CHAPTER 5

THE QUEUE LENGTH DISTRIBUTION IN A SYSTEM OF
TWO DEPENDENT HYPO(2)/HYPO(2)/c/c QUEUES

5.1 INTRODUCTION

Consider a system of two Hypo(2)/Hypo(2)/c/c queues in which the customer in

queue m may stay back in queue m with probability q,,, or may cross over to the other

queue with probability q,,,, m, m' =1, 2, m=m.

When all the servers in queue m are busy, the next arriving customer seeking
service in queue m is blocked and will get lost in the system, m € {1, 2}. The incident
of a customer seeking service in queue m is blocked and gets lost could arise in one of

the following ways:

(1) A customer who arrives at queue m decides to stay back but only to find that all

servers in queue m are busy.

(2) A customer who arrives at queue m' ( m’=m ) decides to cross over to queue m

but only to find that all servers in queue m are busy.

A method is proposed in Sections 5.2 and 5.3 to derive the stationary joint queue

length distribution in a system of two dependent Hypo(2)/Hypo(2)/2/2 queues.

In Section 5.4, we discuss a simulation procedure that may also be used to find
the joint queue length distribution. In Section 5.5, we show some numerical results for
the joint distribution of the queue length and states of arrival and service processes

obtained by using the proposed method and the simulation procedure.
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In Section 5.6, we describe how the method in Sections 5.2 and 5.3 may be
adapted to find the joint queue length distribution in a system of two dependent

Hypo(2)/Hypo(2)/c/c queues.

52 DERIVATION OF THE FORWARD EQUATIONS IN A
SYSTEM OF TWO DEPENDENT HYPO(2)/HYPO(2)/2/2
QUEUES

Consider a system of two Hypo(2)/Hypo(2)/2/2 queues in which the customer

who arrives at queue m has a probability of q,,., > 0 of joining queue m’, where m e

2
{1,2}, me{1,2}and > q,, =1.
m'=1

Let P® [n][n,] be the probability that at the end of the interval

2 il21l22)2

Ty = ((k —1)At, kAt], the number of customers in queue m is ny (including the customer

that is being served), the service process in queue m is in the state i for server I, and
the arrival process in queue m is in the state j,, | € {1, 2}, me {1, 2}, in {0, 1, 2}
and jm € {1, 2}. If a server in queue m is idle, then we may define the state of server to

be zero.
Assume that

Poiioieie MIN] = M B D]

i giy 2 Jaiodion ]
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exists.

Let h™® be the vector
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of which the components are respectively the values of i1, 112, 1, I21, 122, J2, N1, Ny at
the end of 7, . We refer to h® as the vector of characteristics of the queueing system at

the end of 7, .

The value h® may be developed from h*™ after some appropriate activities in

the interval z, . The set of possible activities may be denoted by the set A = {A4, Ao, ...,

Ass}. The elements in A are shown below.

A; =( 1, 0, 0, 0,0, 0, -1,-1)
A; =( 0, 1,0, 0 0, 0 -1,-1)
A; =( 0, 0,1, 0 0, 0 -1,-1)
A, =( 0,0, 1, 0, 0, 0, 11,-1)
As =( 0,0, 1,0, 0, 0, 12,-1)
As =( 0,0, 0, 1,0, 0, -1,-1)
A; =( 0,0, 0, 01, 0, -1,-1)
As =( 0,0, 0 0 0, 1, -1,-1)
Ay =( 0,0, 0 0 0, 1,-1,21)
Ap=( 0,00 0, 0, 1, -1,22)
Aiyu=( 0 00 0 0 0,-1-1)
A = (-1,-1,0, 0, 0, 0,-1,-1)
Az = (-1,-1,1, 0, 0, 0, -1,-1)
A =(-1,-1,1, 0, 0, 0, 11,-1)
Ais = (-1,-1,1, 0, 0, 0, 12,-1)
A = (-1,-1,0, 1, 0, 0, -1,-1)

Az =(-1,-1,0, 0, 1, 0, -1,-1)
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A = (-1,-1,
A = (-1,-1,
Ay = (-1,-1,
Az = (1, 0
Az = (0, 1,
Ay = (0, 0,
Ay = (0, 0O,
Axs = (0, 0
Ax = (0, 0O,
Ay = (0, 0,
Ay = (0, O,
Ax = ( 0, 0,
Az = (-1, -1,
Az = (-1, -1,
Az, = (-1, -1,
Az = (-1, -1,
Az = (-1,-1,
Ass = (-1, -1,
Ass = (-1,-1,

The meanings of the first six components in A,y are explained in Table 5.2.1.

1, -1,-1)
1, -1, 21)
1, -1, 22)
0, -1,-1)
0, -1,-1)
0, -1,-1)
0, 11, -1)
0, 12, -1)
0, -1,-1)
1, -1,-1)
1, -1, 21)

1, -1, 22)

0, 11, -1)
0, 12, -1)
1,-1, -1)
1,-1, 21)

1,-1, 22)
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Table 5.2.1 : The meanings of the components in Ay,.

Position of Value of Meaning
component | component

1 1 A transition in the state of server 1 in queue 1 occurs
In Ty

1 0 A transition in the state of server 1 in queue 1 does
hot occur inz,

1 -1 Queue 1 is empty at the end of r,_, and whether a
transition in the state of server 1 in queue 1 has
occurred inz, is not relevant.

