
Chapter 3

Integrated inventory model for

final production batch

3.1 Introduction

The integrated inventory model has been widely discussed by many re-

searchers since past four decades. The literature review for this model has

been presented in Chapter 2. Most of the model considered the constant

demand rate. Recently, researcher realized that the constant demand rate is

no more realistic because the demand is always changing, for example it is

either increasing or decreasing with time.

In this chapter, we will discuss various of inventory policies regarding

the inventory model under time varying demand rate. The discussion starts
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with the integrated policy for shipping a vendor’s final production batch

to a single buyer under linearly decreasing demand rate. The reason why

the final batch is important to be discussed is that just before the equip-

ment for manufacturing the product is dismantled, there is always one final

opportunity to make enough stock to meet all the remaining demand. As

usual, costs are attached to the manufacturing batch set up, the delivery of

a shipment and stockholding at the vendor and buyer. For a final batch,

the objective is to determine the size of batch together with the number and

shipments size which minimize the total cost, assuming that the vendor and

buyer collaborate and find a way of sharing the consequent benefits.

Most previous work has been based on the assumption that unit stock-

holding costs increase as stock moves down the supply chain, but recent re-

search has suggested that the opposite may sometimes hold [29]. Motivated

from this ideas, both situations in which the buyer’s holding cost is higher

than the vendor’s and the reverse situation will be discussed . We show how

the solution policy may be derived when the shipment sizes and periods are

equal or unequal. We illustrate this policy with numerical examples.
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3.2 Mathematical formulation

The cost factors considered here are

1. the fixed shipment set up cost, A2

2. the inventory holding cost for the vendor, h1

3. the inventory holding cost for the buyer, h2

Note that the production set up cost can be ignored since we are only making

one batch of production. Here, we state the general notations and assump-

tions which will be used throughout this chapter.

3.2.1 Notation

Let i = 1, 2, . . . , n be the number of shipments and H is the finite planning

horizon.

• The demand rate for the finished product at time t is f(t) for t ∈ (0, H).

• P units per unit time is the finite production rate. The value of the

production rate is greater than the demand rate, P > D.

• x is the initial stock held at the buyer when the final production is

about to start.

• qi is the size of each shipment.
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• D is the total demand in the interval (0, H).

3.2.2 Assumption

• The general notation for demand function is f(t). It could be linearly

decreasing (f(t) = a − bt) or linearly increasing (f(t) = a + bt) or

exponentially decreasing (f(t) = ae−bt). We choose f(t) = a − bt as

an example in our models in this chapter. Here, a is the initial rate

demand with a > 0 and b is the slope with b > 0.

• We are currently at time zero and wish to determine the stock replen-

ishment which minimises the total relevant cost.

• The set-up and ordering costs are fixed throughout the planning hori-

zon.

• The production rate, P is also fixed throughout the planning horizon.

• There are no limitation on the order size.

• The transportation cost per unit time is ignored since we are assuming

that it is constant and independently from the ordering quantity.

• x is greater than zero and depends on the size of the first shipment.

38



• The finished product is transferred from the vendor to the buyer in n

shipments during the production up-time and down-time.

• No shortages are allowed.

3.3 Case 1 : h1 < h2

This case has been widely studied in the literature since 1977 where the as-

sumption is that the buyer’s holding cost is higher than the vendor’s. In

Hill and Omar [29], there are two reasons generally used to justify this as-

sumption; that is (i) the stock increases in value as it moves down the supply

chain, and (ii) the vendor may be more likely to use cheap bulk store facilities

(particularly in a retail distribution chain). Due to h1 < h2, the buyer wishes

as little stock as possible at their store and the vendor delivers a shipment

only when the buyer’s inventory is just about to run out.

The initial stock, x is the amount which the buyer needs at the begin-

ning of a production cycle to meet demand during the time it takes for the

vendor to manufacture the quantity of stock which will make up the first

shipment. Based on Omar’s model [37], the initial stock at the buyer, x is

given. However, in this model, we assume that the value of x depends on

the first shipments size, q1. We also assume that the demand rate before the

final batch is constant at rate a. Therefore, the initial stock at the buyer, x
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is given by

x = a(
q1
P
) (3.1)

where q1/P is the time to produce the first shipment quantity, q1.

Figure 3.1: Plot of the inventory level against time when n = 4

Figure 3.1 shows the illustration of the model with four equal shipments

which represents the stock level of the system, vendor and buyer. The pro-

duction batch will starts at t0 = 0 until the production uptime, tp. The first

shipment is at time t1 (t1 = 0 according to buyer’s time) and follows at time

t2, t3, . . . , tn with the shipment sizes q1, q2, . . . , qn.

In the Figure 3.1, y1(t) represents the remaining stock level at time t in

the interval (tp, H) which can be expressed as
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∫ H

tp

f(t) dt−
∫ t

tp

f(t)dt. (3.2)

Then,

y1(t) =

∫ H

t

f(t) dt. (3.3)

y2(t) is the stock level during production time, (0, tp) and given by

y2(t) = Pt−
∫ t

0

f(t) dt. (3.4)

The total demand during the planning horizon,

D =

∫ H

0

f(t) dt. (3.5)

3.3.1 Total time-weighted system stock

The total system stock is represent by the area under the curve y1(t) and y2(t)

in (tp, H) and (0, tp) respectively. Hence, we have the total time-weighted

system stock, TSS, as

∫ tp

0

y2 dt+

∫ H

tp

y1 dt+
1

2
xH. (3.6)

The production uptime, tp can be obtained from the following :

Ptp =

∫ H

0

f(t) dt

tp =
D

P
. (3.7)
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3.3.2 Total time-weighted buyer stock

In figure 3.1, qi, i = 1, 2, 3, 4 represent the shipment sizes for each shipment.

