Chapter 3

Integrated inventory model for

final production batch

3.1 Introduction

The integrated inventory model has been widely discussed by many re-
searchers since past four decades. The literature review for this model has
been presented in Chapter 2. Most of the model considered the constant
demand rate. Recently, researcher realized that the constant demand rate is
no more realistic because the demand is always changing, for example it is
either increasing or decreasing with time.

In this chapter, we will discuss various of inventory policies regarding

the inventory model under time varying demand rate. The discussion starts
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with the integrated policy for shipping a vendor’s final production batch
to a single buyer under linearly decreasing demand rate. The reason why
the final batch is important to be discussed is that just before the equip-
ment for manufacturing the product is dismantled, there is always one final
opportunity to make enough stock to meet all the remaining demand. As
usual, costs are attached to the manufacturing batch set up, the delivery of
a shipment and stockholding at the vendor and buyer. For a final batch,
the objective is to determine the size of batch together with the number and
shipments size which minimize the total cost, assuming that the vendor and
buyer collaborate and find a way of sharing the consequent benefits.

Most previous work has been based on the assumption that unit stock-
holding costs increase as stock moves down the supply chain, but recent re-
search has suggested that the opposite may sometimes hold [29]. Motivated
from this ideas, both situations in which the buyer’s holding cost is higher
than the vendor’s and the reverse situation will be discussed . We show how
the solution policy may be derived when the shipment sizes and periods are

equal or unequal. We illustrate this policy with numerical examples.
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3.2 Mathematical formulation

The cost factors considered here are
1. the fixed shipment set up cost, A
2. the inventory holding cost for the vendor, h;

3. the inventory holding cost for the buyer, hsy

Note that the production set up cost can be ignored since we are only making
one batch of production. Here, we state the general notations and assump-

tions which will be used throughout this chapter.

3.2.1 Notation

Let © = 1,2,...,n be the number of shipments and H is the finite planning

horizon.

e The demand rate for the finished product at time ¢ is f(¢) for ¢ € (0, H).

e P units per unit time is the finite production rate. The value of the

production rate is greater than the demand rate, P > D.

e 1 is the initial stock held at the buyer when the final production is

about to start.

e ¢; is the size of each shipment.
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e D is the total demand in the interval (0, H).

3.2.2 Assumption

e The general notation for demand function is f(¢). It could be linearly
decreasing (f(t) = a — bt) or linearly increasing (f(t) = a + bt) or
exponentially decreasing (f(t) = ae®). We choose f(t) = a — bt as
an example in our models in this chapter. Here, a is the initial rate

demand with a > 0 and b is the slope with b > 0.

e We are currently at time zero and wish to determine the stock replen-

ishment which minimises the total relevant cost.

e The set-up and ordering costs are fixed throughout the planning hori-

zon.
e The production rate, P is also fixed throughout the planning horizon.
e There are no limitation on the order size.

e The transportation cost per unit time is ignored since we are assuming

that it is constant and independently from the ordering quantity.

e 1 is greater than zero and depends on the size of the first shipment.
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e The finished product is transferred from the vendor to the buyer in n

shipments during the production up-time and down-time.

e No shortages are allowed.

3.3 Casel: hi<hy

This case has been widely studied in the literature since 1977 where the as-
sumption is that the buyer’s holding cost is higher than the vendor’s. In
Hill and Omar [29], there are two reasons generally used to justify this as-
sumption; that is (i) the stock increases in value as it moves down the supply
chain, and (ii) the vendor may be more likely to use cheap bulk store facilities
(particularly in a retail distribution chain). Due to hy < hs, the buyer wishes
as little stock as possible at their store and the vendor delivers a shipment
only when the buyer’s inventory is just about to run out.

The initial stock, x is the amount which the buyer needs at the begin-
ning of a production cycle to meet demand during the time it takes for the
vendor to manufacture the quantity of stock which will make up the first
shipment. Based on Omar’s model [37], the initial stock at the buyer, z is
given. However, in this model, we assume that the value of x depends on
the first shipments size, ¢;. We also assume that the demand rate before the

final batch is constant at rate a. Therefore, the initial stock at the buyer, x
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is given by
z = a(L) (3.1)

where ¢; /P is the time to produce the first shipment quantity, ¢;.

Figure 3.1: Plot of the inventory level against time when n = 4
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Figure 3.1 shows the illustration of the model with four equal shipments
which represents the stock level of the system, vendor and buyer. The pro-
duction batch will starts at ¢y = 0 until the production uptime, ¢,. The first
shipment is at time ¢; (t; = 0 according to buyer’s time) and follows at time
to,ts,...,t, with the shipment sizes ¢, qa, ..., qp.