2 1 A transition in the state of server 2 in queue 1 occurs
In Ty

2 0 A transition in the state of server 2 in queue 1 does
hot occur inz,

2 -1 Queue 1 is empty at the end of 7, , and whether a
transition in the state of server 2 in queue 1 has
occurred inz, is not relevant.

3 1 A transition in the state of the arrival process in
queue 1 occurs in z,.

3 0 A transition in the state of the arrival process in
queue 1 does not occur in z, .

4 1 A transition in the state of server 1 in queue 2 occurs
In Ty

4 0 A transition in the state of server 1 in queue 2 does
hot occur inz,

4 -1 Queue 2 is empty at the end of z,_, and whether a
transition in the state of server 1 in queue 2 has
occurred inz, is not relevant.

5 1 A transition in the state of server 2 in queue 2 occurs
In Ty

5 0 A transition in the state of server 2 in queue 2 does
hot occur inz,

5 -1 Queue 2 is empty at the end of 7, , and whether a
transition in the state of server 2 in queue 2 has
occurred inz, is not relevant.

6 1 A transition in the state of the arrival process in
queue 2 occurs in z, .

6 0 A transition in the state of the arrival process in

queue 2 does not occur in 7.
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The meanings of the seventh and eighth components (A and Ayg) of A, are explained

below:

(11, if the arriving customer in queue 1 stays back in queue 1.
A7 =< 12, if the arriving customer in queue 1 goes to queue 2.

-1, no customer arrives in queue 1 and it is not relevant to find out whether
the arriving customer is staying back or going elsewhere.

(21, if the arriving customer in queue 2 goes to queue 1.
Aws= < 22, if the arriving customer in queue 2 stays back in queue 2.

-1, no customer arrives in queue 2 and it is not relevant to find out whether
the arriving customer is staying back or going elsewhere.

-

For a given value of h®, we may use a computer to search all the possible

combinations of h*™and A, which lead to h® . The results of the search may be
summarized and recorded in a coded form. An example of the codes is given in Table

5.2.1.

In Table 5.2.1,

Columns 1 — 8 give the components of h® .

Columns 9 — 16 give the components of h*™,

Columns 17 — 44 give respectively the powers of (1-piAt), (1-pi2At), (1-pi1At),
(1-p12AL), (1-A11A1), (1-A12A1), (1-paAb), (1-pxAt), (1-H21At), (1-H22At), (1-A21At),
(1-222A1), (Mu1AY), (H12AY), (Hu1AY), (H12A1), (AuAt), (A2At), (Ma1At), (H22At), (M21At),

(M22At), (A21At), (A22At), (011), (1-011), (G22) and (1-022).
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Table 5.2.2 : An example of the codes of h™ , h™ and probability of the corresponding event in the interval r, .

h )

h kD

Power

22121122
22121122
22121122
22121122
22121122
22121122

22121122
12121122
21121122
22220121
22111122
22120221

010110011010
000110011010
010010011010
010100010010
010110001010
010110100000

0o0000000OO0GOOO
100000000000
001000000000
000001000000
000000100000
00000000O0O0O01

0000
0000
0000
0100
0000
0010
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The multiplication of (1-ppiAt), (1-p2At), (1-pnAt), (1-pi2At), (1-AnAt),
(1-212At), (1-p2At), (1-p22At), (1-pa1At), (1-pxAt), (1-AnAt), (1-A2At), (Un1AL), (H12At),
(M11At), (M12AY), (AA), (A12A1), (H21At), (M22At), (H21AL), (Ha24At), (A1At), (A22At), (Qu1),
(1-911), (q22), (1-q22) raised respectively to the corresponding powers will represent the
probability of occurrence of the corresponding event which may be represented by an

element in A.

The information represented by the above codes may be used to form the

following equation:

P [21[2] = P 121121 (L — 2,44, ,At — Ay At — 1, At — 11, At — A, At)
+ PO 21121 (s4,At) + P 21120 (14,A0)
+ Pooobd 21 [ (A3,A0 A - 0y,) + PS5 {21121 (4,,A1)
+ Pisd 2111 (25,A1)0,,
(5.2.1)

The derivation of Equation (5.2.1) may also be illustrated by Figure 5.2.2

Subtracting the term P%;2 [2][2] from both sides of (5.2.1), dividing both sides

of the resulting equation by At, and letting At — 0 and later lettingk — oo, we get the

balance equation

0= Py J22(=2111, = Ay — #35 = Hp1 = A21)
+ Pooiond21[2) sy + Pryi2nd20[2) 144
+ Poyoood 1[4, (L= Gyy) + Popii i 121[2] 12,
+ Pyo120d 2[1A,,0,,
(5.2.2)

Equation (5.2.2) may be represented in a coded form as shown in Table 5.2.2.
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(22121122) (22121122) (12121122)  (22121122)

, A Y

Server 1 (Si1) Su | T
Q <
Server 2 (S12) Qi Sp
\_ Arrival process (A;) [ IS Ar e R
e
Server 1 (Sz1) Sa
Q: 3 Server 1 (Sz) Y - -- Q sy B ISR R =
\_ Avrrival process (A;) T[T A, ofeemeepeeeeee-
A, v/ \ As /
4 J --- ! Statel
Sll ! & 311
Q S
R N C . —— : State 2
A el A AP S
Y .+ Anarrival in queue 1 and the
Sa | Sz " arriving customer crosses over
Q% g, { _______________ N Q Sy, e to queue 2.
(A I R A e R ®  Anarrivalin queue 2, and
the arriving customer stays
back in queue 2.
(22111122) (22121122) (22120221) (22121122) L End of service.
Ay \ Ang”
Sll & 521 J
Ql SlZ Ql SZZ
Al 1T --- Ay e
7SR ---\l/—_ Q Sa
QZ 822 “{t--""~"""""1"""""" - 2 522 4- T
A, - A, @

Figure 5.2.1 : The values of h™®and A,, which lead to the given value of h® .
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Table 5.2.3 : Representation of balance equation in (5.2.2) by codes.

