
Chapter 4

Integrated inventory model for

n production batch

4.1 Introduction

This chapter is mainly concerned with integrated inventory policy for n batch

production cycle under time-varying demand process. Both vendor and buyer

will collaborate and get their benefit through this policy. We will show how

the formulation of the model is derived in details. The basic of the model is

similar as in Chapter 3 but now we extend it to n batch production which

consists of the final batch at the end of the production cycle. We will consider

two different cases, that is h1 < h2 and h1 > h2. Both cases will discuss the

equal and unequal cycle time, Ti and shipment sizes, qi,j. We show how the
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solution of the model may be derived when the shipment sizes and periods

are equal or unequal. We illustrate this policy with numerical examples.

4.2 Mathematical formulation

The cost factors considered here are

• the fixed production set up cost, A1

• the fixed order/shipment cost, A2

• the fixed inventory holding cost for the vendor, h1

• the fixed inventory holding cost for the buyer, h2

4.2.1 Notation

Let i = 1, 2, . . . , n be the number of batches, j = 1, 2, . . . ,m be the number

of shipments and H is the finite planning horizon.

• The demand rate for the finished product at time t is f(t) for t ∈ (0, H).

• P units per unit time is the finite production rate. The value of the

production rate is greater than the demand rate, P > D.

• xi is the initial stock held at the buyer for each batch.
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• Ti is the cycle time (the length of time for the ith batch). It is the time

calculated between successive production start-ups that is from ti,0 to

ti+1,0.

• qi,j is the size of each shipment.

• ti,j is the replenishment time with t1,0 = 0.

• Di is the demand for ith batch.

4.2.2 Assumption

• In these models, demand at any time t is given by the function f(t).

It could be linearly decreasing (f(t) = a − bt) or linearly increasing

(f(t) = a + bt) or exponentially decreasing (f(t) = ae−bt). We choose

f(t) = a− bt as an example in every model in this chapter. Here, a is

the initial rate demand with a > 0 and b is the slope with b > 0.

• We are currently at time zero and wish to determine the stock replen-

ishment which minimises the expected total relevant cost.

• The set-up and ordering costs are fixed throughout the planning hori-

zon.

• The production rate, P is also fixed throughout the planning horizon.
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• There are no limitation on the order size.

• The transportation cost per unit time is ignored since we are assuming

that it is constant and independent from the ordering quantity.

• xi is greater than zero and depends on the size of the first shipment for

every batch.

• The finished product is transferred from the vendor to the buyer in n

batches and m shipments.

• No shortages are allowed.

4.3 Case 1 : h1 < h2

We first consider the case where the vendor’s holding cost is less than the

buyer’s. This problem has received a great deal of attention by many re-

searches, with much of their work concentrating on fixed demand. In this

case, the buyer will keep their inventory level as low as possible by receiving

their finished product when their inventory level fall to zero or as late as

possible. The location of the stock is preferably at the vendor’s warehouse.

In Chapter 2, we also discussed this case, h1 < h2 but that is for the final

batch of the production cycle. Here, we develop a complete n batch which

have n− 1 repeated batch and will end up with the final batch.

97



Figure 4.1: Plot of the inventory level against time when n = 3 and m = 5
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Figure 4.1 gives the graphical representation for the model with 3 batches

and 5 shipments. At the beginning of the cycle, the vendor begins production

at a fixed production rate P , and inventory begins to accumulate up to

production time. Here we assume that the demand rate for the previous batch

is constant. Therefore, the initial stock at the buyer when the production is

about to start is x1 and given as follow

x1 = a(
q1,1
P

) (4.1)

where q1,1/P is the time to produce the first shipment quantity, q1,1.

However, for xi, i = 2, 3, · · · , n, the demand rate is considered decreasing

with time, so,

xi =

∫ ti−1,m+1=ti,1

txi

f(t)dt (4.2)

where txi
can be obtained from the following equation :

P (ti,1 − txi
) = qi,1

txi
= ti,1 −

qi,1
P

. (4.3)

The production batch will starts at ti,0 for every batch until production

uptime ti,p. The first shipment is at ti,1 (t1,1 = 0 according to buyer’s time)

and follows at time ti,2, ti,3, . . . , ti,m, with the shipment sizes qi,1, qi,2, . . . , qi,m

where i = 1, 2, . . . , n.
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y1(t) represents the stock level at time t in the interval (ti,p, ti+1,0) which

can be express as

∫ ti+1,0

ti,p

f(t) dt−
∫ t

ti,p

f(t)dt. (4.4)

Then,

y1(t) =

∫ ti+1,0

t

f(t)dt. (4.5)

y2(t) is the stock level during production time, (ti,0, ti,p) and given by

y2(t) = P (t− ti,0)−
∫ t

ti,0

f(t)dt. (4.6)

The total demand for the complete production cycle, D is

∫ H

t1,0=0

f(t)dt (4.7)

where
∑n

i=1Di = D and Di =
∫ ti+1,0

ti,0
f(t)dt.

4.3.1 Total time-weighted system stock

The total system stock is represent by the area under the curve y1(t) and

y2(t) in (ti,p, ti+1,0) and (ti,0, ti,p) respectively. Hence, we have the total time-

weighted system stock, TSS, as

n∑
i=1

∫ ti,p

ti,0

y2(t)dt+
n∑

i=1

∫ ti+1,0

ti,p

y1(t) dt+
n∑

i=1

(xi + xi+1)
Ti

2
(4.8)

where tn,m+1 = H and xn+1 = 0.
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The production uptime, ti,p can be obtained from the following :

P (ti,p − ti,0) =

∫ ti+1,0

ti,0

f(t)dt

ti,p =
1

P

∫ ti+1,0

ti,0

f(t)dt+ ti,0

=
Di

P
+ ti,0 (4.9)