We also have

qi =

∫ ti+1

ti

f(t)dt. (3.8)

Let Ii(t) be the inventory level for i-shipment at any time t and it given

by

Ii(t) =

∫ ti+1

t

f(t)dt. (3.9)

Hence, the buyer stock can be calculated by the area under the curve Ii(t) in

the period (ti, ti+1). It follows that the total time-weighted buyer stock from

ith shipment, TBS is

n∑
i=1

{∫ ti+1

ti

[∫ ti+1

t

f(t) dt

]
dt

}
. (3.10)

It follows, the total cost for this model, TC, is given by

TC = nA2 + h1(TSS − TBS) + h2TBS

= nA2 + h1TSS + (h2 − h1)TBS. (3.11)

For example, let the demand rate is linearly decreasing over the period

(0, H) that is

f(t) = a− bt a > 0; b > 0; t > 0;H > 0. (3.12)
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Substituting (3.12) into (3.3), (3.4), (3.5), (3.6), (3.7) and (3.10) we have

y1(t) = a(H − t)− b

2
(H2 − t2). (3.13)

y2(t) = (P − a)t+
b

2
t2. (3.14)

D = H

(
a− b

2
H

)
. (3.15)

TSS =
Pt2p
2

+H(
bH

2
− a)tp +H2(

a

2
− bH

3
) +

xH

2
. (3.16)

tp =
H

P
(a− b

2
H). (3.17)

TBS = a
n∑

i=1

(t2i+1 − titi+1)−
a

2
(H2 − t21)−

b

2

n∑
i=1

(t3i+1 − tit
2
i+1)

+
b

6
(H3 − t31). (3.18)

Finally, substituting (3.16) and (3.18) into (3.11) we have,

TC = nA2 + h1

{
Pt2p
2

+H(
bH

2
− a)tp +H2(

a

2
− bH

3
) +

xH

2

}
+ (h2 − h1)

{
a

n∑
i=1

(t2i+1 − titi+1)−
a

2
(H2 − t21)

− b

2

n∑
i=1

(t3i+1 − tit
2
i+1) +

b

6
(H3 − t31)

}
. (3.19)

TC is in the function of n (discrete variable) and a vector t⃗ = t1, t2, . . . , tn

where t1 = 0 and tn+1 = H.
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We will explore the best solution of the above total cost based on three

policies :

1. Policy 1 : Equal shipment sizes

2. Policy 2 : Equal shipment periods

3. Policy 3 : Unequal shipment sizes and periods

The objective in every policy is to find an optimal ti (or qi) for a given n

which gives the minimum total cost, TC(n, t⃗ ).

3.3.3 Policy 1 : Equal shipment sizes

In this policy the shipment sizes, qi are assumed to be equal. So, we have

fixed value of qi which can be calculated as follow

qi =
D

n
i = 1, 2, · · · , n. (3.20)

The buyer receives an equal quantity for each shipment and takes (ti+1−

ti) amount of time to use up qi, where i = 1, 2, . . . , n. Hence, we have

∫ ti+1

ti

f(t) dt =
D

n
. (3.21)

For example, as shown in Figure 3.1, the vendor delivers four equal ship-

ments. The first shipment is at time t1 (t1 = 0 according to buyer’s time),

and in the period (t1, t2), the buyers will use up q1 until the second shipment
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is arrive just before the first shipment is finished at t2. This can be written

as

q1 =

∫ t2

t1

f(t) dt =
D

n
. (3.22)

From equation (3.22), we get

t2 =
a

b

{
1−

√
a− 2b

a2

[
− b

2
t1

2 + at1 +

(
D

n

)]}
. (3.23)

Similarly, in the period time, (t2, t3), the buyer will use up q2 while the

vendor will continue producing and deliver the third shipment which will

arrive at the buyer exactly just before the second shipment is finished at t3.

This can be written as

q2 =

∫ t3

t2

f(t) dt =
D

n
. (3.24)

From equation (3.24), we get

t3 =
a

b

{
1−

√
a− 2b

a2

[
− b

2
t2

2 + at2 +

(
D

n

)]}
. (3.25)

This process is repeated until the end of the planning horizon, H. Generally,

the shipment times is

ti+1 =
a

b

{
1−

√
a− 2b

a2

[
− b

2
ti
2 + ati +

(
D

n

)]}
i = 1, 2, · · · , n− 1.(3.26)

Substituting (3.26) into (3.19) gives the total cost, TC1(n, t⃗ ) for this

policy.
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3.3.3.1 Solution procedure

The computer algorithm of the solution procedure is outline below :

1. Let n = 1

2. Set t1 = 0, tn+1 = H

3. Set qi = D/n, i = 1, 2, . . . , n

4. Compute ti+1, i = 1, 2 · · · , n − 1 using (3.26) and TC1(n, t⃗ ) using

(3.19)

5. Set TC1(n, t⃗ ) as TC1(n
∗, t⃗ ). Increase n by 1 and repeat step 4. Stop

when TC1(n, t⃗ ) ≥ TC1(n
∗, t⃗ ).

The basic idea of the above algorithm is to start with n = 1. Next,

we increase n to improve the total system cost until the first n = n∗ that

satisfies the conditions TC1(n
∗, t⃗ ) < TC1(n

∗ − 1, t⃗ ) and TC1(n
∗, t⃗ ) <

TC1(n
∗ + 1, t⃗ ).