Constant h Power

-1 22121122 01000000O0OO0OO0OO0 000O
-1 22121122 00010000O0OO0OO0O0O0 000O0
-1 22121122 000010000000 0000
-1 22121122 000000010000 0000
-1 22121122 000000001000 0000
-1 22121122 000000000010 0000
1 12121122 100000000000 00O0O
1 21121122 00100000O0OO0OO0OO0 0000O
1 22220121 00000100O0O0O00O0 0100
1 22111122 000000100000 0000
1 22120221 000000000001 0010
l*

In Table 5.2.2,

Column 1 gives a coefficient value.
Columns 2 — 9 give the components of h.
Columns 10 — 25 give respectively the powers of (H11), (M12), (H11), (M12), (A11), (A12),

(M21), (M22), (M21), (M22), (A21), (A22), (da1), (1-011), (G22), and (1-0z2).

The symbol ““ 1* * in the last line denotes the end of the equation.

For each row in Table 5.2.2, we form a product of

(i) the coefficient in column 1,

(i) the term P,_.

b2 hloalz2)2

[n,1[n,] of which the values i11, 112, J1, I21, 122, J2, N1, Ny, are

given by h, and

(iii) the product of (M11), (M12), (H11), (H12), (A11), (A12), (M21), (M22), (M21), (M22), (A1),
(A22), (011), (1-011), (g22) and (1-qp2) raised respectively to the corresponding

powers.
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We then equate the sum of the products for all the rows in Table 5.2.2 to zero to form

Equation (5.2.2).

For other given value of h® | we may likewise use a computer to search all the

possible combinations of h®*™®and A, which lead to h™ . The results of the search may

again be summarized and recorded in a coded form.

Next, the codes for the corresponding balance equations similar to (5.2.2) may
be obtained. The resulting table of codes for 0 < n;+ n, < 4 can be found in the file

TwoQueueLossSystem_codes.txt in the CD attached.

53 COMPUTATION OF THE VALUE OF P [n1n,]

il 2 J1iz122J2

Before solving the balance equations to obtain the stationary queue length

distribution, we first introduce the following notations. Let

@ R

iy 12 J1i2 o2 b

[n] be avalue of P [n,1[n,]of which n, +n, =n.

iy 12 J1iplo2 b

(b) {P [n,][n,1} the set consisting of all the possible P, .. . . [m][n,].
(c) {P [n]} aset formed by the {P [n,][n,]} of which n, +n, =n.

(d) {P[n], P[n+1], P[n+2]} the set of equations of the form

2 2 2 2 2 2
Z Z z z Z z a'11'12j1i21i22j2 Pi11i12J1i21i22j2 [n]
2 2

2 2 2 2
+ Z ZZ ZZ Zb'uhzh'zﬂzzlz P'11'12J1'21'2212 [ +1]

i11=0i1,=0 j; =1i5,=0ip,=0j, =1

+ Z ZZ Z Z Z ipal12 hiio1iaz J2 '11'1211'21'2212[ + 2] 0

i11=0i12=0 j =1i5;=0i5,=0], =1

N

where aq are constants.

hih2hiotizodz *  hihzhiodzodz iz hiiodzz )2
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(e) (F’i11i12 iininai, L1 [N2] ‘ {P[0]}, {P[n +1]}) an equation of the form

2 2 2
F)i11i12j1i21i22]2 l] [n z Z z z z z d'11'1211'21'22J2 11#2J1i21152J2 [O]

if,=0i1,=0 j;=1i5,=0i3,=0j; =1

2 2 2 2 2 2
+ z Z z Z Z Ze'uhzh'zﬂzsz 1121121152 J2 [n +1]

i1,=0i1,=0j;=1i5,=0i5,=0j5=1

2

where d,, are constants.

i1z J1i51122J5 * 112 J1i24i52 )2

With the above notations, the balance equations represented by the codes in the

file TwoQueueLossSystem_codes.txt in the CD can be represented as
{P[0]. PLI3,
{P[n-1], P[n], P[n+1]} , n=1 2, 3,
and {P[4], P[3]}.
From the Equations (5.3.1) to (5.3.3), we get

Phiiiorrr (01 | {P A3

{F)i11i12j1i21i22j2 [n] | {P[n-1}, {P[n+1}}}, n=1 2, 3,

and {P,

lithohilzal22)2

[4] | {P [3]}}-

(5.3.1)

(5.3.2)

(5.3.3)

(5.3.4)

(5.3.5)

(5.3.6)

Substituting the left side of (5.3.6) into the equations in (5.3.5) for n = 3, we get

{P [3] | {P [2D}.

14l 124022 )2

(5.3.7)

Substituting the left side of (5.3.7) into the equations in (5.3.5) for n = 2, we get

{P,iiininn [21 | {P D3 .