4.3.2 Total time-weighted buyer stock

In figure 4.1, q1,j j = 1, 2, 3, 4, 5 is the shipment sizes for each shipment for

the first batch. Similarly, qi,j, i = 2 and j = 1, 2, 3, 4, 5 is the shipment sizes

for each shipment for the second batch. Therefore, the shipment sizes for

each shipment for every batch is given by

qi,j =

∫ ti,j+1

ti,j

f(t)dt i = 1, 2, . . . , n, j = 1, 2, . . . ,m. (4.10)

Let I(t) be the inventory level at any time t and it given by

∫ ti,j+1

t

f(t) dt (4.11)

Hence, the buyer stock can be calculated by the area under the curve I(t)

in the period (ti,j, ti,j+1). It follows that the total time-weighted buyer stock

from jth shipment, TBS is

n∑
i=1

m∑
j=1

{∫ ti,j+1

ti,j

[∫ ti,j+1

t

f(t) dt

]
dt

}
(4.12)
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It follows, the total cost for this policy, TC is in the term of n (discrete

variable), m (discrete variable) and t⃗ = ti,2, ti,3, . . . , ti,m (real variables) which

is given by

TC = n(A1) + nm(A2) + h1TSS + (h2 − h1)TBS (4.13)

For example, let the demand rate is linearly decreasing over the period

(0, H) that is

f(t) = a− bt a > 0; b > 0; t > 0;H > 0. (4.14)

Substituting (4.14) into (4.5), (4.6), (4.7), (4.8), (4.9) and (4.12) we have

y1 = a(ti+1,0 − t)− b

2
(t2i+1,0 − t2), (4.15)

y2 = (P − a)(t− ti,0) +
b

2
(t2 − t2i,0), (4.16)

D = H

(
a− b

2
H

)
, (4.17)

TSS =
n∑

i=1

{
b

6
(t3i,p − t3i,0) +

(P − a)

2
(t2i,p − t2i,0)

− [(P − a)ti,0 +
b

2
t2i,0](ti,p − ti,0)

}
+

n∑
i=1

{
b

6
(t3i+1,0 − t3i,p)−

a

2
(t2i+1,0 − t2i,p)

+ (ati+1,0 −
b

2
t2i+1,0)(ti+1,0 − ti,p)

}
+

n∑
i=1

(xi + xi+1)
Ti

2
, (4.18)
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TBS =
n∑

i=1

m∑
j=1

ati,j+1(ti,j+1 − ti,j)−
a

2

n∑
i=1

[
t2i−1,m+1 − t2i,1

]

−
n∑

i=1

b

2

m∑
j=1

t2i,j+1(ti,j+1 − ti,j) +
b

6

n∑
i=1

[
t3i−1,m+1 − t3i,1

]
.(4.19)

Finally, substituting (4.18) and (4.19) into (4.13) we have,

TC = n(A1) + nm(A2) + h1

{
n∑

i=1

{
b

6
(t3i,p − t3i,0) +

(P − a)

2
(t2i,p − t2i,0)

− [(P − a)ti,0 +
b

2
t2i,0](ti,p − ti,0)

}
+

n∑
i=1

{
b

6
(t3i+1,0 − t3i,p)

− a

2
(t2i+1,0 − t2i,p) + (ati+1,0 −

b

2
t2i+1,0)(ti+1,0 − ti,p)

}
+

n∑
i=1

(xi + xi+1)
Ti

2

}

+ (h2 − h1)

{
a

n∑
i=1

m∑
j=1

ti,j+1(ti,j+1 − ti,j)−
a

2

n∑
i=1

[
t2i,m+1 − t2i,1

]
− b

2

n∑
i=1

m∑
j=1

t2i,j+1(ti,j+1 − ti,j) +
b

6

n∑
i=1

[
t3i,m+1 − t3i,1

]}
(4.20)

Denote TC as TC(n,m, t⃗) where n and m are discrete variables and

t⃗ = ti,2, ti,3, . . . , ti,m is a real variables.

We will explore the best solution of the above total cost based on two

policies with 2 cases of the shipment sizes:

1. Policy 1 : Equal cycle time

(a) Equal shipment sizes

(b) Unequal shipment sizes and unequal shipment periods

2. Policy 2 : Unequal cycle time

(a) Equal shipment sizes
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(b) Unequal shipment sizes and unequal shipment periods

The objective in every policies is to find an optimal ti,j and qi,j for a given

n and m which gives the minimum total cost, TC.

4.3.3 Policy 1 : Equal cycle times

In this policy, the value of Ti is assumed to be equal. So, we have fixed value

of Ti which can be calculated as follow

Ti =
H

n
(4.21)

where the sum of all Ti must be equal to H, that is

n∑
i=1

Ti = H. (4.22)

We will explore this policy with equal and unequal shipment sizes.

4.3.3.1 Policy 1 (a) : Equal shipment sizes

In this policy the shipment sizes are equal for every batch. Hence, we have

fixed value of qi,j. Therefore, the demand of i batch, Di will be divided by

the number of shipments, m, that is given by

qi,j =
Di

m
i = 1, 2, . . . , n (4.23)

The buyer receives an equal quantity for each shipment and takes (ti,j+1−

ti,j) amount of times to use up qi,j, where i = 1, 2, . . . , n and j = 1, 2, . . . ,m.
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Hence, we have

∫ ti,j+1

ti,j

f(t)dt =
Di

m
. (4.24)

For example, as shown in Figure 4.1, the vendor delivers five equal ship-

ments. The first shipment for the first batch is at time t1,1 (t1,1 = 0 according

to buyer’s time), it will be finished at time t1,2 where the second shipment is

arrive. This can be written as

q1,1 =

∫ t1,2

t1,1

f(t) dt =
D1

n
. (4.25)

From equation (4.25), we get

t1,2 =
a

b

{
1−

√
a− 2b

a2

[
− b

2
t1,1

2 + at1,1 +

(
D1

n

)]}
. (4.26)

Similarly, in the period time, (t1,2, t1,3), the buyer will use up q1,2 while

the vendor will continue producing and deliver the third shipment which will

arrive at the buyer exactly just before the second shipment is finished at t1,3.