3.3.4 Policy 2 : Equal shipment periods

In this policy, the periods between shipments are assumed to be equal. Fig-

ure 3.2 gives the graphical representation for this policy.
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Figure 3.2: Plot of the inventory level against time when n = 4 with equal

shipment periods policy

Note that the value of H is fixed and t1 = 0 according to buyer’s time.

Then, we have

t2 = t1 +
H

n
=

H

n

t3 = t2 +
H

n
= 2

H

n

t4 = t3 +
H

n
= 3

H

n

...

ti+1 = ti +
H

n
= i

H

n
, i = 1, 2, · · · , n− 1. (3.27)

It follows

qi =

∫ ti+1

ti

f(t)dt. (3.28)

The total cost for this policy can be calculated by substituting (3.27) into
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(3.19). Then we have,

TC2(n, t⃗ ) = nA2 + h1

{
Pt2p
2

+H(
bH

2
− a)tp +H2(

a

2
− bH

3
) +

xH

2

}
+

(h2 − h1)H
2

2n

{
a− bH

6n
(3n+ 1)

}
. (3.29)

The total cost, TC2(n, t⃗ ) for this policy is in the term of n (discrete

variable) and t⃗ = t2, t3, . . . , n (real variables).

3.3.4.1 Solution procedure

Similarly, the computer algorithm of the solution procedure is outline below:

1. Let n = 1

2. Set t1 = 0, tn+1 = H

3. Set ti+1, i = 1, 2, · · · , n− 1 as (3.27)

4. Compute TC2(n, t⃗ ) using (3.29)

5. Set TC2(n, t⃗ ) as TC2(n
∗, t⃗ ). Increase n by 1 and repeat step 4. Stop

when TC2(n, t⃗ ) ≥ TC2(n
∗, t⃗ )

Similarly, the basic idea of the above algorithm is to start with n = 1.

Next, we increase n to improve the total system cost until the first n = n∗

that satisfies the conditions TC2(n
∗, t⃗ ) < TC2(n

∗ − 1, t⃗ ) and TC2(n
∗, t⃗ ) <

TC2(n
∗ + 1, t⃗ ).
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3.3.5 Policy 3 : Unequal shipment sizes and unequal

shipment periods

In this policy both shipment sizes and periods are assumed to be varied.

Figure 3.3 gives the graphical representation for this policy with four unequal

shipments.

Figure 3.3: Plot of the inventory level against time when n = 4 with unequal

shipment sizes and periods policy

Since stockout is not allowed, the time for the vendor to produce qi+1 must

be less than the time for the buyer to finish up qi. For example, Figure 3.4

shows the illustration of the inventory level at the buyer for the first and

second shipments.
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Figure 3.4: The first and second shipments

The time to produce the second shipment, q2 must be less than the time

for the buyer to finish up the first shipment, q1. It follows that

P (t2 − t1) ≥ q2

t2 − t1 ≥ q2
P

where q1 =

∫ t2

t1

f(t)dt

t2 =
a

b

{
1−

√
1− 2b

a2

[
at1 −

b

2
t21 + q1

]}
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Figure 3.5 shows the illustration of the inventory level at the buyer for

the first, second and third shipments.

Figure 3.5: The first, second and third shipments
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Similarly, the time to produce the third shipment, q3, must be less than

the time for the buyer to finish up the second shipment, q2, and we have

P (t3 − t2) ≥ q3

P (t3 − t1 + t1 − t2) ≥ q3

P (t3 − t1) ≥ P (t2 − t1) + q3

P (t3 − t1) ≥ q2 + q3

(t3 − t1) ≥ q2 + q3
P

(3.30)

where q2 =

∫ t3

t2

f(t)dt

t3 =
a

b

{
1−

√
1− 2b

a2

[
at2 −

b

2
t22 + q2

]}

Generally, the time to produce the i+1 shipment, qi+1 must be less than

the time for the buyer to finish up the i shipment, qi, that is

P (ti+1 − t1) ≥
i∑
1

qi+1

where qi =

∫ ti+1

ti

f(t)dt (3.31)

ti+1 =
a

b

{
1−

√
1− 2b

a2

[
ati −

b

2
t2i + qi

]}
(3.32)

i = 1, 2, · · · , n− 1.
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The total quantity delivered to the buyer must be equal to the total

demand, that is

n∑
i=1

qi = D , i = 1, 2, · · · , n (3.33)

From these arguments, we can establish the following constraint opti-

mization problem,

Minimum : TC2(n, t⃗ )

Subject to

a

b

{
1−

√
1− 2b

a2

[
ati −

b

2
t2i + qi

]}
≥ 1

P

i∑
1

qi+1, (3.34)

i = 1, 2, · · · , n
n∑

i=1

qi = D. (3.35)

3.3.5.1 Solution procedure

We derived the following algorithm and use the Microsoft Excel Solver as a

solution tool:

1. Let n = 1

2. Set t1 = 0, tn+1 = H

3. Set qi, i = 1, 2, · · · , n as changing variables. The Microsoft Excel

Solver will find an optimal solution of qi which satisfy constraints (3.34)

and (3.35), if exist.
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4. Compute ti+1, i = 1, 2, · · · , n − 1 using (3.33) and TC2(n, t⃗ ) using

(3.19)

5. Set TC2(n, t⃗ ) as TC2(n
∗, t⃗ ). Increase n by 1 and repeat step 4. Stop

when TC2(n, t⃗ ) ≥ TC2(n
∗, t⃗ ).

Again, the basic idea of the above algorithm is to start with n = 1.

Next, we increase n to improve the total system cost until the first n = n∗

that satisfies the conditions TC(n∗, t⃗ ) < TC(n∗ − 1, t⃗ ) and TC(n∗, t⃗ ) <

TC(n∗ + 1, t⃗ ).