In the Figure 3.1, y;(¢) represents the remaining stock level at time ¢ in

the interval (¢,, H) which can be expressed as
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/: () di — /t: )t (3.2)

Then,

yi(t) = /t f(t) dt. (3.3)

yo2(t) is the stock level during production time, (0,¢,) and given by

ya(t) = Pt — /Ot f(t) dt. (3.4)

The total demand during the planning horizon,

D= / ’ F(t) dt. (3.5)

3.3.1 Total time-weighted system stock

The total system stock is represent by the area under the curve y; (t) and yo(t)
in (¢,,H) and (0,t,) respectively. Hence, we have the total time-weighted

system stock, T'S'S, as

tp H 1
0 tp

The production uptime, ¢, can be obtained from the following :

Pt, = /Hf(t) dt
0
D

t = = (3.7)
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3.3.2 Total time-weighted buyer stock

In figure 3.1, ¢;, © = 1,2, 3,4 represent the shipment sizes for each shipment.
We also have

tit1

qi = f(t)dt. (3.8)

ti
Let I;(t) be the inventory level for i-shipment at any time ¢ and it given

by
L(t) = F)dt. (3.9)

Hence, the buyer stock can be calculated by the area under the curve I;(¢) in
the period (¢;,t;+1). It follows that the total time-weighted buyer stock from

1th shipment, TBS is

i{/t;m Utw f(t) dt] dt}- (3.10)

i=1

It follows, the total cost for this model, T'C is given by

TC = nAy+ h(TSS — TBS) + hyTBS

For example, let the demand rate is linearly decreasing over the period

(0, H) that is

f(t)=a—bt a>0;b>0;t>0;H > 0. (3.12)
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Substituting (3.12) into (3.3), (3.4), (3.5), (3.6), (3.7) and (3.10) we have

b
() = a(H — 1) = S(H* = 1*). (3.13)
b 2
valt) = (P — a)t + t*. (3.14)
b
D=H <a ~ §H) . (3.15)
Pt? bH a bH xH
_ e o g PR —
TSS = + H( — )ty + H(5 — 5) + - (3.16)
H b
n a b n
TBS = ;(t?-l—l titi—i—l) — §(H2 — t%) - 5 ;(tf—kl ti tz2+1)
b
+—(H? — 3. (3.18)

6

Finally, substituting (3.16) and (3.18) into (3.11) we have,

Pt bH bH H
TC = nA2+h1{Tp+H(7—a)tp—i—H2(g——)+x—}

a
+ (he — ) {GZ z+1 —titiy1) — é(H _t%)
3 2 b 3 3
_ _Zm tits ) 6(H —tl)}. (3.19)

TC' is in the function of n (discrete variable) and a vector =ty to, ... tn

where t; = 0 and ¢, = H.
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We will explore the best solution of the above total cost based on three

policies :

1. Policy 1 : Equal shipment sizes
2. Policy 2 : Equal shipment periods

3. Policy 3 : Unequal shipment sizes and periods

The objective in every policy is to find an optimal ¢; (or ¢;) for a given n

which gives the minimum total cost, TC(n,t ).

3.3.3 Policy 1 : Equal shipment sizes

In this policy the shipment sizes, ¢; are assumed to be equal. So, we have

fixed value of ¢; which can be calculated as follow

4G = 1=1,2,--- ,n. (3.20)

The buyer receives an equal quantity for each shipment and takes (¢;,1 —

t;) amount of time to use up ¢;, where i = 1,2,... n. Hence, we have

/tm F(t) dt = %. (3.21)

For example, as shown in Figure 3.1, the vendor delivers four equal ship-
ments. The first shipment is at time ¢; (¢{; = 0 according to buyer’s time),

and in the period (¢, t3), the buyers will use up ¢; until the second shipment
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is arrive just before the first shipment is finished at ¢5. This can be written

as

¢ 2/2 f(t) dt = % (3.22)

From equation (3.22), we get

tgz%{l—\/a—z—g[—gt12+at1+(§)]}. (3.23)

Similarly, in the period time, (tq,?3), the buyer will use up ¢, while the

vendor will continue producing and deliver the third shipment which will
arrive at the buyer exactly just before the second shipment is finished at ¢3.

This can be written as

G2 = /753 f@) dt = % (3.24)

to

From equation (3.24), we get

tgz%{l—\/a—i—g[—gt22+at2+(%)]}. (3.25)

This process is repeated until the end of the planning horizon, H. Generally,

the shipment times is

a 20| b D ,
ti+125{1—\/a—¥ |:—§t2‘2+(lti+ (g)}} 221,2,"' ,n—1(326)

Substituting (3.26) into (3.19) gives the total cost, TCy(n, t ) for this

policy.
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3.3.3.1 Solution procedure

The computer algorithm of the solution procedure is outline below :

1. Let n =1

2. Set t; =0, by = H

3. Set g;=D/n, i=1,2,...,n

4. Compute t; 11, 4 =1,2---,n— 1 using (3.26) and TC,(n, t ) using
(3.19)

5. Set TCy(n, t) as TCy(n*, t). Increase n by 1 and repeat step 4. Stop

when TCy(n, t) > TCy(n*, t).

The basic idea of the above algorithm is to start with n = 1. Next,
we increase n to improve the total system cost until the first n = n* that
satisfies the conditions TCy(n*, t ) < TCy(n* — 1, t ) and TCy(n*, t) <

TC,(n* +1, t).

3.3.4 Policy 2 : Equal shipment periods

In this policy, the periods between shipments are assumed to be equal. Fig-

ure 3.2 gives the graphical representation for this policy.
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Figure 3.2: Plot of the inventory level against time when n = 4 with equal

shipment periods policy
svstem Deventary

Vendar bwventary

yaft)

Note that the value of H is fixed and t; = 0 according to buyer’s time.