This can be written as

q1,2 =

∫ t1,3

t1,2

f(t) dt =
D1

n
. (4.27)

From equation (4.27), we get

t1,3 =
a

b

{
1−

√
a− 2b

a2

[
− b

2
t1,2

2 + at1,2 +

(
D1

n

)]}
. (4.28)
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This process is repeated until the end of the planning horizon, H. Generally,

the shipment times is

ti,j+1 =
a

b

{
1−

√
a− 2b

a2

[
− b

2
t2i,j + ati,j +

(
Di

n

)]}
, (4.29)

where i = 1, 2, . . . , n, j = 1, 2, · · · ,m− 1.

Substituting (4.29) into (4.20) will give the total cost, TC1(a) for this

policy.

4.3.3.2 Solution procedure

The computer algorithm of the solution procedure is outline below :

1. Let n = 1

2. Let m = 1

3. Set Ti = H/n i = 1, 2, . . . , n

4. Set ti,1 = 0, tn,m+1 = H

5. Compute qi,j = Di/n, (i = 1, 2, · · · , n and j = 1, 2, . . .m)

6. Compute ti,j+1, (i = 1, 2, · · · , n, j = 1, 2, · · · ,m − 1) using (4.29)

and TC1(a)(n,m, t⃗ ) using (4.20)

7. Set TC1(a)(n,m, t⃗ ) as TC1(a)(n,m
∗, t⃗ ). Increase m by 1 and repeat

step 5 to 6. Stop when TC1(a)(n,m, t⃗ ) ≥ TC1(a)(n,m
∗, t⃗ )

8. Increase n by 1 and repeat step 5 to 7. Set TC1(a)(n,m
∗, t⃗ ) as

TC1(a)(n
∗,m∗, t⃗ ). Stop when TC1(a)(n,m

∗, t⃗ ) ≥ TC1(a)(n
∗,m∗, t⃗ )
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The basic idea of the above algorithm is to start with n = 1 and m = 1.

Next, we increase m to improve the total system cost until the first m = m∗

that satisfies the conditions TC1(a)(n,m
∗, t⃗ ) < TC1(a)(n,m

∗ − 1, t⃗ ) and

TC1(a)(n,m
∗, t⃗ ) < TC1(a)(n,m

∗ + 1, t⃗ ). Then we increase n to improve

the total system cost until the first n = n∗ that satisfies the conditions

TC1(a)(n
∗,m∗, t⃗ ) < TC1(a)(n

∗ − 1,m∗ − 1, t⃗ ) and TC1(a)(n
∗,m∗, t⃗ ) <

TC1(a)(n
∗ + 1,m∗ + 1, t⃗ ).

4.3.3.3 Policy 1 (b) : Unequal shipment sizes and unequal ship-

ment periods

In this policy the shipment sizes are unequal, so, qi,j is now a variable. Fig-

ure 4.2 shows the illustration of this policy.

Since stockout is not allowed, the time for the vendor to produce qi,j+1

must be less than the time for the buyer to finish up qi,j. For example,

Figure 4.3 shows the illustration of the inventory level at the buyer for the

first and second shipments for the first batch.

The time to produce the second shipment, q1,2 must be less than the time

for the buyer to finish up the first shipment, q1,1, so we can write it as follows

P (t1,2 − t1,1) ≥ q1,2

t1,2 − t1,1 ≥ q1,2
P
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Figure 4.2: Illustration of the inventory level at the vendor and buyer for the

first batch

Figure 4.3: The first and second shipments for the first batch

108



where q1,1 =

∫ t1,2

t1,1

f(t)dt.

t1,2 =
a

b

{
1−

√
a− 2b

a2

[
at1,1 −

b

2
t1,1

2 + q1,1

]}
.

Figure 4.4 shows the illustration of the inventory level at the buyer for

the first, second and third shipments for the first batch.

Figure 4.4: The first, second and third shipments
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Similarly, the time to produce the third shipment, q1,3, must be less than

the time for the buyer to finish up the second shipment, q1,2 and we have

P (t1,3 − t1,2) ≥ q1,3

P (t1,3 − t1,1 + t1,1 − t1,2) ≥ q1,3

P (t1,3 − t1,1) ≥ P (t1,2 − t1,1) + q1,3

P (t1,3 − t1,1) ≥ q1,2 + q1,3

(t1,3 − t1,1) ≥ q1,2 + q1,3
P

(4.30)

where q1,2 =

∫ t1,3

t1,2

f(t)dt

t1,3 =
a

b

{
1−

√
1− 2b

a2

[
at1,2 −

b

2
t21,2 + q1,2

]}

Generally, the time to produce the j + 1 shipment, qi,j+1 must be less

than the time for the buyer to finish up the j shipment, qi,j, that is

P (ti,j+1 − ti,1) ≥
j∑
1

qi,j+1

ti,j+1 − ti,1 ≥
j∑
1

qi,j+1

P
.

where qi,j =

∫ ti,j+1

ti,j

f(t)dt

ti,j+1 =
a

b

{
1−

√
1− 2b

a2

[
ati,j −

b

2
t2i,j + qi,j

]}
.

The total quantity delivered to the buyer must be equal to the total
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demand for each batch, that is

m∑
j=1

qi,j = Di , i = 1, 2, · · · , n. (4.31)

From these arguments, we can establish the following constraint opti-

mization problem,

Minimum TC1(b)(n,m, t⃗ ) (4.32)

Subject to

ti,j+1 − ti,1 ≥
j∑
1

qi,j+1

P
(4.33)

m∑
j=1

qi,j = Di (4.34)

where

ti,j+1 =
a

b

{
1−

√
1−

(
2b

a2

)[
ati,j −

b

2
t2i,j + qi,j

] }
. (4.35)

Our objective is to minimize the total system cost, that is equation (4.32)

subject to the constraints (4.33), and (4.34).