3.3.6 Numerical examples and sensitivity analysis

To show the effectiveness of the proposed policies we adopt the same numeri-

cal examples as Omar [37] except the value of a, b and D. For easy reference,

the parameter values are restated here:

A2 = 25, a = 200, b = 20 H = 5, h1 = 4, h2 = 5

D = 750, P = 1000

Tables 3.1, 3.2 and 3.3 give the minimum total cost and its minimum ship-

ment sizes for Policy 1, 2 and 3. For example, in Table 3.1, when n = 2, the

total minimum cost for this policy is 7222.97 with the initial inventory at

the buyer, x is 75 and two equal shipments, where q1 = q2 = 375.00. Policy
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1 reached the optimal total cost, TC∗
1 = 6121.29 with 12 equal shipments

where q∗i = 62.50, for i = 1, 2, · · · , 12.

Table 3.2 gives the minimum total cost for Policy 2. For example, when

n = 3, the total cost is 6829.63 with its initial inventory level at the buyer, x

is 61.11. The shipment sizes, (q1, q2, q3) are (305.56, 250.00, 194.44) with the

shipment times, (t1, t2, t3) of (0.000, 1.667, 3.333) respectively. The minimum

total cost for Policy 2, TC∗
2 = 6159.66 is also at n∗ = 12.

Table 3.3 gives the minimum total cost for Policy 3. For example, when

n = 3, the total cost is 6511.15 where its initial inventory level at the buyer,

x is 13.95, and the shipment sizes, (q1, q2, q3) are (69.75, 355.05, 325.20)

with the shipment times, (t1, t2, t3) of (0.000, 0.355, 2.416) respectively. We

observed that the total cost for Policy 3 is always better than Policy 1 and

2 for all n = 1, 2, · · · , 14. Policy 3 reached the optimal total cost, TC3 =

6015.87 with 10 shipments. The total cost savings which can be obtained

from implementing Policy 3 rather than Policy 1 and 2 are 105.42 and 143.79

respectively.

Generally, the results given by Table 3.1 3.2 and 3.3 show the convexity

of the total cost function respect to n.
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Figure 3.6 gives the diagrammatic plot of the inventory level at the buyer

for Policy 3 with 10 shipments. All shipment sizes and periods are differ-

ent. The optimal shipment sizes, (q∗1, q
∗
2, q

∗
3, q

∗
4, q

∗
5, q

∗
6, q

∗
7, q

∗
8, q

∗
9, q

∗
10) are (7.87,

39.41, 98.53, 95.95, 93.19, 90.22, 86.99, 83.45, 79.47, 74.92) with its optimal

shipment times, (t∗1, t
∗
2, t

∗
3, t

∗
4, t

∗
5, t

∗
6, t

∗
7, t

∗
8, t

∗
9, t

∗
10) are at (0, 0.039, 0.239, 0.758,

1.292, 1.845, 2.418, 3.015, 3.641, 4.300) respectively.

Figure 3.6: Inventory level at the buyer for Policy 3 with n∗ = 10

For Policy 3, the illustration of the inventory level at the vendor is shown

in Figure 3.7. The first, second and third shipments are delivered during

the production time until it reached the production up-time, tp = 0.75 with
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inventory level at the vendor is 604.19. The vendor deliver the fourth, fifth,

· · · , tenth shipments during the production downtime until the end of the

production cycle, tn = H = 5.

Figure 3.7: Inventory level at the vendor for Policy 3 with n∗ = 10

From our numerical results, Policy 3 always gives the best minimum total

cost compared to the Policy 1 and Policy 2.

3.3.6.1 Sensitivity analysis

To study the effect of the total costs for Policy, 1, 2 and 3 that is TC1, TC2

and TC3, we analyze these three policies by varying some parameter values.
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We perform a numerical sensitivity analysis by varying the value of b, P ,

a, h1/h2 and A2. We use the following values as the standard values of the

parameter:

A2 = 25, h1 = 4, h2 = 5, D(t) = 200− 20t, P = 1000, H = 5

Figure 3.8: The total cost with different values of b

We vary the value of b from 5 to 35 for all policies to see the changes of the

TC. The standard values of the other parameters remain the same. These

results are illustrated in Figure 3.8. Note that 2(aH−P )
H2 < b < A

h
because of

D < P and a− bH > 0.

We found that the larger the value of b, the lower the total cost of all

policies. For example, when b = 5, TC1, TC2 and TC3 are 8058.06, 8066.94

and 938.57 respectively and when n = 35, it decreases to 4029.19, 4108.27

and 3936.30 respectively.
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Figure 3.9: The total cost saving while varying the value of b

Figure 3.9 illustrates the total cost savings obtained by using Policy 3

rather than the other two policies (Policies 2 and 3) for different values of b.

The blue and red lines represent the total savings by evaluating (TC1−TC3)

and (TC2−TC3) respectively. The blue line gives the lower total cost savings

compared to the red line and decreases as b increases while red line shows

the reverse pattern. For example, when b = 5, (TC1 − TC3) is 119.49 and

(TC2 − TC3) is 128.37 and when b = 35, (TC1 − TC3) decrease to 92.89 and

(TC2 − TC3) increases to 171.97.

Now, we present the implication of varying the value of P to the total

cost while the other standard parameter values remain the same. Note that

the value of P must be greater than D otherwise shortages will occur. In

this example, D = 750 therefore we increase P = 1000 up to 10000. The

62



result is shown in Figure 3.10.

