CHAPTER 3

A SYSTEM OF M HYPO(2)/HYPO(2)/1 QUEUES IN
WHICH CUSTOMERS MAY CROSS OVER TO
SHORTEST QUEUES

3.1 INTRODUCTION

Consider a system of M dependent Hypo(2)/Hypo(2)/1 queues which follow an

interaction scheme below.

“The customer who arrives at queue m will stay back in queue m with
probability gmm or cross over to one of the Is shortest queues (among the remaining

M — 1 queues) with probability (1-q,,,)/l;.”

We may refer to the above interaction scheme as the Second Interaction

Scheme, and call the interaction scheme in Chapter 2 the First Interaction Scheme.

A method is proposed in Section 3.2 to derive the stationary joint queue length
distribution in a system of three Hypo(2)/Hypo(2)/1 queues which follow the Second

Interaction Scheme.

In Section 3.3, we show some numerical results for the joint distribution of the
queue length and states of arrival and service processes obtained by using the proposed

method and simulation procedure.

In Section 3.4, we describe how the method in Section 3.2 may be adapted to
find the joint queue length distribution in a system of M Hypo(2)/Hypo(2)/1 queues
which follow the Second Interaction Scheme.
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3.2 DERIVATION OF THE FORWARD EQUATIONS IN A
SYSTEM OF THREE HYPO(2)/HYPO(2)/1 QUEUES WHICH

FOLLOW THE SECOND INTERACTION SCHEME

Consider a system of three Hypo(2)/Hypo(2)/1 queues which follow the Second
Interaction Scheme. An illustration of the possible crossing over to a shortest queue is

given in Figure 3.2.1.

Let PY . [n][n,][n,] be the probability that at the end of the interval 7, , the

(NISINE

number of customers in the system is n, in queue m (including the customer that is
being served), the service process in queue m is in the state iy, and the arrival process in
queue m is in the state jn,, me {1, 2, 3}, in€ {0, 1, 2} and jn € {1, 2}. If queue m is

empty, then we may define the state of the service process to be zero.

Assume that
Pi‘j]iz B.i.d, [nl] [nz] [ns] = i!'_[‘l F)I(jkl) B.i.d, [nl] [nz] [ns]

exists.
Let h® be the vector
W _ (0 i 0 0 0 i) K k) K
h = (i®, jO, i, j9©, i, j©, n®, no n®)

of which the components are respectively the values of iy, j1, 12, j2, i3, J3, N1, N2, N3 at
the end of 7, . Again we refer to h® as the vector of characteristics of the queueing

system at the end of 7, .
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v the arriving customer stays
back in queue 1.

Q, l W An arrival in queue 1 and
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queue 2 or queue 3.
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" Anarrival in queue 2, and
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back in queue 2.

»: - Anarrival in queue 2 and
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Figure 3.2.1 : Crossing over of an arriving customer in a system of three one-server
queues (Q1, Q2, Qs) which follow the Second Interaction Scheme.

The value h™ may be developed from h®™ after some appropriate activities in
the interval z, . The set of possible activities may be denoted by the set A = {A4, A,

Ai16}. Some feasible events in A are shown below.
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A =(1,0,0,0,0,0-1,-1,-1)
A, =(0,1,0,0,0,0,-1,-1,-1)
As =(0,1,0,0,0,0,11,-1,-1)
As; =(0,1,0,0,0,0, 12,1, -1)
As = (0,1,0,0,0,0,13 -1, -1)
As = (0,0,1,0,0,0,-1,-1,-1)
A; =(0,0,0,1,0,0,-1,-1,-1)
As = (0,0,0,1,0,0,-1,21, 1)

As = (0,0,0,1,0,0,-1,22,-1)

2
1]

(0,0,0,1,0,0,-1, 23, -1)

P
|

=(0,0,0,0,1,0,-1, -1,-1)
A = (0,0,0,0,0,1,-1, -1,-1)
A;3 = (0,0,0,0,0,1,-1, -1, 31)
Ay = (0,0,0,0,0,1,-1, -1,32)
Ais = (0,0,0,0,0,1,-1, -1, 33)
A =(0,0,0,0,0,0,-1, -1,-1)
The positions, values and meanings of the first six components in A,, are given
in Table 2.6.1. The meanings of the seventh, eighth and ninth components (Ayzand Aug
and Ay) of A, are explained below:

(11, if the arriving customer in queue 1 stays back in queue 1.