4.3.3.4 Solution procedure

We derived the following algorithm and use the Microsoft Excel Solver as a

solution tool:

1. Let n = 1

2. Let m = 1
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3. Set Ti = H/n i = 1, 2, . . . , n

4. Set ti,1 = 0, tn,m+1 = H

5. Determine qi,j, (i = 1, 2, · · · , n and j = 1, 2, . . .m) which satisfied

constraints (4.33) and (4.34), if it exists

6. Compute ti,j+1, (i = 1, 2, · · · , n, j = 1, 2, · · · ,m − 1) using (4.35)

and TC(n,m, t⃗ ) using (4.13)

7. Set TC1(b)(n,m, t⃗ ) as TC1(b)(n,m
∗, t⃗ ). Increase m by 1 and repeat

step 5 to 6. Stop when TC1(b)(n,m, t⃗ ) ≥ TC1(b)(n,m
∗, t⃗ )

8. Increase n by 1 and repeat step 5 to 7. Set TC1(b)(n,m
∗, t⃗ ) as

TC1(b)(n
∗,m∗, t⃗ ). Stop when TC1(b)(n,m, t⃗ ) ≥ TC1(b)(n

∗,m∗, t⃗ )

Similarly, the basic idea of the above algorithm is to start with n = 1 and

m = 1. Next, we increase m to improve the total system cost until the first

m = m∗ that satisfies the conditions TC1(b)(n,m
∗, t⃗ ) < TC1(b)(n,m

∗ − 1, t⃗ )

and TC1(b)(n,m
∗, t⃗ ) < TC1(b)(n,m

∗ + 1, t⃗ ). Then we increase n to improve

the total system cost until the first n = n∗ that satisfies the conditions

TC1(b)(n
∗,m∗, t⃗ ) < TC1(b)(n

∗ − 1,m∗ − 1, t⃗ ) and TC1(b)(n
∗,m∗, t⃗ ) <

TC1(b)(n
∗ + 1,m∗ + 1, t⃗ ).
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4.3.4 Policy 2 : Unequal cycle times

In this policy the value of Ti is unknown. The sum of all T
′
i s must be equal

to the finite time horizon, H that is

n∑
i=1

Ti = H. (4.36)

We need to find the optimal value of Ti that gives the minimum total

cost. We will explore this policy with equal and unequal shipment sizes.

4.3.4.1 Policy 2 (a) : Equal shipment sizes

In this policy the shipment sizes is assumed to be equal. This policy is similar

to the Policy 1(a) in Section 4.3.3.3 therefore we can adopt Equation (4.23)

and (4.24) for solving this policy. The value of Ti will be set as a changing

variable, Solver will give the optimal value of Ti which consider fixed equal

shipments, and the minimum total cost of the system for a given n and m.

The constraint optimization problem is as follows :

Minimum TC2(a)(n,m, t⃗ ) (4.37)

Subject to

n∑
i=1

Ti = H (4.38)

m∑
j=1

qi,j = Di (4.39)
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where

ti,j+1 =
a

b

{
1−

√
1−

(
2b

a2

)[
ati,j −

b

2
t2i,j + qi,j

] }
. (4.40)

Our objective is to minimize the total system cost, that is equation (4.37)

subject to the constraints (4.38) and (4.39).

4.3.4.2 Solution procedure

We derived the following algorithm and use the Microsoft Excel Solver as a

solution tool:

1. Let n = 1

2. Let m = 1

3. Set ti,1 = 0, tn,m+1 = H

4. Determine Ti, i = 1, 2, · · · , n which satisfied constraints (4.38) and

(4.39), if it exists

5. Compute ti,j+1, i = 1, 2, · · · , n, j = 1, 2, · · · ,m− 1 using (4.40) and

TC2(a)(n,m, t⃗ ) using (4.37)

6. Set TC2(a)(n,m, t⃗ ) as TC2(a)(n,m
∗, t⃗ ). Increase m by 1 and repeat

step 4 to 5. Stop when TC2(a)(n,m, t⃗ ) ≥ TC2(a)(n,m
∗, t⃗ )

7. Increase n by 1 and repeat step 4 to 6. Set TC2(a)(n,m
∗, t⃗ ) as

TC2(a)(n
∗,m∗, t⃗ ). Stop when TC2(a)(n,m

∗, t⃗ ) ≥ TC2(a)(n
∗,m∗, t⃗ )

114



Again, the basic idea of the above algorithm is to start with n = 1 and

m = 1. Next, we increase m to improve the total system cost until the first

m = m∗ that satisfies the conditions TC2(a)(n,m
∗, t⃗ ) < TC2(a)(n,m

∗ − 1)

and TC2(a)(n,m
∗, t⃗ ) < TC2(a)(n,m

∗ + 1). Then we increase n to improve

the total system cost until the first n = n∗ that satisfies the conditions

TC2(a)(n
∗,m∗, t⃗ ) < TC2(a)(n

∗ − 1,m∗ − 1, t⃗ ) and TC2(a)(n
∗,m∗, t⃗ ) <

TC2(a)(n
∗ + 1,m∗ + 1, t⃗ ).

4.3.4.3 Policy 2 (b) : Unequal shipment sizes and unequal ship-

ment periods

Finally, we consider the case where both the cycle time and the shipment

sizes are unequal. We set Ti and qi,j as the changing variables. The constraint

optimization problem is as follow :

Minimum TC2(b)(n,m, , t⃗ ) (4.41)

Subject to

ti,j − ti,j−1 ≥
j∑
1

qi,j+1

P
(4.42)

n∑
i=1

Ti = H (4.43)

m∑
j=1

qi,j = Di (4.44)
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where

ti,j+1 =
a

b

{
1−

√
1−

(
2b

a2

)[
ati,j −

b

2
t2i,j + qi,j

] }
. (4.45)

Our objective is to minimize the total system cost, that is equation (4.41)

subject to the constraints (4.42), (4.43) and (4.44).