(5.3.8)
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Substituting the left side of (5.3.8) into the equations in (5.3.5) for n = 1, we get
{Pi11i12j1i21izzjz [1] ‘ {P [0]}} (539)

Substituting the left side of (5.3.9) into the equations in (5.3.4), we obtain
{P, i, [0 | P[0T} (5.3.10)

An inspection of (5.3.10) reveals that there are 4 equations in (5.3.10), and
among the 4 equations, only 3 of them are linearly independent. Hence, we need to
include another linearly independent equation so that the resulting system of equations

has a unique solution.

By substituting the left side of (5.3.9) into the equations in (5.3.8), we get

{Pisii. 12 | {PIODY (5.3.11)

By substituting the left side of (5.3.11) into the equations in (5.3.7), we get

{Pisii.. B | {P O} (5.3.12)

By substituting the left side of (5.3.12) into the equations in (5.3.6), we get

{Puicitui. [4 | P [OD}. (5.3.13)

Equating the sum of the left sides of (5.3.9), (5.3.11), (5.3.12) and (5.3.13) to the

sum of the corresponding right sides, we get an equation of the form

2 2 2 2 2 2 2 2
222222 2P In]n
i1=011,=0 j;=1i5;=015,=0 j,=1n;=0n,=0 I11|12h|21|22]2[ l][ 2]
n+n,>1
2 2 2 2 2 2

= 2 2 2 2 2 2 Ci11i12j1i21i22j2 Pi11i12j1i21i22j2 [0] [O]

i11=01i1,=0 jy=1i;=01i5,=0 j,=1

where the C. _are constants, or

hal2hl2il22]2

2 2 2 2 2 2

1_ z 2 2 Z 2 2 P11i12j1i21i22j2 [0][0]

. . o . . i
i11=01i15=0 jy=1i,;=01i5,=0 j,=1
2 2 2 2 2 2

= Z Z 2 2 2 z Ci11i12j1i21i22j2 Pi11i12j1i21i22j2 [0][0]

i11=01i1,=0 jy=1i,=01i5,=0 j,=1

143



which is also of the form

(P [0] | {P [O1). (5.3.14)

a2 hizdizz )2

Equation (5.3.14) together with 3 equations chosen from the equations of the

form given by (5.3.10) will form a set of equations in 4 unknowns. Solving the set of 4

equations, we get the numerical answers for the B, ; .. . . [0][0].

CRUPIIL

Then, from (5.3.9), (5.3.11), (5.3.12), (5.3.13) and the values of the

[0][0], we can get the numerical answers for P, [n.1[n,], for the case

hihohil2al22)2 12 Jaio1i22J2

when n, +n, <4.

54 SIMULATED VALUE OF P [n1n,]

i1l 2 J1iz122J2

The probability P, [n,][n,] may also be estimated by using a simulation

iy 1h12 Jii2alz2 o

procedure described below.

In the simulation procedure, we need to know the approximate probability that

an event from set A will occur in 7, given the conditions of the system at the end of

7,., - The above conditional probabilities are given in Table 5.4.1.

As in Section 2.4, let Nt > 0 be an integer such that NtAt corresponds to a time

which is “very long” after t = 0. Suppose that at the end of 7,
h®=11111111. (5.4.1)
The events which may occur in z, are Ay, Ay, As, As, A7, Ag and Aqy. The probability

of each of these events and the resulting value h® are as shown in Table 5.4.2.
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To generate h®®, we may first generate a random number U ® from the U(0,1)

j-1 i

distribution. Let P =0 . If Y P® <U® <> P® then event A® =E! is said to
i=0 i=0

have occurred, j=1, 2, ..., 7 and the resulting h® is as given in Table 5.4.2.

Similarly given a value of ™, we may first find out the set of possible events

EXD, EXY, L, EX which can occur in 7, . Suppose E*™ occurs with probability

P& . To generate h™®, we may first generate a random number U “™ from the U(0,1)
distribution. Let P*™® =0. If jiPi(k‘” <U®D < Zj:Pi(k‘l) , then event AW =E? is
i=0 i=0
said to have occurred and the resulting h® can be determined.
In short, we generate (A‘Z’,A(3>,A ,A‘NT)) starting from h(l) given by (5.4.1).

We repeat the generation of (A(Z),A(S),A,A(NT)) for Ns number of times. The

probability [n,1[n,] is then given approximately by the proportion of times

hali2hil2ilo2]2

the vector of characteristics given by h :( [P PR PR P PR P o T n2) is

obtained at t =NAt.
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Table 5.4.1 : The approximate probability that event A will occur in 7, given the
conditions of system at the end of 7, , [vi=1or2,1<i<6].

Conditions of system | Event Approximate probability that event in
at the end of 7, occurring in | Column 2 will occur given the conditions
Ty in Column 1.
'1(5 | A 1AL
ll('{_l) 2 A HyoAt
Il(; R A; My A
il(g_l) =2 A; JLPIALS
j = As A41At
i< =2 Ay Aty
jl(k -2 As A2t (1-0y1)
i%Y =1 As Ha1 AL
IS; D=2 As At
ik _1 A7 Ha1AL
ig';_l) =2 A7 HapAL
D = Ag Ag At
¥ =2 Ag A22At(1-0y;)
jED =2 Ao 2220,
]FII_]') Vl’ |(k_1) = Vz, All 1- (:ulv1 + /ulv2 + j’lv3 + :qu4 + /u2v5 + ﬂ’Zve )At
6D =y, i*D =
1 - v3 ’ I 49
i = v, J<k—1>
|(k = 0 |(k = 0, A12 :I'_(ﬂ’lv3 +1u2v4 +1u2v5 +ﬂ“2v6 )At
6D =y, i & =
1 - V3 ’ I 41
s (k-1 k-1
igp ) =V, i5 =
ik =0,ik = O, Az P
=1,
(k D=0, '1('2< D=0, Aig A Atg
(“) =2.
(k P =0,i%P =0, Ass A12At(1-0y1)

(kfl) _
(D~ o,
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Table 5.4.1, continued

Conditions of system
at the end of 7, ,

Event occurring
in z,

Approximate probability that event in
Column 2 occur will given the conditions
in Column 1.