1j, if the arriving customer in queue 1 goes to queue j after noting that queue
A=< j is one of the queues with the shortest queue size.

-1, no customers arrive in queue 1 and it is not relevant to find out whether
the arriving customer is staying back or going elsewhere.
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(22, if the arriving customer in queue 2 stays back in queue 2.

2j, ifthe arriving customer in queue 2 goes to queue j after noting that queue
Aws = < j is one of the queues with the shortest queue size.

-1, no customers arrive in queue 2 and it is not relevant to find out whether
the arriving customer is staying back or going elsewhere.

(33, if the arriving customer in queue 3 stays back in queue 3.

3j, ifthe arriving customer in queue 3 goes to queue j after noting that queue
Ao = < j is one of the queues with the shortest queue size.

-1, no customers arrive in queue 3 and it is not relevant to find out whether
the arriving customer is staying back or going elsewhere.

The complete set of feasible events of A is shown by Appendix B.
For a given value of h® | we may use a computer to search for all the possible

combinations of h®*™ and A,, which lead to h® . The results of the search may be
summarized and recorded in a coded form. An example of the codes is given in Table

3.2.1.

In each row of Table 3.2.1,

Columns 1 — 9 give the components of h®)

Columns 10 — 18 give the components of h*™.

Columns 19 — 51 give respectively the powers of (1-ppiAt), (1-pi2At), (1-A11At),
(1-222A1), (1-p2Atl), (1-H22At), (1-A21At), (1-422A1), (1-paiAt), (1-Ha2At), (1-AsiAt),
(1-73241), (MuAY), (M12A1), (AuAtl), (A12At), (H21A1), (H22At), (A21A1), (122A1), (Ma1Al),

(Ma24t), (Aa1At), (A22At1), (G11), (1-Ga1), (1-011)/2, (d22), (1-022), (1-022)/2, (U33), (1-zz)

and (1-C]33)/2

The multiplication of (1-p11At), (1-Hi2At), (1-A11At), (1-A12At), (1-p21At), (1-p22At),

(1-121A'[), (1-/122At), (1-[.131At), (1-H32At), (1-131At), (1-132A'[), (UllAt)l (Ulet), (ﬁllAt),
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(A12At), (H21AL), (H22At), (A21AtL), (A22AL), (Us1At), (H32At), (A31At), (A324t1), (d11), (1-011),

(1-0912)/2, (022), (1-022), (1-022)/2, (Qzs), (1-0s3), (1-033)/2 raised respectively to the
corresponding powers will represent the probability of occurrence of the corresponding

event which may be represented by an element in A.
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Table 3.2.1 : An example of the codes of h™® W™ and probability of the corresponding event in the interval z, .

h® h* Power
011111022 011111022 001010101010 001010101010 00000O0OO0CBODO
011111022 211111122 001010101010 01000000000O0O 00000O0OO0CODO
011111022 021111012 000010101010 0O0O0O1000O0CO0ODO0CO0O 010000000
011111022 021111021 000010101010 000100000000 010000000
011111022 012111032 001000100010 0O0O0O0O0100O0O0QO0DO0 000000O0O0DO0
011111022 011211012 001010000010 0O0O0OO0O0OO0OO0OO0O10O0O00O0 000100000
011111022 011121023 001010100010 0O0O0O0O00OO0OO0OOZ1IO00O 000000O0O0DO0
011111022 011112021 001010101000 0OOOOO0OO0OOCOOO01 000000100
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The information represented by the above codes may be used to form the following

equation:

P11 01121121 = PS5 JOII21[2T (L — AiyAt — 425, At = A5, At — 13, At = 2, AL)
+ PR A[21[2] (1,A8) + PG 01U [2](4,,A) (L - 0,)
+ P {01211 (A, At (L= 6y + P51 {01 [3][2] (12,,A1)
+ Py {0121 (2,,A0) 0, + P {01121 [3](125,A)
+ P01 [2] 1] (A5, At) G

(3.2.1)

The derivation of Equation (3.2.1) may also be illustrated by Figure 3.2.2

Subtracting the term P2 J0][2][2] from both sides of (3.2.1), dividing both sides of
the resulting equation by At, and lettingAt — 0 and later lettingk — oo, we get the
balance equation
0= Py dO1I2[2)(—Ays — #p1 — Apy — a1 — As1)
+ P11 JUI21[2] (£4,) + Poz11: {01 [2]4,, 1 - 0,)
+ P02111][O][2] [1]2‘12 (1_ qll) + POlle][O] [3][2]ﬂ22
+ P01121][O][1] [2]2’22q22 + P01112][0] [2][3]/132

+ Po1112401[2][1] 25,03,
(3.2.2)

Equation (3.2.2) may be represented in a coded form as shown in Table 3.2.2.
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(011111022) (011111022) (211111122)  (011111022)  (021111012) (011111022)

QL _f - Q1 Yeefee 7T T o Statel
2 1, v2
------------- cpt —— :State 2
Q2 | | B Q2
2 2T
Q3 | ...l Q3 | ..
Q : Queue

(021111021) (011111022) (012111032) (011111022)
Ao x Ass / 4+ Anarrival in queue 1 and the
& o arriving customer crosses over

‘ ‘ either to queue 2 or queue 3.
Q1 ¥t QL = ®  Anarrivalin queue 2, and
2 ¥ 3 2 the arriving customer stays
ER EREREEE RR b back in queue 2.
| | Q.| |V |
1 2 2 l : Anarrival in queue 3, and the
[ L] R R S arriving customer stays back in
Q3 Q3 queue 3.
l/ : End of service.

(011211012) (011111022)  (011121023) v)011111022) (011112021)  (011111022)
31

QL f | . QL B QL .
1 2 2 2

2| |, 2| | 2| | )
2 * 3 2 1 2

el | ) S Q3 .l

Figure 3.2.2 : The values of h™®and A,, which lead to the given value of h® .
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Table 3.2.2 : Representation of balance equation in (3.2.2) by codes.

=0

Constant

Power

-1
-1
-1
-1
-1

OCOO0OO0OO0OONOOOOO
PR R RPNONNRRRRERERE
PR RPNRRRRREREEREER
PR NRRRRERREREEREER
PNNRRRPRPRERRERERER
NRRRRRRRRERREERE
eNoNoNoNoNoltNoloNoN ol el
NP WRNERENNMNNNNNRN
RPWORNNERPRNONNOMNNONNNNN
CO0OO0O0O0O0O0O0OO0OO0OOO
COO0OO0OO0OOrRO0OO0OOOO
[eNoNoNoNoNoNoNoNaoNaN i
COO0OORrRRPROOOOOO

e

[cNololoNoloNolNoNoNoll e

OO OPFRPROOOO0OOOOoOOo
[cNoloNoNoloNolNoeNol el
O OPFrRPOO0OO0OO0ODO0OO0OOO0OOo
[eNololoNoloNoNol ool
OPRP OO0 O0OO0OO0ODO0OO0OO0OO0OO0o
[cNeoNoNoNeolNoNol e lNeloNe)
P OOOO0OO0OO0OO0OO0OO0OO0OOo
OO OO OO ODO0OOOOoOOo
OO O0OORrRPRPFPOOO0OO0OOOo
OO OO OO0 O0OOOOoOo
O OPFrPOO0OO0OO0OO0OO0OO0OO0OO0o
[cNeoNoNoNeoloNolNoNoNoloNe)

[cNeoNoloNeoloNolNoNoNoloNo)

P OOOO0OO0OO0OO0OO0OO0OO0oOOo

[eNololoNoloeNolNoelNoNoloNo)

OO OO OO ODO0OOOO0OoOo

In each row of Table 3.2.2,
Column 1 gives a coefficient value.