4.3.4.4 Solution procedure

We derived the following algorithm and use the Microsoft Excel Solver as a

solution tool:

1. Let n = 1

2. Let m = 1

3. Set ti,1 = 0, tn,m+1 = H

4. Determine Ti, i = 1, 2, · · · , n and qi,j which satisfied constraints (4.42),

(4.43) and (4.44), if they exist

5. Compute ti,j+1, i = 1, 2, · · · , n, j = 1, 2, · · · ,m− 1 using (4.45) and

TC2(b)(n,m, t⃗ ) using (4.41)

6. Set TC2(b)(n,m, t⃗ ) as TC2(b)(n,m
∗, t⃗ ). Increase m by 1 and repeat

steps 4 to 5. Stop when TC2(b)(n,m, t⃗ ) ≥ TC2(b)(n,m
∗, t⃗ )

7. Increase n by 1 and repeat steps 4 to 6. Set TC2(b)(n,m
∗, t⃗ ) as

TC2(b)(n
∗,m∗, t⃗ ). Stop when TC2(b)(n,m, t⃗ ) ≥ TC2(b)(n

∗,m∗, t⃗ )
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4.3.5 Numerical examples and sensitivity analysis

To demonstrate the effectiveness of the proposed models, we present some

numerical examples for every cases which uses similar parameter values as

follows:

A1 = 400, A2 = 25, H = 5, P = 1000

h1 = 4, h2 = 5, a = 200, b = 20.

Note that these values are similar as in numerical example in final batch

inventory model in Section 3.3.6.

Table 4.1 gives the total cost for Policy 1(a) and Policy 1(b) for some com-

binations of n and m, where n = 1, 2, · · · , 6 and m = 1, 2, · · · , 13. The value

of the total cost for Policy 1(b) is given in the parenthesis. The underlined

values represent the minimum total cost for a given m while increasing the

value of n and the double underlined values represent the minimum total cost

for a given n while increasing the value of n. Overall, it shows that when n

and m increase, the total cost decreases until it reached the minimum value.

For example, when n = 1, the minimum total cost is at m = 12 for Policy

1(a) and m = 10 for Policy 1(b) respectively. If we consider m = 1 while

increasing the value of n, the minimum total cost is at n = 5 for both Policies

1(a) and 1(b).

We observed that the value of the total cost when m = 1 for every n gives

the same value for both Policies 1(a) and 1(b). This is because there is only
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one shipment for every batch and T1 must be equal to H. Therefore, the

minimum shipment size, qi,1 is always equal to the total demand, Di. Hence,

it produces the same result.

As expected, the total cost for Policy 1(b) is always lower than Policy

1(a). This result suggests that unequal shipment sizes policy performs very

well when compared to the equal shipment sizes policy. The optimal total

costs for both policies are at n = 4 and m = 3. These values are given in

bold in Table 4.1. However, Policy 1(b) gives a better solution which is 86.10

less than Policy 1(a) where TC∗
1(a) is 3757.77 while TC∗

1(b) is 3671.67.
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Table 4.1: The minimum total cost for Policies 1(a) and 1(b)

Total relevant cost

m ↓ → n 1 2 3 4 5 6

1 9133.33 5614.97 4557.92 4203.88 4148.55 4247.80

(9133.33) (5614.97) (4557.92) (4203.88) (4148.55) (4247.80)

2 7622.97 4774.55 4005.55 3841.50 3879.880 4066.04

(7477.66) (4646.12) (3914.10) (3745.78) (3829.67) (4012.592)

3 7116.16 4523.27 3869.64 3757.77 3873.09 4105.09

(6911.15) (4380.31) (3761.76) (3671.67) (3803.00) (4077.69)

4 6870.95 4421.74 3842.795 3776.48 3932.09 4199.54

(6675.63) (4290.71) (3752.77) (3698.85) (3867.82) (4144.73)

5 6732.37 4380.54 3850.26 3827.65 4017.46 4316.83

(6556.44) (4264.701) (3764.27) (3759.53) (3961.81) (4268.19)

6 6647.69 4369.614 3882.82 3895.07 4098.78 -

(6489.75) (4266.85) (3806.77) (3834.90) (4066.34) -

7 6594.05 4376.04 3927.48 3971.79 4222.13 -

(6451.25) (4283.94) (3859.47) (3918.03) (4177.73) -

8 6559.89 4393.32 3979.71 4059.83 4344.52 -

(6429.66) (4309.92) (3918.22) (4005.74) (4302.73) -
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9 6538.78 4417.86 4037.00 4140.74 4446.94 -

(6419.022) (4341.61) (3981.32) (4096.40) (4410.52) -

10 6526.828 4447.48 4097.83 4229.86 4563.12 -

(6415.87) (4377.19) (4046.12) (4189.05) (4529.44) -

11 6521.55 4480.79 4161.22 4320.96 4680.90 -

(6418.07) (4415.54) (4113.28) (4283.16) (4649.71) -

12 6521.29 4516.88 4226.56 4413.55 4799.88 -

(6424.23) (4455.94) (4181.86) (4378.33) (4770.84) -

13 6524.90 4555.11 4293.37 4507.27 - -

(6433.44) (4497.91) (4251.51) (4474.30) - -
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We illustrate the inventory level at the buyer and vendor for Policy 1(b)

by plotting the optimal solution as given by Figure 4.5 and 4.6 respectively.

Figure 4.5: Buyer’s inventory level

As depicted in Figure 4.5, the optimal value of shipment sizes, q∗i,j where

i=1, 2, 3, 4 and j=1, 2, 3 are given by (21.299, 107.069, 106.007), (15.635,

89.801, 97.689), (11.777, 78.926, 81.173) and (8.308, 66.823, 65.494). The

value of the optimal initial stock at the buyer, xi are (4.260, 2.738, 1.768,

1.039). As expected, it shows that xi > xi+1 due to the decreasing demand.