Figure 3.10: The total cost with different values of P

As expected, the larger the value of P , the larger the total cost for all

policies and the lower the difference between the total cost of all policies. For

example, when P = 1000, the total cost for Policies 1, 2 and 3 are 6121.29,

6159.66 and 6015.87 with 12, 12 and 10 shipments respectively and when

P = 10000 it becomes 7001.28, 7006.53 and 6998.25 respectively with nine

shipments for all policies. This result suggests that the faster production rate,

P , the smaller the number of shipments and the larger the corresponding cost.

It also suggests that when P is very large, the total cost for all policies will

converge.

The total cost savings which are obtained while varying the value of

P is shown in Figure 3.11. We found that as P increases, the total cost
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Figure 3.11: The total cost saving while varying the value of P

savings decrease for both (TC1−TC3) and (TC2−TC3). For example, when

P = 1000, (TC1−TC3) and (TC2−TC3) are 105.42 and 143.79 respectively

while when P = 10000, it decreases to 3.03 and 8.28 respectively. This result

suggest that when P is very large, the total cost saving converges and gives

the same value.

Let us test the impact of parameter a to the total cost for all policies.

The other standard parameter values remain the same. Note that the value

of a must be greater than bH and less than P
H

+ bH
2

because the demand,

a − bH > 0 and aH − bH2

2
≤ P . In this example, b = 20, P = 1000 and

H = 5, therefore 100 < a ≤ 250. The result is given in Figure 3.12.

It can be seen that the larger the value of a, the larger the total cost for

all policies. For example, when a = 120, the total cost for Policy 1, 2 and
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Figure 3.12: The total cost with different values of a

3 are 2774.11, 2813.10 and 2734.13, whereas when a = 220, it increases to

6852.63, 6891.79 and 6727.52 respectively. The number of shipments for all

policies also increase as the value of a increases. In this example, it increases

from 7 to 13 for Policy 1, 8 to 13 for Policy 2 and 7 to 11 for Policy 3. It

makes sense that, with the same b, P and H, the greater the value of a, the

larger the total demand, D. Therefore, the vendor needs more shipments to

satisfy the demand and at the same time, to minimize their total cost.

Let us now turn to the impact of a to the total cost savings. As depicted

in Figure 3.13, the larger the value of a, the larger the total cost savings can

be obtained from implementing Policy 3 rather than Policies 1 and 2. Clearly

shown in the figure, TC1 − TC3 gives the lowest total cost savings compared

to TC2−TC3. The difference between its respective lines is almost the same
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for every a which is around 37 to 39.

Figure 3.13: The total cost saving while varying the value of a

Next, we decrease the ratio of the holding cost, h1/h2 by increasing h2

from 5 up to 10 while h1 = 4. All the other standard parameter values remain

the same. The corresponding results are displayed in Figure 3.14.

Figure 3.14: The total cost with different values of h1/h2
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We observe that all policies show similar pattern where the larger h1/h2,

the lower the total cost for all policies. As we expected, Policy 3 always gives

the best minimum total cost. For example, when h1/h2 = 0.400 the total

cost for Policies 1, 2 and 3 are 6668.31, 6689.45 and 6626.06 with 22, 23 and

22 shipments respectively and when h1/h2 = 0.800, it decreases to 6121.29,

6159.66 and 6015.87 with 12, 12 and 10 shipments respectively. These results

support the belief that for a large holding cost of the buyer, h2, it is better

to replenish their inventory in large number of shipments in order to reduce

the total cost.

Figure 3.15: The total cost saving while varying the value of h1/h2

Figure 3.15 gives a diagrammatic plot while varying the value of h1/h2.

We found that the larger h1/h2 the larger (TC1 − TC3) and (TC2 − TC3).

For example, when h1/h2 = 0.4, (TC1 − TC3) and (TC2 − TC3) is 42.25 and
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63.39. However, when h1/h2 = 0.8, it increases to 105.42 and 143.79.

Next, we vary the value of A2 from 5 to 45. Similarly, the other standard

parameter values are remain the same. The results are shown in Figure 3.16.

We conclude that the larger the value of A2, the larger the total cost for all

policies. The total cost for Policy 1 is close to Policy 2. In line with our

conclusion, Policy 3 always gives the best minimum total cost.

Figure 3.16: The total cost with different values of A2

Finally, the cost savings obtained by implementing Policy 3 rather than

the other two policies is plotted in Figure 3.17. We observed that the larger

the value of A2 the larger (TC1 − TC3) and (TC2 − TC3).
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Figure 3.17: The total cost saving while varying the value of A2

In the next section we will consider an integrated inventory model for the

case where the vendor’s holding cost is greater than the buyer.

3.4 Case 2 : h1 > h2

Consignment Stock, CS policy has been greatly discussed in the literature.

Generally, this model is suggested to be applied when the holding cost of the

vendor’s is greater than the buyer’s. In CS approach, it is assumed that the

vendor continues to own the stock held by the buyer up to the point when the

buyer pays for it. Therefore, the vendor incurs that part of the stockholding

cost. In other words, the supplier locates their inventory in the buyer’s store

or warehouse and allows them to sell or consume directly from his stock. The

buyer pays for the inventory only after he has resold or consumed it. The
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buyer still incurs costs related to storing and managing the inventory.

According to Piasecki [43], the consignment inventory works well for ;

• New and unproven products.

• The introduction of existing product lines into new sales channels.

• Very expensive products where sales are questionable.

• Service parts for critical equipment which the buyer would not stock

due to budget constraint or demand uncertainty.

The consignment material is procured via purchase requisition, purchase

orders and outline agreements. Both parties need to clearly understand the

terms in the agreements, hence there should have been no bearing on how

they determine the production and shipment policies.

Valentini and Zavanella [50] list out the obligation that may included in

CS agreement such as,

• The agreed lead time in case of sudden demand peaks for the company.

