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CHAPTER 1 

INTRODUCTION 

 

1.1 A SURVEY OF WORKS ON PARALLEL QUEUES 

 Parallel queues prevail in manufacturing systems, communications systems, 

computer systems, and also in our daily life. 

There are a number of interesting problems which are related to parallel queues. 

One of the classic problems is the shortest queue (SQ) problem. Here one has two 

parallel queues and an arrival stream. A new arrival will be sent to the shortest queue. If 

both systems have equal occupancy, the arrival joins either with probability ½. The 

model is often called the symmetric shortest queue problem if two servers are working 

at same rate . For the non-symmetric case, two servers are allowed to work at different 

rates 1 and 2.  

Haight (1958) used differential-difference equations to study the SQ system with 

two heterogeneous servers. Flatto and McKean (1977) studied a symmetric model for 

two parallel queues to obtain the steady-state joint probability distribution using 

generating functions and complex variable arguments. Before the works done by Flatto 

and McKean, some asymptotic results under symmetric conditions have been obtained 

by Kingman (1961) using the generating functions to study the behavior of the 

stationary solution for two similar queues in parallel. Later, a linear programming 

method was used by Halfin (1985) to study the SQ problem in a system of two single-

server queues. In this method, upper and lower bounds for the steady state probabilities 

which are asymptotically tight in heavy traffic were derived in getting the numerical 

solutions. Adan et al (1990 & 1991) studied the SQ problem for the symmetric and 
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asymmetric case. The stationary queue length distribution was obtained by using the 

“compensation approach”. 

Yao and Knessl (2005 & 2006) investigated the infinite server shortest queue 

problem in two parallel M/M/ queues for a symmetric and non-symmetric case. The 

asymptotic approach was then used to obtain the joint steady state queue length 

distribution. Yao and Knessl (2008) did similar analyses of the SQ problems in two 

parallel M/M/N/N queues, while Knessl and Yao (2011) dealt with the case of two 

parallel M/M/K queues. SQ problem based on a comparison of the accumulated 

workload was analyzed by Wu and Posner (1997) using a level-crossing approach. The 

stationary waiting time and queue length distributions for the asymmetric two-server 

SQ system were then generalized to many-server systems (n queues and n servers).    

  Another SQ problem is one in which there are m parallel queues and m + 1 

arrival streams. Arrival stream i will be routed only to queue i, i = 1, 2, …, m and arrival 

stream m + 1 will be routed to the shortest queue at arrival time (see Turner (2000) and 

Fleming and Simon (1999)). In paper by Fleming and Simon (1999), an infinite server 

SQ model was used to describe Code Division Multiple Access (CDMA) cellular 

systems. The shortest queue problem with jockeying was analyzed by Adan, Wessels 

and Zijm (1993). Here the system consists of c parallel servers and the arrival joins the 

shortest queue. When there are multiple shortest queues, the arrival is assigned to one of 

these queues. Also if the maximum difference between the lengths of the c queues is 

more than some threshold value T, then a job is switched from the longest to the 

shortest queue. In the case of multiple longest queues, one of these queues is selected to 

lose an arrival. A matrix-geometric approach was used to find the equilibrium queue 

lengths probabilities. SQ problems with jockeying were also analyzed by Zhao and 

Grassman (1990) using generating functions and Sakuma (2011) using the matrix 

analytic approach for a system of two parallel MArP/PH/2 queues. Recently, Tarabia 



3 

 

(2008 & 2009) studied the SQ problems in two parallel queues with jockeying and finite 

capacity. In the 2008 paper, matrix-analytical techniques were used to find the steady-

state probabilities and in the 2009 paper, he analyzed transient-state probabilities 

numerically using both Runge-Kutta and randomization methods. 

Puhalskii and Vladimirov (2007) studied the tail asymptotic for k parallel queues 

in which there are multiple classes of customers who can only choose the SQ among 

queues assigned to them. Sakuma (2010) studied k parallel queues in which the join SQ 

policy is implemented and jockeying is permitted. Using the matrix analytic approach, 

he derived the tail decay rate of the stationary distribution for the longest queue. 