The optimal shipment times given by t∗i,j, where i = 1, 2, 3, 4 and j = 1, 2, 3

are (0, 0.107, 0.664), (1.250, 1.340, 1.875), (2.500, 2.579, 3.131) and (3.750,

3.817, 4.383). The t∗i,p for i=1, 2, 3, 4 is (0.234, 1.453, 2.672, 3.891). The
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value of the optimal Ti is obtain from H/n, therefore the optimal T ∗
i where

i = 1, 2, 3, 4 is 1.250.

Figure 4.6: Vendor’s inventory level

Figure 4.6 shows the amount which is produced and shipped at the re-

spective shipment times. For example, at the first batch, the vendor start

their production at t1,0 = 0 until t1,p = 0.234. They have to produce 234.38

in order to satisfy the demand for this batch. The first shipment, q1,1=21.299

is produced and shipped to the buyer at t1,1 = 0.021. They continue produc-

ing and deliver the second shipment, q1,1= 107.069 at t1,2 = 0.128. The third

shipment, q1,3=106.007 is produced at the production uptime, t1,p. However,

this amount is held by the vendor and delivered when the buyer finished
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up the second shipment at t1,3 = 0.6852. The second batch will start at

t2,0 = 1.289 that is 0.016 unit of time before the third shipment is finished

up by the buyer.

Table 4.2 gives the total cost for Policy 2(a) and Policy 2(b) for some

combinations of n and m, where n = 1, 2, · · · , 6 and m = 1, 2, · · · , 13. The

value of the total cost for Policy 2(b) is given in the parenthesis. The under-

lined values represent the minimum total cost for a given m while increasing

the value of m, and the double underlined values represent the minimum

total cost for a given m while increasing the value of n.

Similarly, as in Policies 1(a) and 1(b), when n and m increase, the total

cost decreases until it reached the minimum solution. For example, when

n = 1, the minimum total cost is reached at m = 12 for Policy 2(a) and

m = 10 for Policy 2(b). If we consider m = 1 while increasing the value of n,

the minimum total cost is reached at n = 5 for both Policies 2(a) and 2(b).

As expected, the total cost for Policy 2(b) is always lower than Policy 2(a)

where the different shipments size policy performs very well when compared

to the equal shipment sizes policy. The optimal total costs for both policies

are reached at n = 4 and m = 3. However, Policy 2(b) gives a better

solution which is 84.29 less than Policy 2(a) where TC∗
2(a) is 3742.99 and

TC∗
2(b) is 3658.70. The optimal cycle time is increasing due to the decreasing

demand where T ∗
i , are 1.1233, 1.1812, 1.2751 and 1.4205.
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Table 4.2: The minimum total cost for Policies 2(a) and 2(b)

Total relevant cost

m ↓ → n 1 2 3 4 5 6

1 9133.33 5261.61 4529.39 4179.29 4127.55 4229.64

(9133.33) (5587.71) (4529.39) (4179.29) (4127.55) (4229.64)

2 7622.97 4751.52 3984.93 3819.57 3865.57 4053.794

(7477.66) (4624.45) (3895.91) (3731.16) (3829.67) (4002.35)

3 7116.16 4501.80 3851.44 3742.99 3860.82 4094.65

(6911.15) (4358.99) (3745.18) (3658.70) (3792.17) (4072.53)

4 6870.95 4401.08 3824.575 3762.80 3920.81 4189.97

(6675.63) (4270.27) (3729.854) (3686.56) (3857.85) (4136.37)

5 6732.37 4360.36 3833.90 3814.61 4006.74 4307.65

(6556.44) (4244.76) (3745.32) (3747.63) (3952.21) (4260.13)

6 6647.69 4349.762 3866.91 3882.46 4088.01 -

(6489.75) (4247.23) (3791.76) (3823.26) (4056.82) -

7 6594.05 4356.42 3911.89 3959.48 4212.06 -

(6451.25) (4283.94) (3844.66) (3906.56) (4168.46) -

8 6559.89 4373.88 3964.43 4052.95 4334.54 -

(6429.66) (4290.69) (3903.57) (3994.41) (4293.46) -
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9 6538.78 4398.56 4021.89 4133.03 4437.21 -

(6419.02) (4322.51) (3966.65) (4085.16) (4401.41) -

10 6526.83 4428.28 4084.80 4222.22 4553.51 -

(6415.87) (4358.19) (4031.68) (4177.89) (4520.44) -

11 6521.55 4461.69 4149.47 4309.28 4675.64 -

(6418.07) (4396.63) (4098.91) (4272.06) (4640.76) -

12 6521.29 4497.85 4214.60 4405.99 4790.47 -

(6424.23) (4437.09) (4167.55) (4367.28) (4761.93) -

13 6524.90 4536.14 4281.72 4495.75 - -

(6433.44) (4479.11) (4237.25) (4463.29) - -
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The results shown in Table 4.1 and Table 4.2 conclude that Policy 2(b)

always gives the minimum total cost compared to the Policies 1(a), 1(b) and

2(a).

4.3.5.1 Sensitivity analysis

To study the effect of TC1(a), TC1(b), TC2(a) and TC2(b), we analyze these

four policies by varying some parameter values. We perform a numerical

sensitivity analysis by varying the value of b, P , a, h1/h2 and A2/A2 for

these four policies. We use the following parameter values as the standard

values of the parameter:

A1 = 400, A2 = 25, H = 5, P = 1000

h1 = 4, h2 = 5, a = 200, b = 20.

In this example, the value of b is 20. Note that 2(aH−P )
H2 < b < A

h
because

of D < P and a − bH > 0. Therefore, we vary the value of b from 5 to 35

for all policies to see the changes of the TC. The other standard parameters

remain the same. These results are illustrated in Figure 4.7.

We found that the larger the value of b, the lower the total cost of all

policies. When b is lower, the total cost of Policy 1(a) almost gives the same

value to the total cost of Policy 2(a). For example, when b = 5, TC1(a) and

TC2(a) are 4230.00 and 4229.11 respectively. Policies 1(b) and 2(b) also show
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the same pattern. However, as b becomes larger, TC1(b) is close to TC2(a) and

they intersect at a certain value of b. After that, the value of TC1(b) > TC2(a).