6D _0,iD 0, Ass s
(k—l) _
I » =1.
£ (k-1 £ (k-1
i%=0,i5" =0, Ass Ly, AL
isM =2,
(k D= =0, |1('2< g 0, A7 M At
(k ) _
I, » =1.
L-0igT =0, | A b
ik =2,
it =0,i%D =
=0,iz " =0, Asg AnAt
<“> =1.
I(k b=, I(k b=, Aig A2At(1-055)
(D) _
(e =2,
i%=0,i%" =0, Axo A2t
(D) _
(e =2,
(D) _ g ikD) _
iy =0,i5 " =0, A 1y, At
i =1,
ifD =0,ik? =0, Az 1,
(D) _
I, =2.
(D) _ g ikD) _
iy ) =0,i5 " =0, Az 1AL
(D) _
I, 7 =1
= (k- = (k=
i =0,i5™ =0, Az 14,,AL
i =2,
i$P=0,i =0,j P =1. Az A, At
s (k-1 s (k-1 k-1
i =0, =0,j P =2 Ax A,
i$P=0,i%"=0j*P=2 Asx AL,At(L—qy,)
ikD —y %D =y, Aoe 1= (g, + tyy, Ay, + A, )AL
D) kD)
L =Vy,iy 7 =0,
ik =0, j%D =
i5Y=0,i? = o, Az Ay AL
(D) _
(e,
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Table 5.4.1, continued

Conditions of system at the | Event occurring | Approximate probability that
end of 7, , in z, event in Column 2 occur will
given the conditions in Column 1.

ixD =0,i%" =0, Asg A, At(L—0,,)

i =2,

i — 0, iéz’l’ —0, Az 2,,M,,

i V=
ik =0, |1“2<‘1) =0, Aszo 1—(Ay, + Ay, )AL

I =, i =0
ik =0, j*Y =v,.

i = 0,ilkD =0, Aat A

iz =0, iéé‘” =0,

i =

%P =0, |l<;-l> =0, Az 2,0,

ik ~ 0, ig;—l> —0,

i =

i%P =0, |l<;*l> =0, Ass A,AtL-1,,)
ik~ 0, ig;—l> —0,

i =

i =0, .;g-ﬂ ~0, Ass 1At

iz =0, iéé’l’ =0,

i V=

iy =0, If‘z“l’ =0, Ass A1~ 0,)

iz =0, iéé‘l’ =0,

i =

%P =0, |l<;-l> =0, Ass A,,AW,,

40 -0 -0

it =
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Table 5.4.2 : The approximate probability that event A will occur in 7, given

the conditions of system at the end of 7, .

Event, Probability, P® h®
E®
L EP=A PO = 4 At 20 T O
5| E O =A, PO = s,At 12111111
5| EY =Aq PO = 4 At L1211111)
4| ED =A PO — At 1112111 1)
£| EO =A PO = 7, .t 11112111
6| E& =Aq PO = 1.t 11111211
7 E7(1) =A1n P7(1) =1—(ty, + thy, + Ay, + oy, + o, + Ay, )AL 1111111

149



55 NUMERICAL RESULTS FOR DISTRIBUTION OF QUEUE
LENGTH AND STATES OF ARRIVAL AND SERVICE
PROCESSES IN A SYSTEM OF TWO DEPENDENT
HYPO(2)/HYPO(2)/2/2 QUEUES

Suppose (t4q, th,y Mo1s Mo,) = (10, 20, 10, 20), (A, A, 451, 40,) = (2, 6, 2, 6),
and 011 = 022 = 0.6. The traffic intensities p,, p, in the two queues are then given

respectively by

PL= (ﬂll_l + ﬂlz_l)/(ﬂ'u_l + 2’12_1) =0.225,

P2 = (,Uzlil + ,Uzzil)/(/lzlil + /12271) =0.225.

The probabilities P, .

hih2Jil21l22)2

[n,]1[n,]computed by using the method in Section

5.3 and the simulation procedure in Section 5.4 are represented in Table (5.5.1) and

Figure (5.5.1).

Next, Table (5.5.2) and Figure (5.5.2) show the results for the case when
(£t gy oy 155) = (10, 20, 10, 20), (A5, 45, Ap1:A20) = (4, 5, 3, 8), du1 = G2z = 0.9,

p, =0.33333 and p, =0.32727 .