Columns 2 — 10 give the components of h.

Columns 11 — 31 give respectively the powers of (111), (M12), (A11), (L12), (H21), (M22),

(A21), (A22), (Ma1), (M32), (Aa1), (A32), (d11), (1-Qus), (1-011)/2, (G22), (1-G22), (1-022)/2, (Gs3),

(1-g33) and (1-g33)/2.

The symbol “ 1* ” of the last row denotes the end of the equation.

For each row of Table 3.2.2, we form a product of

(i) the coefficient in column 1,

(ii) the term B .5 [ I[N, ][n,] of which the values iy, ji, iz, jo, 13, ja, N1, N2, g are

given by h, and

(i) the product of (1), (H12), (A11), (A12), (M21), (M22), (A1), (A22), (Ma1), (Wa2), (A1),

(432), (Q11), (1-011), (1-011)/2, (G22), (1-022), (1-022)/2, (U33), (1-0s3) and (1-0s3)/2

raised respectively to the corresponding powers.
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We then equate the sum of the products for all the rows in Table 3.2.2 to zero to form

(3.2.2).

For a given value of h®, we may use a computer to search for all the possible

combinations of h®*™®and A, which lead to h® . The results of the search may be

summarized and recorded in a coded form as has been discussed in Sections 2.6.

Next, the codes for the corresponding balance equations similar to (3.2.2) may
be obtained. The resulting table of codes for 0 < n;+ n, +n3z < 9 can be found in the file

ThreeQueueSystem_JSQ_codes.txt in the CD attached.

The method in Section 2.7 may now be used to solve the balance equations so

that the joint queue length distribution may be computed.

A simulation procedure is similar to that give in Section 2.8 may also be used to

find the joint queue length distribution.
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3.3 NUMERICAL RESULTS FOR DISTRIBUTION OF QUEUE
LENGTH AND STATES OF ARRIVAL AND SERVICE
PROCESSES IN A SYSTEM OF THREE HYPO(2)/HYPO(2)/1
QUEUES WITH INTERACTION SCHEME JOINING THE
SHORTER QUEUE

SUPPOSE (£411: H12s M1 Haas Ma1s Hsp) = (10, 20, 10, 20, 10, 20),
(1111%21/1211122,131,232) = (1, 2,1,2,1, 2), and J11=022=033 = 0.9. The traffic

intensities (p,, p,, p;) in the three queues are then given respectively by

P = (/ull_l + lulz_l)/(ﬂ‘ll_l + /112_1) =0.1,
P2 = (,Uzlil + ,Uzzil)/(/lzlil + }“2271) =0.1,

Pz = (/U?,fl + /L‘3271)/(}L~317l + 13271) =0.1.

By setting [n,1[n,1[n;]1=0 when n, +n, +n, =4 , the probabilities

P, s
i i, L[Nz 1[N;] computed by using the method in Section 2.7 and a simulation
procedure similar to that given in Section 2.8 are presented in Table 3.3.1 and Figure

3.3.1.

Next, Table 3.3.2 and Figure 3.3.2 show the results for the case when
(t1s Mgy Hops Moy, Mag, Hap) = (10, 20, 10, 20, 10, 20), (A, Az Aoys Agps Asyi Asz) = (3, 4,
3,4,3,4), q11= 02 =03 = 0.9, N = 4, and the traffic intensities are p, =0.2571,

p, =0.2571, p, =0.2571.

The tables and figures show that the results for P .

i Jiiz i3 ds

[n,][n,1[n,] found by

the proposed method agree well with those found by the simulation procedure.
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Table 3.3.1 : Comparison of results for B, ;; .. . [n][n,]1[n;]based on the proposed
method and simulation procedure [ (s, tho, Loty fons kagy fzp) =
(10, 20, 10, 20, 10, 20), (A1, A2 Ao1s Aans 431, 432) = (1, 2, 1, 2, 1, 2),

Q1= 022=0Q33 = 09, P = 01, Py = 01, Pz = 0.1 ,
N = 3 and Ny = 50000].