Figure 4.7: Plot of the total cost with different b

Figure 4.8 illustrates the cost savings obtained by using Policy 2(b) rather

than the other three policies (Policies 1(a), 1(b) and 2(a)) for different value

of b. The blue, red and yellow lines represent the total savings by evaluating

(TC1(a) − TC2(b)), (TC1(b) − TC2(b)) and (TC2(a) − TC2(b)) respectively. For

the smaller value of b, the red line gives the lowest total cost savings. It

shows that the difference between equal and unequal shipments policy is

more significant than the difference between equal and unequal cycle times.

For example, when b = 5, TC1(a) − TC2(b) is 125.61 and TC2(a) − TC2(b)) is

124.72 while TC1(b) − TC2(b) is 0.54.
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Figure 4.8: Plot of the total cost savings with different b

However, when b = 35, (TC2(a) − TC2(b)) decreases to 60.810 while

(TC1(a) − TC2(b)) and (TC1(b) − TC2(b)) increase to 160.76 and 97.16 respec-

tively. This result suggests that the larger the value of b, the larger the total

cost savings can be obtained by implementing the unequal cycle times policy

rather than the equal cycle times.

We also found that for Policy 2(b) the larger b, the larger the difference

between T ∗
i . For example, when b = 5 the optimal Ti are 1.2303, 1.2352,

1.2531 and 1.2814 while when b = 35, the optimal Ti are 1.254, 1.457 and

2.289.

The curves in Figure 4.8 are not smooth at b = 25 because of the changes

in the number of batches and the number of shipment. For example, the

minimum total cost when b = 25 is at n = 4 and m = 3 for all policies.
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However, when b = 30, the minimum total cost for Policy 1(a), 1(b) and 2(a)

is at n = 3 and m = 4 while Policy 2(b) is at n = 3 and m = 3.

Now we increase the value of P = 1000 up to 5000 while the other stan-

dard parameter values remain the same. The result is shown in Figure 4.9.

As expected, when P increases, the total cost increases. It also shows that

the difference between the total cost of Policies 1(a) and 1(b) becomes smaller

when P becomes larger. Similarly, Policy 2(a) and 2(b) also shows the same

pattern. For example, when P = 1000, the difference between the total cost

for Policies 2(a) and 2(b) is 84.30 whereas, when P = 5000, it is only 5.71.

Figure 4.9: The total cost with different P

We plotted the cost savings which is obtained while varying the value of P

in Figure 4.10. We found that as P increases, the total cost savings decrease
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for (TC1(a)−TC2(b)) and (TC2(a)−TC2(b)). However, when P becomes larger,

(TC1(b) − TC2(b)) increases and close to the value of (TC1(a) − TC2(b)).

Figure 4.10: The total cost saving with different P

The optimal total cost for Policy 2(a) when P = 1000 is at n = 4 and

m = 3, whereas when P = 5000 it is at n = 4 and m = 2. The shipment

sizes for each batch is given by Table 4.3. This table suggest that when

P is larger, the first shipment for each batch becomes larger compared to

smaller P . This is because the production process move on faster, therefore

the number of shipments will be less.

Now, let us consider a different value of a where all the other standard

parameter values remain the same. Note that the value of a must be greater

than bH and less than P
H
+ bH

2
because the demand, a−bH > 0 and aH− bH2

2
≤

P . The result is given in Figure 4.11.
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Table 4.3: Shipment sizes for optimal total cost for Policy 2(b) when P =

1000 and 5000

P n∗ m∗ TC∗ q∗i,j 1st batch 2nd batch 3rd batch 4th batch

1000 4 3 3658.70 q∗i,1 19.26 15.28 12.63 9.86

q∗i,2 96.75 6.51 82.50 7.22

q∗i,3 96.048 93.932 84.88 75.15

5000 4 2 3825.55 q∗i,1 97.241 85.044 81.118 76.329

q∗i,2 111.606 109.890 99.933 88.838

Figure 4.11: The total cost with different a
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As depicted in Figure 4.11, the total cost for all policies increases as the

value of a increases. The lower total cost is given by Policies 1(b) and 2(b).

This result suggests that, with the larger initial demand rate, the different

shipment sizes policy is more effective compared to the equal shipment sizes

policy. We also found that the larger a, the smaller the difference between

the total cost for Policies 1(a) and 2(a). This also happens to the Policies

1(b) and 2(b). For example, when a = 120 the difference between the total

cost for Policies 1(a) and 2(a) is 59.63 while for Policies 1(b) and 2(b) is

64.02. When a = 240, the differences decrease to 9.63 and 8.77 respectively.

Figure 4.12: The cost savings with different a

We plotted the total cost savings which is obtained while varying the

value of a in Figure 4.12. It suggests that the larger the value of a, the larger

cost savings are obtained by implementing Policy 2(b) rather than Policies
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1(a) and 2(a). However, the total cost savings decrease for (TC1(b)−TC2(b)).

It shows that, as a increases the value of the total cost for equal cycle time

with unequal shipment sizes policy and unequal cycle times with unequal

shipment sizes policy become closer to each other.

The curves in Figure 4.12 are not smooth at a=170 because of the in-

crement in the number of batches. For example, the minimum total cost

for all policies when a=170 is at n=3 and m=3. However, when a=180, the

minimum total cost for all policies is at n = 4 and m = 3.

Next, we decrease the ratio of the holding cost, h1/h2 by increasing h2

from 5 up to 15 while h1 = 4. All the other standard parameter values remain

the same. The corresponding results are displayed in Figure 4.13.

Figure 4.13: The total cost with different ratios of h1/h2
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We observe that all policies show the similar pattern where the larger

h1/h2, the lower the total cost for all policies. However, Policy 2(b) always

gives the minimum total cost. For example, when h1/h2 = 0.267, the total

cost for Policies 1(a), 1(b), 2(a) and 2(b) are 4638.76, 4627.54, 4620.53 and

4610.66 respectively. However, when h1/h2 = 0.8, these total costs decrease

to 3757.77, 3671.67, 3742.99 and 3658.70 respectively.