The tables and figures show that the results for P, .

hih2Jil21l22)2

[n,1[n,] found by the

proposed method agree well with those found by the simulation procedure.
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Table 5.5.1 : Comparison of results
and simulation procedure [ (sy, £y, tp1, #,) = (10, 20, 10, 20), (433, Ay, Ay, 45,)

=(2,6,2,6), q11=022=0.6, p, =0.225 , p, =0.225and Ns = 50000].

forP,

, [n,][n,]based on the proposed method

11h2Jil21122)2

Proposed Simulation
nin, T11012)1i21122)2 method procedure
001001 0.31757 0.31726
00 001002 0.12968 0.12698
002001 0.12539 0.12666
002002 0.04956 0.05202
001011 0.00444 0.00412
001012 0.00106 0.00102
01 001021 0.00283 0.00292
001022 0.00075 0.00078
001101 0.06340 0.06362
001102 0.01480 0.01492
001201 0.02900 0.02982
001202 0.00780 0.00784
002011 0.00117 0.00102
002012 0.00028 0.00022
002021 0.00081 0.00098
002022 0.00021 0.00014
002101 0.01824 0.01916
002102 0.00316 0.00314
002201 0.00906 0.00944
002202 0.00211 0.00206
011001 0.00443 0.00372
10 011002 0.00117 0.00114
012001 0.00105 0.00094
012002 0.00027 0.00016
021001 0.00282 0.00246
021002 0.00081 0.00072
022001 0.00075 0.00068
022002 0.00021 0.00022
101001 0.06304 0.06450
101002 0.01820 0.01734
102001 0.01476 0.01464
102002 0.00315 0.00280
201001 0.02884 0.03024
201002 0.00903 0.00888
202001 0.00778 0.00680
202002 0.00211 0.00184
001111 0.00449 0.00444
001112 0.00063 0.00066
02 001121 0.00150 0.00198
001122 0.00027 0.00016
001211 0.00287 0.00350
001212 0.00046 0.00046
001221 0.00101 0.00098
001222 0.00019 0.00016
002111 0.00078 0.00078
002112 0.00009 0.00006
002121 0.00031 0.00036
002122 0.00005 0.00006
002211 0.00057 0.00064
002212 0.00007 0.00004
002221 0.00023 0.00022
002222 0.00004 0.00002
011011 0.00002 0
011012 4.37E-06 0
11 011021 1.54E-05 2.00E-05
011022 3.19E-06 0
011101 5.06E-04 5.00E-04
011102 8.34E-05 1.00E-04
011201 2.28E-04 4.00E-05
011202 4.45E-05 2.00E-05
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Table 5.5.1, continued

Proposed Simulation
nin, 111012)1i21122)2 method procedure

012011 4.37E-06 0

11 012012 8.23E-07 0
012021 3.08E-06 0
012022 6.34E-07 0
012101 9.42E-05 8.00E-05
012102 1.32E-05 2.00E-05
012201 4.60E-05 0
012202 8.51E-06 0
021011 1.54E-05 2.00E-05
021012 3.08E-06 0
021021 1.00E-05 0
021022 2.20E-06 0
021101 3.48E-04 3.20E-04
021102 6.13E-05 6.00E-05
021201 1.53E-04 1.00E-04
021202 3.19E-05 2.00E-05
022011 3.19E-06 0
022012 6.34E-07 0
022021 2.20E-06 0
022022 4.85E-07 0
022101 7.13E-05 6.00E-05
022102 1.04E-05 0
022201 3.42E-05 4.00E-05
022202 6.65E-06 2.00E-05
101011 5.07E-04 4.80E-04
101012 9.44E-05 2.00E-05
101021 3.49E-04 3.20E-04
101022 7.14E-05 2.00E-05
101101 0.00865 0.00870
101102 0.00132 0.00138
101201 0.00415 0.00438
101202 7.80E-04 7.20E-04
102011 8.36E-05 8.00E-05
102012 1.32E-05 0
102021 6.15E-05 4.00E-05
102022 1.04E-05 0
102101 0.00132 0.00122
102102 1.68E-04 8.00E-05
102201 7.12E-04 6.80E-04
102202 1.13E-04 6.00E-05
201011 2.28E-04 1.80E-04
201012 4.61E-05 8.00E-05
201021 1.54E-04 1.60E-04
201022 3.42E-05 2.00E-05
201101 0.00414 0.00370
201102 7.12E-04 5.80E-04
201201 0.001927 0.00164
201202 3.97E-04 4.40E-04
202011 4.45E-05 8.00E-05
202012 8.52E-06 0
202021 3.19E-05 0
202022 6.66E-06 0
202101 7.79E-04 7.60E-04
202102 1.12E-04 1.40E-04
202201 3.97E-04 4.20E-04
202202 7.47E-05 4.00E-05
111001 0.00448 0.00480
111002 7.82E-04 6.00E-04
112001 6.32E-04 6.00E-04
112002 9.02E-05 6.00E-05
121001 0.001497 0.00138
121002 3.11E-04 2.60E-04
122001 2.64E-04 1.60E-04
122002 4.96E-05 4.00E-05
211001 0.00286 0.00268
211002 5.68E-04 6.20E-04

20 212001 4.60E-04 3.20E-04
212002 7.15E-05 4.00E-05
221001 0.00101 0.00106
221002 2.29E-04 2.40E-04
222001 1.96E-04 4.00E-05
222001 4.01E-05 4.00E-05
Total 0.99639 0.99650
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Table 5.5.2 : Comparison of results
and simulation procedure [ (sy, £, tp1, #5,) = (10, 20, 10, 20), (433, Ay, Ay, 45,)

=(4,5,3,8), qu=022=0.9, p, =0.33333 , p, =0.32727 and Ns= 50000].