Then, we have

H
tQ - tl —|— - - —
n n
H H
t3 = tz—f—— - 2—
n n
H H
ty = t3+— = 3=
n
H H
ti+1 = tz—i-— = Z.—, Z:1,2, 77L—1. (327)
n n
It follows
tit1
g = F(t)dt. (3.28)

The total cost for this policy can be calculated by substituting (3.27) into

47



(3.19). Then we have,

. Pt? bH a bH xH
TCy(n,t) = nA2+h1{Tp+H(7—a)tp+H2(§—?)+7}
(hy — hy)H? bH
e - — 1) ;. 2
+ o . (3n+1) (3.29)

The total cost, TCy(n, t ) for this policy is in the term of n (discrete

variable) and t = ty,ts,...,n (real variables).

3.3.4.1 Solution procedure

Similarly, the computer algorithm of the solution procedure is outline below:

1. Let n =1

2. Sett, =0, tysy = H

3. Set tipq, i=1,2,---,n—1as (3.27)

4. Compute TCy(n,t ) using (3.29)

5. Set TCy(n,t ) as TCy(n*,t ). Increase n by 1 and repeat step 4. Stop

when TCy(n,t ) > TCy(n*, 1)

Similarly, the basic idea of the above algorithm is to start with n = 1.
Next, we increase n to improve the total system cost until the first n = n*
that satisfies the conditions TCy(n*, 1) < TCy(n* — 1, ) and TCy(n*,t ) <

TCy(n* +1,1).
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3.3.5 Policy 3 : Unequal shipment sizes and unequal
shipment periods

In this policy both shipment sizes and periods are assumed to be varied.
Figure 3.3 gives the graphical representation for this policy with four unequal

shipments.

Figure 3.3: Plot of the inventory level against time when n = 4 with unequal

shipment sizes and periods policy

System Inventary

N

Y

Fendor Inventary

i)

Since stockout is not allowed, the time for the vendor to produce ¢; 1 must
be less than the time for the buyer to finish up ¢;. For example, Figure 3.4
shows the illustration of the inventory level at the buyer for the first and

second shipments.

49



Figure 3.4: The first and second shipments
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The time to produce the second shipment, ¢, must be less than the time

for the buyer to finish up the first shipment, ¢;. It follows that

Pty —t1) > ¢

o —11 = q—P2
[

where G = / f(t)dt
t1

a 2b b
tQ = 5{1—\/1—§|}Lt1—§t%+6h:|}
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Figure 3.5 shows the illustration of the inventory level at the buyer for

the first, second and third shipments.

Figure 3.5: The first, second and third shipments
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Similarly, the time to produce the third shipment, g3, must be less than

the time for the buyer to finish up the second shipment, g2, and we have

P(tg — tQ) > qs
P(ts —ti+t1—t) > g3
P(ts —t1) > P(ty—t1) +qs

Plts—t1) > @ +q¢

q2 + q3

(ts —t1) > (3.30)

t3
where @ = / f(t)dt
to

2b b

Generally, the time to produce the 7 + 1 shipment, ¢; 1 must be less than

t3:

Sl S

the time for the buyer to finish up the ¢ shipment, ¢;, that is

Pt —t) > > ain
1

tit1
where ¢ = / t)dt (3.31)
¢

2b b
-eoon — 1.

i = ..

i

tiy1 =

o e

f(
1_
1,2,
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The total quantity delivered to the buyer must be equal to the total

demand, that is

=D, i=12--,n (3.33)
i=1
From these arguments, we can establish the following constraint opti-
mization problem,

Minimum :  TCy(n,t)

Subject to

a 2% b 1<
_ _ _ - L 42 . _ .
b {1 \/1 22 |:atl 2151 + qz} } J2 1 Qit+1, (334)

i=1,2,.n

v

> e = D (3.35)

3.3.5.1 Solution procedure

We derived the following algorithm and use the Microsoft Excel Solver as a

solution tool:

1. Let n =1

2. Sett1 =0,t,.1=H

3. Set ¢;, © = 1,2,---,n as changing variables. The Microsoft Excel
Solver will find an optimal solution of ¢; which satisfy constraints (3.34)

and (3.35), if exist.
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4. Compute t;1y, i=1,2,---,n— 1 using (3.33) and TCy(n,t ) using
(3.19)
5. Set TCy(n,t ) as TCy(n*,t ). Increase n by 1 and repeat step 4. Stop

when TCy(n,t ) > TCy(n*,T).

Again, the basic idea of the above algorithm is to start with n = 1.
Next, we increase n to improve the total system cost until the first n = n*
that satisfies the conditions TC(n*,t ) < TC(n* — 1, ) and TC(n*,t ) <

TC(n* + 1,t).

3.3.6 Numerical examples and sensitivity analysis

To show the effectiveness of the proposed policies we adopt the same numeri-
cal examples as Omar [37] except the value of a, b and D. For easy reference,

the parameter values are restated here:

Ay =25 a=200, b=20 H=5, hi=4 hy=5

D =750, P = 1000

Tables 3.1, 3.2 and 3.3 give the minimum total cost and its minimum ship-
ment sizes for Policy 1, 2 and 3. For example, in Table 3.1, when n = 2, the
total minimum cost for this policy is 7222.97 with the initial inventory at

the buyer, x is 75 and two equal shipments, where ¢; = ¢ = 375.00. Policy
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1 reached the optimal total cost, TC} = 6121.29 with 12 equal shipments
where ¢f = 62.50, fori=1,2,--- ,12.

