figure 4.57: Catalytic Performance of various silylated Ti-MCM-

41 towards epoxidation of methyl oleate at T=60 
o
C. 
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Figure 4.58: Selectivity to epoxide vs methyl oleate conversion 

using silyated and non-silyated 66Ti-MCM-41 and 

80Ti-MCM-41. 
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Figure 4.59:  Commercial catalyst vs 80-Ti-MCM-41 silylated       178 
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catalyst at T=60
o
C.  X is methyl oleate conversion; S 

is epoxide selectivity. 

 

Figure 4.60: Commercial catalyst vs 80-Ti-MCM-41 silylated 

catalyst at T=70
o
C.   
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Figure 4.61: Commercial catalyst vs 66Ti-MCM-41 and 80-Ti-

MCM-41 silylated catalyst at T=70
o
C towards 

epoxidation of methyl oleate.   

 

      181    

Figure 4.62: Commercial catalyst vs 66Ti-MCM-41 and 80-Ti-

MCM-41 non-silylated catalyst at T=70
o
C towards 

epoxidation of methyl oleate.  
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Figure 4.63: Selectivity to epoxide vs methyl oleate conversion 

using various degree of silyated 66Ti-MCM-41 and 

80Ti-MCM-41 samples. 
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Figure B.1:  GC calibration curve 
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Figure C.1: Chromatogram of epoxidation of 1-octene with 

TBHP using Ti-MCM-41 sample. 
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Figure D.1: Fragmentation patterns in the mass spectra of 1-

octene in the epoxidation of 1-octene with TBHP 

using Ti-MCM-41 sample. 
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Figure D.2: Fragmentation patterns in the mass spectra of tert-

butyl hydroperoxide (TBHP) in the epoxidation of 1-

octene with TBHP using Ti-MCM-41 sample. 
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Figure D.3: Fragmentation patterns in the mass spectra of Di-

tert-butyl peroxide (DTBP) in the epoxidation of 1-

octene with TBHP using Ti-MCM-41 sample. 
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Figure D.4: Fragmentation patterns in the mass spectra of 1,2-

epoxyoctane in the epoxidation of 1-octene with 

TBHP using Ti-MCM-41 sample. 
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Figure D.5: Fragmentation patterns in the mass spectra of nonane 

as internal standard in the epoxidation of 1-octene 

      202 



 xxiv 

with TBHP using Ti-MCM-41 sample. 

 

Figure D.6: Fragmentation patterns in the mass spectra of octane-

1,2-diol in the epoxidation of 1-octene with TBHP 

using Ti-MCM-41 sample. 
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Figure D.7: Fragmentation patterns in the mass spectra of octen-

3-ol in the epoxidation of 1-octene with TBHP using 

Ti-MCM-41 sample. 
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Figure D.8: Fragmentation patterns in the mass spectra of octan-

2-one in the epoxidation of 1-octene with TBHP 

using Ti-MCM-41 sample. 
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