forP,

, [n,][n,]based on the proposed method

11h2Jil21122)2

Proposed Simulation
nin, T11012)1i21122)2 method procedure
001001 0.154967 0.154700
00 001002 0.079565 0.074560
002001 0.176347 0.179680
002002 0.082711 0.082800
001011 0.004130 0.003560
001012 1.12E-03 0.001140
01 001021 0.002555 0.002660
001022 7.92E-04 7.20E-04
001101 0.050224 0.049580
001102 0.010346 0.009440
001201 0.022045 0.021920
001202 0.006014 0.006020
002011 0.003871 0.003420
002012 1.03E-03 7.60E-04
002021 0.002487 0.001960
002022 7.66E-04 8.40E-04
002101 0.049634 0.050940
002102 0.009004 0.008720
002201 0.022668 0.024400
002202 0.005867 0.005520
011001 0.004725 0.003340
10 011002 1.98E-03 0.001880
012001 2.24E-03 0.001780
012002 9.26E-04 7.60E-04
021001 0.002873 0.002780
021002 0.001235 0.001180
022001 1.63E-03 0.001520
022002 6.96E-04 5.40E-04
101001 0.062573 0.064180
101002 0.028070 0.029400
102001 0.021006 0.019900
102002 0.008323 0.007860
201001 0.026763 0.028360
201002 0.012170 0.012640
202001 0.012762 0.012460
202002 0.005494 0.004940
001111 0.004475 0.00460
001112 6.20E-04 6.40E-04
02 001121 1.51E-03 0.00162
001122 2.81E-04 1.60E-04
001211 0.002900 0.003420
001212 4.50E-04 5.80E-04
001221 9.96E-04 9.00E-04
001222 2.08E-04 2.80E-04
002111 3.38E-03 0.003720
002112 3.98E-04 3.40E-04
002121 1.24E-03 0.001320
002122 2.11E-04 2.00E-04
002211 0.002392 0.002360
002212 3.11E-04 3.20E-04
002221 8.63E-04 9.00E-04
002222 1.67E-04 1.40E-04
011011 8.34E-05 6.00E-05
011012 2.12E-05 0
11 011021 5.33E-05 2.00E-05
011022 1.56E-05 4.00E-05
011101 1.18E-03 8.60E-04
011102 2.11E-04 2.80E-04
011201 5.25E-04 4.00E-04
011202 1.30E-04 1.20E-04
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Table 5.5.2, continued

Proposed Simulation

nin, i11110)1i01022)2 method procedure
012011 3.66E-05 0
012012 9.21E-06 0

11 012021 2.37E-05 2.00E-05
012022 6.86E-06 0
012101 5.28E-04 5.20E-04
012102 9.02E-05 1.20E-04
012201 2.38E-04 2.00E-04
012202 5.81E-05 4.00E-05
021011 5.18E-05 4.00E-05
021012 1.33E-05 2.00E-05
021021 3.28E-05 4.00E-05
021022 9.69E-06 0
021101 7.37E-04 5.60E-04
021102 1.35E-04 8.00E-05
021201 3.26E-04 3.40E-04
021202 8.21E-05 1.00E-04
022011 2.72E-05 0
022012 6.93E-06 0
022021 1.75E-05 0
022022 5.15E-06 0
022101 3.97E-04 2.40E-04
022102 6.83E-05 6.00E-05
022201 1.78E-04 1.60E-04
022202 4.39E-05 2.00E-05
101011 1.31E-03 0.001360
101012 3.38E-04 4.00E-04
101021 8.40E-04 7.40E-04
101022 2.51E-04 2.80E-04
101101 0.017054 0.018160
101102 3.08E-03 0.002720
101201 0.007750 0.009480
101202 1.96E-03 0.002060
102011 3.81E-04 4.20E-04
102012 9.35E-05 4.00E-05
102021 2.50E-04 2.00E-04
102022 7.01E-05 6.00E-05
102101 0.004991 0.004980
102102 8.49E-04 8.80E-04
102201 2.32E-03 0.002260
102202 5.54E-04 5.00E-04
201011 5.59E-04 3.40E-04
201012 1.46E-04 1.20E-04
201021 3.56E-04 5.20E-04
201022 1.08E-04 1.80E-04
201101 0.007395 0.008460
201102 1.36E-03 0.001340
201201 0.003328 0.003800
201202 8.53E-04 9.00E-04
202011 2.39E-04 1.60E-04
202012 6.11E-05 6.00E-05
202021 1.55E-04 2.20E-04
202022 4.57E-05 1.00E-04
202101 0.003215 0.003100
202102 5.61E-04 5.80E-04
202201 0.001468 0.001620
202202 3.65E-04 4.00E-04
111001 0.005198 0.005080
111002 1.87E-03 0.002020
112001 1.08E-03 6.00E-04
112002 3.40E-04 3.00E-04
121001 1.74E-03 0.001780
121002 6.67E-04 5.00E-04
122001 5.11E-04 4.60E-04
122002 1.83E-04 1.20E-04
211001 0.003437 0.003400
211002 1.33E-03 0.001440

20 212001 8.07E-04 7.00E-04
212002 2.67E-04 1.80E-04
221001 1.16E-03 0.001260
221002 4.63E-04 4.80E-04
222001 3.89E-04 3.20E-04
222001 1.46E-04 1.00E-04
Total 0.987255 0.987880
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Figure 5.5.1 : Comparison of results for P, .

l1ih2hil2al22)2

[n,][n,]based on the proposed

method and simulation procedure [ (z44, £4,, £,1, 145,) = (10, 20, 10, 20),

(A1 Ao Aors App) = (2,6, 2,6), qua=0p2=0.60, p, =0.225,
0, =0.225and N = 50000].
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Figure 5.5.2 : Comparison of results for P, .