Table 3.2 gives the minimum total cost for Policy 2. For example, when
n = 3, the total cost is 6829.63 with its initial inventory level at the buyer, x
is 61.11. The shipment sizes, (q1, g2, g3) are (305.56, 250.00, 194.44) with the
shipment times, (t1, ta, t3) of (0.000, 1.667, 3.333) respectively. The minimum
total cost for Policy 2, T'C5 = 6159.66 is also at n* = 12.

Table 3.3 gives the minimum total cost for Policy 3. For example, when
n = 3, the total cost is 6511.15 where its initial inventory level at the buyer,
x is 13.95, and the shipment sizes, (q1,¢q2, g3) are (69.75, 355.05, 325.20)
with the shipment times, (t1,ts, t3) of (0.000, 0.355, 2.416) respectively. We
observed that the total cost for Policy 3 is always better than Policy 1 and
2 for all n = 1,2,---,14. Policy 3 reached the optimal total cost, TC3 =
6015.87 with 10 shipments. The total cost savings which can be obtained
from implementing Policy 3 rather than Policy 1 and 2 are 105.42 and 143.79
respectively.

Generally, the results given by Table 3.1 3.2 and 3.3 show the convexity

of the total cost function respect to n.
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Figure 3.6 gives the diagrammatic plot of the inventory level at the buyer
for Policy 3 with 10 shipments. All shipment sizes and periods are differ-
ent. The optimal shipment sizes, (¢7, ¢, 45, 45, ¢4, 45, &, a5, 45, G5o) are (7.87,
39.41, 98.53, 95.95, 93.19, 90.22, 86.99, 83.45, 79.47, 74.92) with its optimal
shipment times, (¢],t5, 5, t5, t5,t5, t5, 15, 5, t5,) are at (0, 0.039, 0.239, 0.758,

1.292, 1.845, 2.418, 3.015, 3.641, 4.300) respectively.

Figure 3.6: Inventory level at the buyer for Policy 3 with n* = 10
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For Policy 3, the illustration of the inventory level at the vendor is shown
in Figure 3.7. The first, second and third shipments are delivered during

the production time until it reached the production up-time, ¢, = 0.75 with
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inventory level at the vendor is 604.19. The vendor deliver the fourth, fifth,
.-+, tenth shipments during the production downtime until the end of the

production cycle, t, = H = 5.

Figure 3.7: Inventory level at the vendor for Policy 3 with n* = 10
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From our numerical results, Policy 3 always gives the best minimum total

cost compared to the Policy 1 and Policy 2.

3.3.6.1 Sensitivity analysis

To study the effect of the total costs for Policy, 1, 2 and 3 that is T'Cy, T'Cy

and T'C'3, we analyze these three policies by varying some parameter values.
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We perform a numerical sensitivity analysis by varying the value of b, P,
a, hi/hs and As. We use the following values as the standard values of the
parameter:

Ay =25, hi=4, hy=5, D(t)=200—20¢t, P=1000, H =5

Figure 3.8: The total cost with different values of b

The total cost while varying the value of b
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We vary the value of b from 5 to 35 for all policies to see the changes of the
TC'. The standard values of the other parameters remain the same. These

% <b< % because of

results are illustrated in Figure 3.8. Note that
D < Panda—0H > 0.

We found that the larger the value of b, the lower the total cost of all
policies. For example, when b = 5, T'C, TCy and T'Cy are 8058.06, 8066.94
and 938.57 respectively and when n = 35, it decreases to 4029.19, 4108.27

and 3936.30 respectively.
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Figure 3.9: The total cost saving while varying the value of b
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Figure 3.9 illustrates the total cost savings obtained by using Policy 3
rather than the other two policies (Policies 2 and 3) for different values of b.
The blue and red lines represent the total savings by evaluating (T'Cy —T'C})
and (T'Cy—TC3) respectively. The blue line gives the lower total cost savings
compared to the red line and decreases as b increases while red line shows
the reverse pattern. For example, when b = 5, (TC}, — T'C3) is 119.49 and
(T'Cy —TC3) is 128.37 and when b = 35, (T'Cy — T'C3) decrease to 92.89 and
(T'Cy — T'Cy) increases to 171.97.

Now, we present the implication of varying the value of P to the total
cost while the other standard parameter values remain the same. Note that
the value of P must be greater than D otherwise shortages will occur. In

this example, D = 750 therefore we increase P = 1000 up to 10000. The
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result is shown in Figure 3.10.

Figure 3.10: The total cost with different values of P
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As expected, the larger the value of P, the larger the total cost for all
policies and the lower the difference between the total cost of all policies. For
example, when P = 1000, the total cost for Policies 1, 2 and 3 are 6121.29,
6159.66 and 6015.87 with 12, 12 and 10 shipments respectively and when
P = 10000 it becomes 7001.28, 7006.53 and 6998.25 respectively with nine
shipments for all policies. This result suggests that the faster production rate,
P, the smaller the number of shipments and the larger the corresponding cost.
It also suggests that when P is very large, the total cost for all policies will
converge.