• The level of the safety stock the supplier should maintain in his own

depots, taking into account the provisioning time of the item consid-

ered. This parameter may also influence the minimum stock level, s

and maximum stock level, S values.
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• The type and capacity of the pallets for delivery, as s and S values are

an integer multiple of it. This parameter is also to be fixed to interface

CS standards with the kanban system.

• The company may agree to pay for the goods stored in its warehouse,

even if it has not consumed them yet, after a given amount of time.

Most of the previous research regarding CS as discussed in Chapter 2

assumed that the demand rate is constant. As we mentioned before, this

assumption is not realistic because the demand rate should be increasing or

decreasing with time. Motivated by this situation, we developed a consign-

ment stock model which considers the linearly decreasing demand for the

final production batch.

Figure 3.18: Inventory level for the case of h1 > h2 with 4 shipments
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Figure 3.18 shows the illustration of the model with four equal shipments

which represents the stock level of the system, vendor and buyer. The pro-

duction batch will starts at t0 = 0 until the production uptime, tp. The first

shipments is at time t1 and follows at time t2, t3, . . . , tn with the shipment

sizes q1, q2, . . . , qn. y1(t), y2(t) and D is similar as equation (3.3), (3.4) and

(3.5) in Section 3.3.

3.5 Total time-weighted system stock

The total system stock represented by the area under the curves y1(t) and

y2(t) in (tp, H) and (0, tp) respectively. The total time weighted system stock

for this case is similar to the Case 1 which is given by equation (3.6) where

tp is similar with equation (3.7).

3.6 Total time-weighted vendor stock

The total time-weighted vendor stock, TV S is the total area under the tri-

angles. In Figure 3.18, the triangles are represent by 0q1t1, t1q2t2, t2q3t3 and

t3q4tp. Hence, we have

TV S =
1

2

n∑
i=1

qi(ti − ti−1). (3.36)
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It follows that the total cost for this model, TC, is in the term of n

(discrete variable) and t2, t3, . . . , tn (real variables) which is given by

TC = n(A2) + h2TSS + (h1 − h2)TV S. (3.37)

Structurally the cost function is identical to the previous model (Case

h1 < h2). The constants h1 and h2 are interchanged and the last term on the

right hand side is now multiplied by the total time-weighted vendor stock,

TV S.

For example, let the demand rate linearly decreasing over the period

(0, H) that is

f(t) = a− bt a > 0; b > 0; t > 0;H > 0. (3.38)

Substituting (3.38) into (3.3), (3.4), (3.5), (3.6) and (3.7) we have

y1 = a(H − t)− b

2
(H2 − t2). (3.39)

y2 = (P − a)t+
b

2
t2. (3.40)

D = H

(
a− b

2
H

)
. (3.41)

TSS =
Pt2p
2

+H(
bH

2
− a)tp +H2(

a

2
− bH

3
) +

xH

2
. (3.42)

tp =
H

P
(a− b

2
H). (3.43)
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Finally, substituting (3.42) and (3.36) into (3.37) we have,

TC = nA2 + h2

{
Pt2p
2

+H(
bH

2
− a)tp +H2(

a

2
− bH

3
) +

xH

2

}
+ (h1 − h2)

{
1

2

n∑
i=1

qi(ti − ti−1)

}
. (3.44)

TC is in the function of n (discrete variable) and a vector t⃗ = t1, t2, . . . , tn.

where t1 = 0 and tn+1 = H.

We will explore the best solution of the above total cost based on three

policies :

1. Policy 1 : Equal shipment sizes

2. Policy 2 : Equal shipment periods

3. Policy 3 : Unequal shipment sizes and periods

The objective in every policies is to find an optimal ti (or qi) for a given

n which gives the minimum total cost, TC.

3.6.1 Policy 1 : Equal shipment sizes

In this policy the shipment sizes are assumed to be equal. Let qi be the

shipment size of ith shipment. So, we have fixed value of qi which can be

calculated as follow

qi =
D

n
i = 1, 2, . . . , n. (3.45)
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The illustration of this policy is given by Figure 3.18. The shipment

times, ti is given by

ti =
q

P
+ ti−1, i = 1, 2, . . . , n. (3.46)

3.6.1.1 Solution procedure

The computer algorithm of the solution procedure is outline below :

1. Let n = 1

2. Set t0 = 0, tn+1 = H

3. Compute qi = D/n, i = 1, 2, · · · , n

4. Compute ti, i = 1, 2, · · · , n using (3.46) and TC1(n, t⃗ ) using (3.44)

5. Set TC1(n, t⃗ ) as TC1(n
∗, t⃗ ). Increase n by 1 and repeat step 3 to 4.

Stop when TC1(n, t⃗ ) ≥ TC1(n
∗, t⃗ )

The basic idea of the above algorithm is to start with n = 1. Next,

we increase n to improve the total system cost until the first n = n∗ that

satisfies the conditions TC1(n
∗, t⃗ ) < TC1(n

∗ − 1, t⃗ ) and TC1(n
∗, t⃗ ) <

TC1(n
∗ + 1, t⃗ ).

3.6.2 Policy 2 : Equal shipment periods

In this section, we assume that the shipment periods are equal. The illustra-

tion of this model is given by Figure 3.19.
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Figure 3.19: Inventory level for the case of h1 > h2 with Policy 2 (Equal

shipment periods)

The production uptime tp will be divided by the number of shipments, n.