Proposed Simulation
n;N,N3 hhbiaht method procedure

010101 0.18960 0.18812
010102 0.10675 0.10672
010201 0.10603 0.10948
000 010202 0.05993 0.06100
020101 0.10917 0.10744
020102 0.06109 0.06154
020201 0.06080 0.05892
020202 0.03418 0.03416
010111 0.02030 0.01974
010112 0.00264 0.00224
001 010121 0.00958 0.01000
010122 0.00162 0.00148
010211 0.01057 0.01100
010212 0.00120 0.00118
010221 0.00502 0.00578
010222 0.00077 0.00094
020111 0.01104 0.01040
020112 0.00127 0.00114
020121 0.00533 0.00580
020122 0.00084 0.00062
020211 0.00584 0.00570
020212 0.00055 0.00052
020221 0.00280 0.00312
020222 0.00038 0.00020
011101 0.02017 0.02012
011102 0.01064 0.01058
011201 0.00263 0.00242
010 011202 0.00122 0.00132
012101 0.00952 0.00936
012102 0.00507 0.00542
012201 0.00161 0.00164
012202 0.00079 0.00076
021101 0.01098 0.01136
021102 0.00586 0.00638
021201 0.00127 0.00110
021202 0.00055 0.00044
022101 0.00530 0.00588
022102 0.00282 0.00300
022201 0.00083 0.00064
022202 0.00039 0.00044
110101 0.02066 0.01962
110102 0.01083 0.01080
110201 0.01072 0.01024
100 110202 0.00580 0.00554
120101 0.00272 0.00246
120102 0.00124 0.00114
120201 0.00122 0.00118
120202 0.00054 0.00048
210101 0.00974 0.00908
210102 0.00517 0.00508
210201 0.00509 0.00522
210202 0.00277 0.00284
220101 0.00171 0.00142
220102 0.00082 0.00064
220201 0.00079 0.00084
220202 0.00038 0.00030
Total 0.96740 0.96498
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Table 3.3.2 : Comparison of results for B, ;; . ; . [n,][n,][n;]1based on the proposed
method and simulation procedure [ (s, tho, Loty fons kagy fzp) =
(10, 20, 10, 20, 10, 20), (A1, A2+ o1y Aans As1s Asn) = (1, 2, 2, 4, 3, 6),
Q11=022=0Q33 = 0.9, P = 0.10, P, = 0.20, Pz = 0.30,
N =4 and Ns=50000].

Proposed Simulation
NyN,Ng R RN method procedure

010101 0.11949 0.12330
010102 0.07724 0.08030
010201 0.07153 0.07374
000 010202 0.04660 0.04680
020101 0.07378 0.06978
020102 0.04755 0.04372
020201 0.04400 0.04274
020202 0.02848 0.02606
010111 0.03949 0.04080
010112 0.00853 0.00862
001 010121 0.01709 0.01838
010122 0.00524 0.00474
010211 0.02213 0.02354
010212 0.00481 0.0050
010221 0.00966 0.01118
010222 0.00296 0.00288
020111 0.02364 0.02318
020112 0.00536 0.00468
020121 0.01048 0.01014
020122 0.00331 0.00268
020211 0.01368 0.01270
020212 0.00292 0.00242
020221 0.00602 0.00540
020222 0.00184 0.00120
011101 0.02688 0.02642
011102 0.01557 0.01654
011201 0.00494 0.00434
010 011202 0.00276 0.00254
012101 0.01203 0.01156
012102 0.00719 0.00762
012201 0.00302 0.00274
012202 0.00178 0.00162
021101 0.01582 0.01504
021102 0.00965 0.00956
021201 0.00306 0.00244
021202 0.00163 0.00132
022101 0.00735 0.00728
022102 0.00450 0.00420
022201 0.00191 0.00180
022202 0.00109 0.00082
110101 0.01710 0.01432
110102 0.00903 0.00914
110201 0.00843 0.00868
100 110202 0.00505 0.00500
120101 0.00333 0.00308
120102 0.00157 0.00122
120201 0.00150 0.00106
120202 0.00064 0.00064
210101 0.00785 0.00628
210102 0.00439 0.00436
210201 0.00397 0.00394
210202 0.00243 0.00224
220101 0.00201 0.00148
220102 0.00102 0.00076
220201 0.00098 0.00090
220202 0.00046 0.00028
Total 0.87493 0.86320
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Figure 3.3.1 : Comparison of results for