The total cost savings which are obtained while varying the value of
P is shown in Figure 3.11. We found that as P increases, the total cost
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Figure 3.11: The total cost saving while varying the value of P
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savings decrease for both (T'Cy —T'C3) and (T'Cy —T'Cs). For example, when
P =1000, (TCy, —TCs5) and (T'Cy —TC3) are 105.42 and 143.79 respectively
while when P = 10000, it decreases to 3.03 and 8.28 respectively. This result
suggest that when P is very large, the total cost saving converges and gives
the same value.

Let us test the impact of parameter a to the total cost for all policies.
The other standard parameter values remain the same. Note that the value
of a must be greater than bH and less than % + % because the demand,
a—bH >0 and aH — Y < P. In this example, b = 20, P = 1000 and
H =5, therefore 100 < a < 250. The result is given in Figure 3.12.

It can be seen that the larger the value of a, the larger the total cost for

all policies. For example, when a = 120, the total cost for Policy 1, 2 and
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Figure 3.12: The total cost with different values of a
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3 are 2774.11, 2813.10 and 2734.13, whereas when a = 220, it increases to
6852.63, 6891.79 and 6727.52 respectively. The number of shipments for all
policies also increase as the value of a increases. In this example, it increases
from 7 to 13 for Policy 1, 8 to 13 for Policy 2 and 7 to 11 for Policy 3. It
makes sense that, with the same b, P and H, the greater the value of a, the
larger the total demand, D. Therefore, the vendor needs more shipments to
satisfy the demand and at the same time, to minimize their total cost.

Let us now turn to the impact of a to the total cost savings. As depicted
in Figure 3.13, the larger the value of a, the larger the total cost savings can
be obtained from implementing Policy 3 rather than Policies 1 and 2. Clearly
shown in the figure, T'C'y — T'C5 gives the lowest total cost savings compared

to T'Cy —T'C3. The difference between its respective lines is almost the same
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for every a which is around 37 to 39.

Figure 3.13: The total cost saving while varying the value of a
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Next, we decrease the ratio of the holding cost, hi/hy by increasing hs
from 5 up to 10 while h; = 4. All the other standard parameter values remain

the same. The corresponding results are displayed in Figure 3.14.

Figure 3.14: The total cost with different values of hy/hs
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We observe that all policies show similar pattern where the larger hy/hs,
the lower the total cost for all policies. As we expected, Policy 3 always gives
the best minimum total cost. For example, when h;/hs = 0.400 the total
cost for Policies 1, 2 and 3 are 6668.31, 6689.45 and 6626.06 with 22, 23 and
22 shipments respectively and when h;/hy = 0.800, it decreases to 6121.29,
6159.66 and 6015.87 with 12, 12 and 10 shipments respectively. These results
support the belief that for a large holding cost of the buyer, ho, it is better
to replenish their inventory in large number of shipments in order to reduce

the total cost.

Figure 3.15: The total cost saving while varying the value of hy/hgy
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Figure 3.15 gives a diagrammatic plot while varying the value of hy/hs.
We found that the larger hy/hy the larger (T'Cy — T'C3) and (TCy — TCj).

For example, when hy/hy = 0.4, (T'Cy; —T'C3) and (T'Cy — T C3) is 42.25 and
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63.39. However, when h;/hy = 0.8, it increases to 105.42 and 143.79.

Next, we vary the value of Ay from 5 to 45. Similarly, the other standard
parameter values are remain the same. The results are shown in Figure 3.16.
We conclude that the larger the value of A,, the larger the total cost for all
policies. The total cost for Policy 1 is close to Policy 2. In line with our

conclusion, Policy 3 always gives the best minimum total cost.

Figure 3.16: The total cost with different values of A,
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Finally, the cost savings obtained by implementing Policy 3 rather than
the other two policies is plotted in Figure 3.17. We observed that the larger

the value of Ay the larger (I'Cy — T'C3) and (T'Cy — T'Cl).
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Figure 3.17: The total cost saving while varying the value of A,
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In the next section we will consider an integrated inventory model for the

case where the vendor’s holding cost is greater than the buyer.

3.4 Case2: hy> hy

Consignment Stock, CS policy has been greatly discussed in the literature.
Generally, this model is suggested to be applied when the holding cost of the
vendor’s is greater than the buyer’s. In CS approach, it is assumed that the
vendor continues to own the stock held by the buyer up to the point when the
buyer pays for it. Therefore, the vendor incurs that part of the stockholding
cost. In other words, the supplier locates their inventory in the buyer’s store
or warehouse and allows them to sell or consume directly from his stock. The

buyer pays for the inventory only after he has resold or consumed it. The
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buyer still incurs costs related to storing and managing the inventory.

According to Piasecki [43], the consignment inventory works well for ;

e New and unproven products.

e The introduction of existing product lines into new sales channels.

e Very expensive products where sales are questionable.

e Service parts for critical equipment which the buyer would not stock

due to budget constraint or demand uncertainty.

The consignment material is procured via purchase requisition, purchase
orders and outline agreements. Both parties need to clearly understand the
terms in the agreements, hence there should have been no bearing on how
they determine the production and shipment policies.