Then we have,

t1 = t0 +
tp
n

=
tp
n

(t0 = 0)

t2 = t1 +
tp
n

= 2
tp
n

t3 = t2 +
tp
n

= 3
tp
n

...

ti = ti−1 +
tp
n

= i
tp
n
, i = 1, 2, · · · , n. (3.47)

Given that

qi = P (ti − ti−1). (3.48)

The total cost for this policy can be calculated by substituting (3.47) into

equation (3.44). Then we have
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TC = nA2 + h2

{
Pt2p
2

+H(
bH

2
− a)tp +H2(

a

2
− bH

3
) +

xH

2

}
+ (h1 − h2)

{
Dtp
2n

}
. (3.49)

Note that Policies 1 and 2 will give the same value of the shipment sizes

because of the fixed value of production rate, P .

3.6.2.1 Solution procedure

The computer algorithm of the solution procedure is outline below

1. Let n = 1

2. Set t0 = 0, tn+1 = H

3. Compute ti, i = 1, 2, · · · , n using (3.47)

4. Compute qi, i = 1, 2, · · · , n using (3.48) and TC2(n) using (3.49)

5. Set TC2(n, t⃗ ) as TC2(n
∗, t⃗ ). Increase n by 1 and repeat step 3 to 4.

Stop when TC2(n, t⃗ ) ≥ TC2(n
∗, t⃗ )

Similarly, the basic idea of the above algorithm is to start with n = 1.

Next, we increase n to improve the total system cost until the first n = n∗

that satisfies the conditions TC2(n
∗, t⃗ ) < TC2(n

∗−1, t⃗ ) and TC2(n
∗, t⃗ ) <

TC2(n
∗ + 1, t⃗ ).
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3.6.3 Policy 3 : Unequal shipment sizes and unequal

shipment periods

In this policy, the shipment sizes and periods are unequal. Figure 3.20 shows

the inventory level for this policy.

Figure 3.20: Inventory level for the case of h1 > h2 with Policy 3 (Unequal

shipment sizes)

Substituting (3.6) and (3.36) into (3.44) we get the total cost for the

system. We build the following constraint optimization problem for this

policy where the objective function, TC3(n, t⃗ ) is refers to equation (3.44).

Constraint (3.34) and (3.35) in section 3.3.5 remain the same :
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Minimize : TC3(n, t⃗ )

Subject to

a

b

{
1−

√
1− 2b

a2

[
a
(qi−1

P

)
− b

2

(qi−1

P

)2

+ qi

]}
≥ 1

P

i∑
1

qi+1, (3.50)

i = 2, 3, · · · , n
n∑

i=1

qi = D. (3.51)

3.6.3.1 Solution procedure

Now, our objective is to minimize the total system cost, that is equation

(3.44) subject to the constraints (3.50) and (3.51). The computer algorithm

is outline below :

1. Let n = 1

2. Set t0 = 0, tn+1 = H

3. Determine qi, i = 1, 2, · · · , n which satisfied constraints (3.50) and

(3.51), if it exists

4. Compute ti, i = 1, 2, · · · , n using (3.46) and TC3(n, t⃗ ) using (3.44)

5. Set TC3(n, t⃗ ) as TC3(n
∗, t⃗ ). Increase n by 1 and repeat step 3 to 4.

Stop when TC3(n, t⃗ ) ≥ TC3(n
∗, t⃗ )

Again, the basic idea of the above algorithm is to start with n = 1. Next,

we increase n to improve the total system cost until the first n = n∗ that

79



satisfies the conditions TC3(n
∗, t⃗ ) < TC3(n

∗ − 1, t⃗ ) and TC3(n
∗, t⃗ ) <

TC3(n
∗ + 1, t⃗ ).

3.6.4 Numerical examples and sensitivity analysis

To demonstrate the effectiveness of the proposed policy we present some

numerical examples. The parameter values used are :

A2 = 25, a = 200, b = 20 H = 5, h1 = 6, h2 = 5

D = 750, P = 1000

Note that we adopt the same parameter values as in Case 1 (h1 < h2)

except the value of h1. In this case, (h1 > h2), therefore in this example, we

simply choose h1 = 6 which is greater than h2 = 5.

Policies 1 and 2 produce the same result which is given by Table 3.4 while

the result for Policy 3 is given by Table 3.5. As expected, Policy 3 where

the shipment sizes and periods are unequal is always superior than the other

policies. The optimal total cost, TC∗
3 = 7157.53 is reached at n∗ = 5, which

is 234.14 less than the total costs of each Policy 1 and 2.
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We transform the optimal result from Policy 3 with five shipments into a

graph which is given by Figure 3.21. The first, second and third shipments

are increasing in size, while qi, i ≥ 4 gives equal sizes. The production stop

at the production uptime, tp = 0.75. Therefore, there is no inventory after

this time until the end of the production cycle, H = 5.

Figure 3.21: The inventory level at the vendor

The inventory level at the buyer is plotted in Figure 3.22. The num-

ber labeled in yellow, is the total inventory at shipment times whereas the

number labeled in green is the remaining inventories which are held at the

buyer at t2, t3, . . . , tn. After the production uptime, tp = 0.75, the inventory

will continue depleting until it reaches zero level at the end of the planning
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horizon, H = 5.

Figure 3.22: The inventory level at the buyer

As in the previous case (h1 < h2), we conclude that Policy 3 always gives

the best minimum total cost compared to the Policies 1 and 2.

3.6.4.1 Sensitivity analysis

To study the effect of the total costs for Policy, 1, 2 and 3 that is TC1, TC2

and TC3, we analyze these three policies by varying some parameter values.