Recently, Kobayashi (2011) investigated SQ problem with k parallel queues using 

quasi-birth-and-death (QBD) and reflecting random walk process formulation. 

Movaghar (2011) studied a system of s parallel queues each with a given 

capacity and a given number of servers. Customers arrive according to a Poisson 

process with a rate which depends on the queue sizes of the s queues. Each incoming 

customer has a deadline and may not stay in the system indefinitely. Two kinds of 

stationary policies for assigning incoming customers were discussed. First is the 

dynamic (state-dependent) policy and second is the static (state-independent) policy. In 

dynamic policy, an incoming customer is assigned to the shortest non-full queue (SNQ) 

whereas in static policy, the customer is assigned to join each parallel queue with equal 

probability (RANDOM). It was found that the state process of the system in the long 

run converges in distribution to a Markov process. 

 Very often in a cellular system, there is a backbone network consisting of a 

number of fixed base stations interconnected through a fixed network (usually wired), 

and of mobile units that communicate via wireless links with the base stations. For each 

base station, there is a geographic area called a cell within which mobile units can 
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communicate with the base station. Neighbouring cells overlap with each other. The 

mobile units communicate with each other, as well as with other networks, through the 

base stations and the backbone network. The user releases the channel under two 

conditions. First is when the user completes the call. Second is when the user moves to 

another cell before the call is completed. The switch to another cell while the call is in 

progress is called handoff.  

When a base station has no free channel to allocate to a mobile user, two types 

of blocking occurs. New call blocking refers to the incident in which a new call is 

blocked when all the channels are busy. Handoff blocking occurs when a handoff is 

performed and there is no channel available in the new cell.  

The above cellular system may be modelled as a system of m dependent queues 

(cells) of which the i-th queue has a fixed number ci of servers (channels), a capacity of 

ci, and a dedicated arrival stream of customers given by the mobile units which are still 

in cell i (see for example Sidi and Starobinski (1996), Tamba Kortequee. et al (2006)).  

 

1.2 INTRODUCTION TO THE THESIS  

In the systems of dependent parallel queues, the distributions of the arrival 

streams of customers are usually assumed in the literature to be Poisson while the 

service times are considered to have exponential distributions. The thesis attempts to 

deal with the more general situations in which the distributions of the arrival streams of 

customers are assumed to have 2-phase hypoexpeonential distributions and the service 

times are also assumed to have 2-phase hypoexpeonential distributions. 

In the thesis we introduce the following two interaction schemes to specify the 

dependence relation of the parallel queues: 
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First Interaction Scheme:  

 “The customer who arrives at queue m will stay back in queue m with 

probability qmm or cross over to another queue m ( m m ) with probability qmm.” 

Second Interaction Scheme:  

“The customer who arrives at queue m will stay back in queue m with 

probability qmm or cross over to one of the Is shortest queues (among the remaining       

M  1 queues) with probability smm Iq )1(  .” 

The stationary queue length and waiting time distributions in the system of M 

dependent queues are derived for the cases when M is small. The generalization of the 

proposed method for other large values of M is also given.  

 

1.3 LAYOUT OF THE DISSERTATION  

In Chapter 2, a method to find the joint queue length distribution in a system of 

M Hypo(2)/Hypo(2)/1 queues which follow the First Interaction Scheme is proposed.   

In Chapter 3, the method for finding the queue length distribution in Chapter 2 is 

adapted to find the queue length distribution in a system of M Hypo(2)/Hypo(2)/1 

queues which follow the Second Interaction Scheme.   

Chapter 4 is devoted to the derivation of the waiting time distribution in a 

system of M  Hypo(2)/Hypo(2)/1 dependent queues.  

In Chapter 5, the method proposed in Chapter 2 is modified to find the queue 

length distribution in a system of two dependent Hypo(2)/Hypo(2)/c/c queues.  

 The thesis is concluded by some concluding remarks. 