Valentini and Zavanella [50] list out the obligation that may included in

CS agreement such as,

e The agreed lead time in case of sudden demand peaks for the company.

e The level of the safety stock the supplier should maintain in his own
depots, taking into account the provisioning time of the item consid-
ered. This parameter may also influence the minimum stock level, s

and maximum stock level, S values.
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e The type and capacity of the pallets for delivery, as s and S values are
an integer multiple of it. This parameter is also to be fixed to interface

CS standards with the kanban system.

e The company may agree to pay for the goods stored in its warehouse,

even if it has not consumed them yet, after a given amount of time.

Most of the previous research regarding CS as discussed in Chapter 2
assumed that the demand rate is constant. As we mentioned before, this
assumption is not realistic because the demand rate should be increasing or
decreasing with time. Motivated by this situation, we developed a consign-
ment stock model which considers the linearly decreasing demand for the

final production batch.

Figure 3.18: Inventory level for the case of hy > hy with 4 shipments
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Figure 3.18 shows the illustration of the model with four equal shipments
which represents the stock level of the system, vendor and buyer. The pro-
duction batch will starts at ¢y = 0 until the production uptime, ¢,. The first
shipments is at time ¢; and follows at time to,13,...,%, with the shipment
sizes q1, G2, - -, qn- Y1(t), y2(t) and D is similar as equation (3.3), (3.4) and

(3.5) in Section 3.3.

3.5 Total time-weighted system stock

The total system stock represented by the area under the curves y;(t) and
yo(t) in (t,, H) and (0, t,) respectively. The total time weighted system stock
for this case is similar to the Case 1 which is given by equation (3.6) where

t, is similar with equation (3.7).

3.6 Total time-weighted vendor stock

The total time-weighted vendor stock, TV S is the total area under the tri-
angles. In Figure 3.18, the triangles are represent by 0q¢,t1, t1qots, toqsts and

t3qat,. Hence, we have

1 n

72



It follows that the total cost for this model, T'C, is in the term of n

(discrete variable) and to,ts, ..., t, (real variables) which is given by

Structurally the cost function is identical to the previous model (Case
hy < hsy). The constants hy and hs are interchanged and the last term on the
right hand side is now multiplied by the total time-weighted vendor stock,
TVS.

For example, let the demand rate linearly decreasing over the period

(0, H) that is

f(t)=a—bt a>0;b>0;t>0;H > 0. (3.38)

Substituting (3.38) into (3.3), (3.4), (3.5), (3.6) and (3.7) we have

y=a(H —t)— g(H2 —t%). (3.39)
b 2
Yo = (P —a)t + §t . (3.40)
b
D=H <a — §H> . (3.41)
P¢? bH a bH, zH
__P - 202 27 il
TSS = 5 +H(2 a)thrH(2 3)+ 5 (3.42)
H b



Finally, substituting (3.42) and (3.36) into (3.37) we have,

Pt? H H H
TC = nA2+h2{7p+H(b?—a)tp+H2(g—%)—1—%}

+ (h1—h) {% Z%’(ti - tz’—l)} : (3.44)

T'C'is in the function of n (discrete variable) and a vector U=1t1,ta,... 1ty

where t; = 0 and ¢,,.; = H.

We will explore the best solution of the above total cost based on three

policies :

1. Policy 1 : Equal shipment sizes
2. Policy 2 : Equal shipment periods

3. Policy 3 : Unequal shipment sizes and periods

The objective in every policies is to find an optimal ¢; (or ¢;) for a given

n which gives the minimum total cost, T'C.

3.6.1 Policy 1 : Equal shipment sizes

In this policy the shipment sizes are assumed to be equal. Let ¢; be the
shipment size of ¢th shipment. So, we have fixed value of ¢; which can be

calculated as follow

i=1,2,....n (3.45)



The illustration of this policy is given by Figure 3.18. The shipment

times, ¢; is given by

ti:%—i—ti_l, i=1,2,...,n. (3.46)

3.6.1.1 Solution procedure

The computer algorithm of the solution procedure is outline below :

1. Let n =1

2. Set tg =0, t,.1 =H

3. Compute ¢; = D/n, i=1,2,--- n

4. Compute t;, i =1,2,--- ,n using (3.46) and TCy(n, t ) using (3.44)
5. Set TCy(n, t) as TCy(n*, t ). Increase n by 1 and repeat step 3 to 4.

Stop when TCy(n, t) > TCy(n*, t)

The basic idea of the above algorithm is to start with n = 1. Next,
we increase n to improve the total system cost until the first n = n* that
satisfies the conditions TCy(n*, t ) < TCy(n* — 1, t ) and TCy(n*, t) <

3.6.2 Policy 2 : Equal shipment periods

In this section, we assume that the shipment periods are equal. The illustra-
tion of this model is given by Figure 3.19.
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Figure 3.19: Inventory level for the case of hy > hy with Policy 2 (Equal

shipment periods)
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The production uptime ¢, will be divided by the number of shipments, n.