We perform a numerical sensitivity analysis by varying the value of b, P ,

a, h1/h2 and A2. We use the following values as the standard values of the

parameter:
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A2 = 25, h1 = 6, h2 = 5, D(t) = 200− 20t, P = 1000, H = 5

First, we test the changes in the total cost by varying the value of b from

5 to 35. The other at standard parameter values remain the same as in the

previous example. Figure 3.23 illustrate the result.

Figure 3.23: The total cost with different value of b

While varying the value of b, we observe that the larger the value of b, the

lower the total cost for all policies. However, Policy 3 always generates the

lowest total cost. Its minimum shipments size also decreases as b increases.

For example, for Policy 3, when b = 5 the minimum total cost is at n = 11,

however, when b = 35 it decreases to n = 8. This result suggests that the

faster production rate, P , the smaller the number of shipments and the lower

the corresponding total cost.
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The total cost savings which can be obtained from implementing Policy

3 rather than Policies 1 and 2 while varying the value of b is given by Fig-

ure 3.24. This graph presents only one line because TC1 = TC2. It shows

that, when b increases, the total cost saving decreases.

Figure 3.24: The total cost saving while varying the value of b

Now, we increase the value of P from 1000 up to 10000 while the other

standard parameter values remain the same. The result is given by Fig-

ure 3.25. As expected, the total cost for all policies increases as the value of

P increases and the number of shipments decreases from 9 to 3 shipments

for Policy 1 (or Policy 2) and 5 to 2 for Policy 3. This result suggests that

the faster production rate, P , the smaller the number of shipments, n and

the larger the corresponding cost, TC.
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Figure 3.25: The total cost with different value of P

The cost savings while varying P is given by Figure 3.26. We found

that the total cost decreases as P increases. For example, when P = 1000,

(TC1(or TC2)−TC3) is 234.13 while when P = 10000, it decreases to 66.16.

Figure 3.26: The total cost saving while varying the value of P
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Let us examine the impact of parameter a to the total cost for all policies.

As mentioned in the Section 3.3.6.1, the value of a must be greater than bH

and less than P
H
+ bH

2
because the demand, a− bH > 0 and aH − bH2

2
≤ P .

In this example, b = 20, P = 1000 and H = 5, therefore 100 < a ≤ 250. The

result is depicted in Figure 3.27. We found that the total cost for all policies

increases as the value of a increases. In line with our conclusion, the lowest

total cost is given by Policy 3. This result suggests that, with the larger

initial demand rate, a, the different shipments size policy is more effective

compared to the equal shipments size.

Figure 3.27: The total cost with different value of a

The number of shipments for all policies also increase as the value of a

increases. In this example, as a increase from 120 to 220, the number of

shipments increases from 5 to 11 for Policy 1 and 2, and 3 to 6 for Policy 3.
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It makes sense that, with the same b, P and H, the greater the value of a,

the larger total demand, D. Therefore, the vendor needs more shipments to

satisfy the demand and at the same time, to minimize their total cost.

The cost savings while varying a is given by Figure 3.28. We found that

the total cost savings increases as the values of a increases. For example,

when a = 120, (TC1(or TC2) − TC3) is 116.02 while when P = 220, it

increases to 260.95.

Figure 3.28: The total cost saving while varying the values of a

Next, we increase the ratio of the holding cost, h1/h2 from 1.2 up to 3.0 by

increasing h1 from 6 up to 15 while h2 = 5. All the other standard parameter

values are remain the same as in the previous example. The corresponding

results are displayed in Figure 3.29.
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Figure 3.29: The total cost with different values of h1/h2

As depicted in the figure, the larger the value of h1/h2, the larger the

total cost of all policies. For Policy 1, the minimum number of shipments

increases from 9 to 14 while for Policy 3 it increases from 5 to 12. The

rationale behind this result is that, the vendor will deliver in more numbers

of shipments in order to decrease their holding cost.

Figure 3.30: The total cost saving while varying the values of h1/h2
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The total cost savings obtained by implementing Policy 3 rather than

Policies 1 and 2 while varying the value of h1/h2 is plotted in Figure 3.30.

The larger the ratio of h1/h2, the lower the total cost can be obtained. For

example, when h1/h2 = 1.20, (TC1 (or TC2)−TC3)= 234.13, and it decreases

to 110.35 when h1/h2 = 3.00.

Figure 3.31: The total cost with different value of A2

Now, we look at the changes of the total cost while varying the value of

A2. All the other standard parameter values remain the same. The result is

given in Figure 3.31. The total cost for all policies increases as A2 increases

whereas the number of shipments decreases. For example, when A2 = 5 the

minimum number of shipments is 21 but when A2 increases to 45, n decreases

to 7 shipments. We conclude that the larger the value of A2, the larger the

total cost for all policies. In line with our conclusion, Policy 3 always gives
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the best minimum total cost.

Finally, the total cost savings while varying the value of A2 is plotted in

Figure 3.32. We observed that the larger the value of A2 the larger the value

of (TC1 (or TC2)− TC3).

Figure 3.32: The total cost saving while varying the value of A2

3.7 Conclusion

In this chapter, we have considered the integrated inventory model for final

production batch with h1 < h2 with equal shipment sizes, equal shipment pe-

riods and unequal shipment sizes and periods policies. The first two policies

are easy to solve. It can be calculated directly because all the parameters are

fixed. We have implemented the Microsoft of Excel Solver to solve the third

policy. We concluded that the unequal shipments size and period is the best
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policy compared to the other two policies.

We extended this model with the case of h1 > h2. We also discussed the

three policies as in the case of h1 < h2 and found that the best minimum

solution is also given by the unequal shipments size and period policy.

However a single batch is seldom to be applied in the real problem. There-

fore, in the next chapter we will consider the integrated inventory model for

n batch production which consists the final production batch at the end of

the production cycle.

93