P.iii,ini, ][N, ][n;]based on the proposed
method and simulation procedure [ (44, f2, Ha1s Hogs Hags Hap) =

(10, 20, 10, 20, 10, 20), (A, Auzs Aoty Aoz Aags Aap) = (1, 2, 1,2, 1, 2),

Qu1=022=033=0.9, p,=0.1, p, =0.1, p, =0.1,
N = 3 and Ny=50000].
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Figure 3.3.2 : Comparison of results for

P.ii.i,ini, M1, ][n;]based on the proposed
method and simulation procedure [ (41, £, Hor, Mooy tais tsp) =

(10, 20, 10, 20, 10, 20), (A1, Aips A21s Aops A1, 432) = (1, 2, 2, 4, 3, 6),

J11=022=0(Q33 = 0.9, P = 0.10, pPr = 0.20, Ps = 0.30,
N =4 and Ny=50000].
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34 DERIVATION OF THE FORWARD EQUATIONS IN A
SYSTEM OF M HYPO(2)/HYPO(2)/1 QUEUES WHICH

FOLLOW THE SECOND INTERACTION SCHEME

Consider a system of M Hypo(2)/Hypo(2)/1 queues which follow the Second

Interaction Scheme.

As in Section 2.10, let R® . . [n][n,]...Iny ] be the probability that at the end
of the interval z, , the number of customers in the system is np in queue m (including the

customer that is being served), the service process in queue m is in the state i, and the
arrival process in queue m is in the state j,, 1<m<M , in € {0, 1, 2} and j, € {1, 2}.
Assume that
Pz iy (Il 1= M B Il o]

exists.

Let h® be the vector

@ _(i00 00 i) ik ORI RN (SR () (k)
h _(ll B PR P PP PSS IV | N ,...,nM)
of which the components are respectively the values of iy, ji, i2, j2, ..., Im, jm, N1, N2, ...y

nu at the end of r,. Again we refer to h" as the vector of characteristics of the

queueing system at the end of , .

The value h® may be developed from h®™ after some appropriate activities in

the interval z, . The set of possible activities may be denoted by a set A = {As, A, ...,
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The meanings of the components Ay;in Ay, 1< j <2M are same as in Table

2.10.1. The meanings of Ay;in for (2M +1) < j <3M are given below:

(11, if the arriving customer in queue 1 stays back in queue 1.

1j, if the arriving customer in queue 1 goes to queue j after noting that
Aw M) = < queue j is one of the queues with the shortest queue size.

-1, no customers arrive in queue 1 and it is not relevant to find out
whether the arriving customer is staying back or going elsewhere.

(22, if the arriving customer in queue 2 stays back in queue 2.

2j, if the arriving customer in queue 2 goes to queue j after noting that
Awemi2)= < queue j is one of the queues with the shortest queue size.

-1, no customers arrive in queue 2 and it is not relevant to find out
whether the arriving customer is staying back or going elsewhere.

/\ /\ /\

[ MM, if the arriving customer in queue M stays back in queue M.

M j, if the arriving customer in queue M goes to queue j after noting that
A queue j is one of the queues with the shortest queue size.

-1, no customers arrive in queue M and it is not relevant to find out
whether the arriving customer is staying back or going elsewhere.

For a given value of h®, we may use a computer to search all the possible

combinations of h®*™®and A, which lead to h® . The results of the search may be

summarized and recorded in a coded form as has been done in Section 3.2.

Next, the codes for the corresponding balance equations similar to (3.2.2) may
be obtained. The method in Section 2.7 may now be used to solve the balance equations

so that the joint queue length distribution may be computed.

A simulation procedure is similar to that give in Section 2.8 may also be used to
find the joint queue length distribution.
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