Then we have,

t
tl = to—i--p - 2 (toIO)
n n
t t
tg - tl —|— 2 — 2_p
n n
t t
t'g, == t2 + 2 - 3_p
n
t, b,
t, = ti+— = i—, i=12,--- n. (3.47)
n n
Given that

The total cost for this policy can be calculated by substituting (3.47) into

equation (3.44). Then we have
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Pt? H H H
TC = nA2+h2{7p+H(b?—a)tp+H2(g—%)—1—%}

+ (B — ) {%} | (3.49)

Note that Policies 1 and 2 will give the same value of the shipment sizes

because of the fixed value of production rate, P.

3.6.2.1 Solution procedure

The computer algorithm of the solution procedure is outline below

1. Let n =1

2. Set tg =0, tpy1 = H

3. Compute t;, i =1,2,--- ,n using (3.47)

4. Compute ¢;, i =1,2,--- ,n using (3.48) and T'Cy(n) using (3.49)

5. Set TCy(n, t) as TCy(n*, t). Increase n by 1 and repeat step 3 to 4.

Stop when TCy(n, t) > TCy(n*, t)

Similarly, the basic idea of the above algorithm is to start with n = 1.
Next, we increase n to improve the total system cost until the first n = n*
that satisfies the conditions TCy(n*, ) < TCy(n* —1, t ) and TCy(n*, t) <

TCy(n* +1, T).
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3.6.3 Policy 3 : Unequal shipment sizes and unequal
shipment periods

In this policy, the shipment sizes and periods are unequal. Figure 3.20 shows

the inventory level for this policy.

Figure 3.20: Inventory level for the case of hy > hy with Policy 3 (Unequal

shipment sizes)
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Substituting (3.6) and (3.36) into (3.44) we get the total cost for the
system. We build the following constraint optimization problem for this
policy where the objective function, TCs(n, t ) is refers to equation (3.44).

Constraint (3.34) and (3.35) in section 3.3.5 remain the same :
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Minimize :  TCs(n, t)

Subject to

%{1—\/1—2—2{a(qEDl)—g(q;lr—i-%}} > %i%ﬂv (3.50)
1

i=23-.n

> u = D (3.51)

3.6.3.1 Solution procedure

Now, our objective is to minimize the total system cost, that is equation
(3.44) subject to the constraints (3.50) and (3.51). The computer algorithm

is outline below :

1. Let n=1

2. Set tg=0,t,.1 =H

3. Determine ¢;, i« = 1,2,--- ,n which satisfied constraints (3.50) and
(3.51), if it exists

4. Compute t;, i =1,2,--- ,n using (3.46) and TCs(n, t ) using (3.44)

5. Set TCs(n, t ) as TCs(n*, t ). Increase n by 1 and repeat step 3 to 4.

Stop when TCs(n, t) > TCs(n*, t)

Again, the basic idea of the above algorithm is to start with n = 1. Next,

we increase n to improve the total system cost until the first n = n* that
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satisfies the conditions TCy(n*, t) < TCs(n* — 1, £ ) and TCs(n*, ) <

TCs(n*+1, 1).

3.6.4 Numerical examples and sensitivity analysis

To demonstrate the effectiveness of the proposed policy we present some

numerical examples. The parameter values used are :

Ay =25 a=200, b=20 H=5 h; =6, hy=5

D =750, P = 1000

Note that we adopt the same parameter values as in Case 1 (h; < hsy)
except the value of hy. In this case, (h; > hs), therefore in this example, we
simply choose h; = 6 which is greater than hy = 5.

Policies 1 and 2 produce the same result which is given by Table 3.4 while
the result for Policy 3 is given by Table 3.5. As expected, Policy 3 where
the shipment sizes and periods are unequal is always superior than the other
policies. The optimal total cost, T'C5 = 7157.53 is reached at n* = 5, which

is 234.14 less than the total costs of each Policy 1 and 2.
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We transform the optimal result from Policy 3 with five shipments into a
graph which is given by Figure 3.21. The first, second and third shipments
are increasing in size, while ¢;, ¢ > 4 gives equal sizes. The production stop
at the production uptime, ¢, = 0.75. Therefore, there is no inventory after

this time until the end of the production cycle, H = 5.

Figure 3.21: The inventory level at the vendor
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The inventory level at the buyer is plotted in Figure 3.22. The num-
ber labeled in yellow, is the total inventory at shipment times whereas the
number labeled in green is the remaining inventories which are held at the
buyer at t9,t3,...,t,. After the production uptime, ¢, = 0.75, the inventory
will continue depleting until it reaches zero level at the end of the planning
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horizon, H = 5.

Figure 3.22: The inventory level at the buyer
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As in the previous case (hy < hsy), we conclude that Policy 3 always gives

the best minimum total cost compared to the Policies 1 and 2.

3.6.4.1 Sensitivity analysis

To study the effect of the total costs for Policy, 1, 2 and 3 that is T'Cy, T'Cy
and T'Cs, we analyze these three policies by varying some parameter values.
We perform a numerical sensitivity analysis by varying the value of b, P,
a, hi/hs and As. We use the following values as the standard values of the

parameter:
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Ay =25, hy=6, hy=5, D(t)=200—20¢t, P=1000, H=5

First, we test the changes in the total cost by varying the value of b from
5 to 35. The other at standard parameter values remain the same as in the

previous example. Figure 3.23 illustrate the result.