l11h2hil2al22)2

[n,][n,]based on the proposed

method and simulation procedure [ (z4,, £, 444, 14,,) = (10, 20, 10, 20),
(/111!/’1121121’/122) = (4; 5; 3; 8), qu1=022= 090, P = 033333,
p, = 0.32727 and N, = 50000].
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56 DERIVATION OF THE FORWARD EQUATIONS IN A
SYSTEM OF TWO DEPENDENT HYPO(2)/HYPO(2)/C/C
QUEUES

Consider a system of two Hypo(2)/Hypo(2)/c/c queues in which the customer

who arrives at queue m has a probability of q,,,,> 0 of joining queue m’, where m e

2
{12}, me{l,2}and > gy, =1.

m’'=1

As in Section 2.10, let BY . . . . [n,][n,] be the probability that at the end
of the interval z, , the number of customers in queue m is ny,, the service process in

queue m is in the state iy for server I, and the arrival process in queue m is in the state

Jm, me{l, 2}, 1<I<c, ime€{0, 1, 2} and jn {1, 2}. Assume that

=i (k)
Piuilz---i1cili21izz---i2cjz [nl] [nz] - II<I—Il]o Pinilz---i1cj1i21i22---i2cjz [nl] [nz]

exists.
Let h™ be the vector

W (il ;0 JOR G0 TORCIENORNG)
h _( Ill’ IlZ o IlC ’Jl ! I21’ |22’ e IZC’JZ ! r']l ’n2 )

of which the components are respectively the value of iy, i1, ..., i1c, J1, i21, 122, -.., I2c,
j2, N1, Ny at the end of 7, . Again we refer to h™ as the vector of characteristics of the

queueing system at the end of , .

The value h® may be developed from h®™ after some appropriate activities in

the interval z, . The set of possible activities may be denoted by a set A = {As, A, ...,

The meanings of the components in A, are explained in Table 5.6.1.
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Table5.6.1:

The meanings of the components Ay;in Ay, 1< j<2(c+1).

j Auj Meaning

1 1 A transition in the state of server 1 in queue 1
occurs in 7,

1 0 A transition in the state of server 1 in queue 1 does
not occur inz,

1 -1 Queue 1 is empty at the end of 7, , and whether a
transition in the state of server 1 in queue 1 has
occurred inz, is not relevant.

2 1 A transition in the state of server 2 in queue 1
occurs in 7,

2 0 A transition in the state of server 2 in queue 1 does
not occur inr,

2 -1 Queue 1 is empty at the end of 7, ;, and whether a
transition in the state of server 2 in queue 1 has
occurred inz, is not relevant.

N\ N N

C 1 A transition in the state of server r in queue 1
occurs in 7,

c 0 A transition in the state of server r in queue 1 does
not occur inr,

c -1 Queue 1 is empty at the end of 7, ;, and whether a
transition in the state of server r in queue 1 has
occurred inz, is not relevant.

(c+1) 1 A transition in the state of the arrival process in
queue 1 occursin z, .

(c +1) 0 A transition in the state of the arrival process in
queue 1 does not occur in z, .

(c+2) 1 A transition in the state of server 1 in queue 2
occurs in Ty

(c+2) 0 A transition in the state of server 1 in queue 2 does
not occur inz,

(c+2) -1 Queue 2 is empty at the end of 7, ; and whether a
transition in the state of server 1 in queue 2 has
occurred inz, is not relevant.

(c +3) 1 A transition in the state of server 2 in queue 2
occurs in Ty
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Table 5.6.1, continued

j Ayj Meaning

(c +3) 0 A transition in the state of server 2 in queue 2 does
not occur inz,

(c +3) -1 Queue 2 is empty at the end of 7, , and whether a
transition in the state of server 2 in queue 1 has
occurred inz, is not relevant.

N\ A\ A\

(2c +1) 1 A transition in the state of server c in queue 2
occurs in 7,

(2c +1) 0 A transition in the state of server c in queue 2 does
not occur inz,

(2c +1) -1 Queue 2 is empty at the end of 7,_, and whether a
transition in the state of server c in queue 2 has
occurred inz, is not relevant.

(2c +2) 1 A transition in the state of the arrival process in
queue 2 occurs in z, .

(2c +2) 0 A transition in the state of the arrival process in
queue 2 does not occur in .

The meanings of Ay;in for (2c+3) < j <(2c+4) are given below:

|
N

AW(2c+3) =

(11,

12,

Aw(2c+4) =<

if the arriving customer in queue 1 stays back in queue 1.
if the arriving customer in queue 1 goes to queue 2.

no customer arrives in queue 1 and it is not relevant to find out
whether the arriving customer is staying back or going elsewhere.

if the arriving customer in queue 2 goes to queue 1.
if the arriving customer in queue 2 stays back in queue 2.
no customer arrives in queue 2 and it is not relevant to find out

whether the arriving customer is staying back or going elsewhere.
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For a given value of h®, we may use a computer to search all the possible

combinations of h®*™®and A, which lead to h® . The results of the search may be

summarized and recorded in a coded form as has been done in Section 5.2.

Next, the codes for the corresponding balance equations similar to (5.2.2) may
be obtained. The method in Section 5.3 may now be used to solve the balance equations

so that the joint queue length distribution may be computed.

A simulation procedure similar to that given in Section 5.4 may also be used to

find the joint queue length distribution.
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