Figure 3.23: The total cost with different value of b
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While varying the value of b, we observe that the larger the value of b, the
lower the total cost for all policies. However, Policy 3 always generates the
lowest total cost. Its minimum shipments size also decreases as b increases.
For example, for Policy 3, when b = 5 the minimum total cost is at n = 11,
however, when b = 35 it decreases to n = 8. This result suggests that the
faster production rate, P, the smaller the number of shipments and the lower
the corresponding total cost.
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The total cost savings which can be obtained from implementing Policy
3 rather than Policies 1 and 2 while varying the value of b is given by Fig-
ure 3.24. This graph presents only one line because T'Cy; = TCy. It shows

that, when b increases, the total cost saving decreases.

Figure 3.24: The total cost saving while varying the value of b
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Now, we increase the value of P from 1000 up to 10000 while the other
standard parameter values remain the same. The result is given by Fig-
ure 3.25. As expected, the total cost for all policies increases as the value of
P increases and the number of shipments decreases from 9 to 3 shipments
for Policy 1 (or Policy 2) and 5 to 2 for Policy 3. This result suggests that
the faster production rate, P, the smaller the number of shipments, n and

the larger the corresponding cost, T'C'.
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Figure 3.25: The total cost with different value of P
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The cost savings while varying P is given by Figure 3.26. We found
that the total cost decreases as P increases. For example, when P = 1000,

(T'Cy(or TCy) —TC4) is 234.13 while when P = 10000, it decreases to 66.16.

Figure 3.26: The total cost saving while varying the value of P
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Let us examine the impact of parameter a to the total cost for all policies.
As mentioned in the Section 3.3.6.1, the value of @ must be greater than bH
and less than % + % because the demand, a — bH > 0 and aH — % < P.
In this example, b = 20, P = 1000 and H = 5, therefore 100 < a < 250. The
result is depicted in Figure 3.27. We found that the total cost for all policies
increases as the value of a increases. In line with our conclusion, the lowest
total cost is given by Policy 3. This result suggests that, with the larger
initial demand rate, a, the different shipments size policy is more effective

compared to the equal shipments size.

Figure 3.27: The total cost with different value of a
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The number of shipments for all policies also increase as the value of a
increases. In this example, as a increase from 120 to 220, the number of

shipments increases from 5 to 11 for Policy 1 and 2, and 3 to 6 for Policy 3.
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It makes sense that, with the same b, P and H, the greater the value of a,
the larger total demand, D. Therefore, the vendor needs more shipments to
satisfy the demand and at the same time, to minimize their total cost.

The cost savings while varying a is given by Figure 3.28. We found that
the total cost savings increases as the values of a increases. For example,
when a = 120, (T'Cy(or TCy) — TCs) is 116.02 while when P = 220, it

increases to 260.95.

Figure 3.28: The total cost saving while varying the values of a
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Next, we increase the ratio of the holding cost, hy /hy from 1.2 up to 3.0 by
increasing hy from 6 up to 15 while ho = 5. All the other standard parameter
values are remain the same as in the previous example. The corresponding

results are displayed in Figure 3.29.
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Figure 3.29: The total cost with different values of hy/hs
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As depicted in the figure, the larger the value of hj/hs, the larger the
total cost of all policies. For Policy 1, the minimum number of shipments
increases from 9 to 14 while for Policy 3 it increases from 5 to 12. The
rationale behind this result is that, the vendor will deliver in more numbers
of shipments in order to decrease their holding cost.

Figure 3.30: The total cost saving while varying the values of hy/hy
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The total cost savings obtained by implementing Policy 3 rather than
Policies 1 and 2 while varying the value of hy/hs is plotted in Figure 3.30.
The larger the ratio of hy/hg, the lower the total cost can be obtained. For
example, when hy /hy = 1.20, (T'Cy (or TCy)—TC3)= 234.13, and it decreases

to 110.35 when hy/he = 3.00.

Figure 3.31: The total cost with different value of Ay
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Now, we look at the changes of the total cost while varying the value of
As. All the other standard parameter values remain the same. The result is
given in Figure 3.31. The total cost for all policies increases as A, increases
whereas the number of shipments decreases. For example, when A, = 5 the
minimum number of shipments is 21 but when A, increases to 45, n decreases
to 7 shipments. We conclude that the larger the value of As, the larger the

total cost for all policies. In line with our conclusion, Policy 3 always gives
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the best minimum total cost.
Finally, the total cost savings while varying the value of Ay is plotted in
Figure 3.32. We observed that the larger the value of A the larger the value

of (TCl (Ol" TOQ) - TCg)

Figure 3.32: The total cost saving while varying the value of A,
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3.7 Conclusion

In this chapter, we have considered the integrated inventory model for final
production batch with h; < ho with equal shipment sizes, equal shipment pe-
riods and unequal shipment sizes and periods policies. The first two policies
are easy to solve. It can be calculated directly because all the parameters are
fixed. We have implemented the Microsoft of Excel Solver to solve the third

policy. We concluded that the unequal shipments size and period is the best
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policy compared to the other two policies.

We extended this model with the case of hy > hy. We also discussed the
three policies as in the case of h; < hy and found that the best minimum
solution is also given by the unequal shipments size and period policy.

However a single batch is seldom to be applied in the real problem. There-
fore, in the next chapter we will consider the integrated inventory model for
n batch production which consists the final production batch at the end of

the production cycle.
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