Figure 4.14: Total cost savings with different ratios of h1/h2

Figure 4.14 gives a diagrammatic plot of the total cost savings obtained

by implementing Policy 2(b) rather than the other three policies. We found

that the larger the value of h1/h2 the larger (TC1(a) − TC2(b)) and (TC2(a) -

TC2(b)) but the lower (TC1(b) − TC2(b)). For example, when h1/h2 = 0.267,

(TC1(a)−TC2(b)), (TC1(b)−TC2(b)) and (TC2(a)−TC2(b)) are 28.10, 16.88 and

9.87. However, when h1/h2 = 0.8, (TC1(a) - TC2(b)) and (TC2(a) − TC2(b))
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increase to 99.07 and 84.29 while (TC1(b) − TC2(b)) decreases to 12.97.

Figure 4.15: The total cost with different ratios of A1/A2

Now, we vary the ratios of A1/A2 by changing the value of A2 from 5 to

45 while A1 = 400. Similarly, the other standard parameter values remain

the same. The results are given by Figure 4.15. We conclude that the larger

the ratios of A1/A2, the lower total cost for all policies. The total cost for

Policy 1(a) is close to Policy 2(a). Similarly, the total cost for Policy 1(b) is

close to the Policy 2(b). As we have concluded previously, Policy 2(b) always

gives the best minimum total cost.

Lastly, the cost savings obtained by implementing Policy 2(b) rather than

the other three policies is plotted in Figure 4.16. We observed that as A1/A2

increases there is a slight decreasing for all (TC1(a)−TC2(b)), (TC1(b)−TC2(b))

and (TC2(a) − TC2(b)). However, (TC2(a) − TC2(b)) always gives the lowest
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Figure 4.16: Total cost savings with different ratios of A1/A2

value.

4.4 Case 2 : h1 > h2

In this section, we will consider the case where the vendor’s holding cost

is greater than the buyer’s. As discussed in Chapter 3 section 3.4, it is

optimal for the vendor to keep their inventory level as low as possible by

moving all the stock to the buyer’s premises. This policy is based on mutual

collaboration and integration between vendor and buyer which is defined as

a consignment policy.
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Figure 4.17: Plot of the inventory level for the consignment policy with n = 2,

m = 5
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Figure 4.17 shows the illustration of the model with two batches and five

shipments which represent the stock level of the system, vendor and buyer.

The production batch will starts at ti,0 until the production uptime, ti,p. The

first shipments is at time t1,1 and follows at time ti,2, ti,3, . . . , ti,m with the

shipment sizes q1, q2, . . . , qn. y1(t), y2(t) and D is similar as equation (4.5),

(4.6) and (4.7) in Section 4.3.

4.5 Total time-weighted system stock

The total system stock represented by the area under the curves y1(t) and

y2(t) in (ti,p, H) and (0, ti,p) respectively. The total time weighted system

stock for this case is similar to the Case 1 which is given by equation (4.8)

where ti,p is similar with equation (4.9).

4.6 Total time-weighted vendor stock

The total time-weighted vendor stock, TV S is the total area under the tri-

angles. In Figure 4.17, the triangles are represent by ti,0q1,1t1,1, t1,1q2t1,2,

t1,2q1,3t1,3, t1,3q1,4t1,4 and t1,4q1,5t1,5. Hence, we have

TV S =
1

2

n∑
i=1

m∑
j=1

qi,j(ti,j − ti,j−1). (4.46)
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It follows that the total cost for this model, TC(n), is given by

TC = n(A1) + nm(A2) + h2TSS + (h1 − h2)TV S (4.47)

Structurally the cost function is identical to the equation (4.13) in the

previous model (Case h1 < h2). The constants h1 and h2 are interchanged

and the last term on the right hand side is now multiplied by the total time-

weighted vendor stock, TV S instead of TBS.

For example, let the demand rate is linearly decreasing over the period

(0, H) that is

f(t) = a− bt a > 0; b > 0; t > 0;H > 0. (4.48)

Substituting (4.48) into (4.5), (4.6), (4.7), (4.8), (4.9) and (4.12) we have

y1 = a(ti+1,0 − t)− b

2
(t2i+1,0 − t2), (4.49)

y2 = (P − a)(t− ti,0) +
b

2
(t2 − t2i,0), (4.50)

D = H

(
a− b

2
H

)
, (4.51)
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TSS =
n∑

i=1

{
b

6
(t3i,p − t3i,0) +

(P − a)

2
(t2i,p − t2i,0)

− [(P − a)ti,0 +
b

2
t2i,0](ti,p − ti,0)

}
+

n∑
i=1

{
b

6
(t3i+1,0 − t3i,p)−

a

2
(t2i+1,0 − t2i,p)

+ (ati+1,0 −
b

2
t2i+1,0)(ti+1,0 − ti,p)

}
+

n∑
i=1

(xi + xi+1)
Ti

2
. (4.52)

Finally, substituting (4.52) and (4.46) into (4.47) we have,

TC = n(A1) + nm(A2) + h2

n∑
i=1

{
b

6
(t3i,p − t3i,0) +

(P − a)

2
(t2i,p − t2i,0)

− [(P − a)ti,0 +
b

2
t2i,0](ti,p − ti,0)

}
+

n∑
i=1

{
b

6
(t3i+1,0 − t3i,p)

− a

2
(t2i+1,0 − t2i,p) + (ati+1,0 −

b

2
t2i+1,0)(ti+1,0 − ti,p)

}
+

n∑
i=1

(xi + xi+1)
Ti

2
+ (h1 − h2)

{
1

2

n∑
i=1

m∑
j=1

qi,j(ti,j − ti,j−1)

}
.(4.53)

Denote TC as TC(n,m, t⃗) where n and m are discrete variables and t⃗ =

ti,2, ti,3, . . . , ti,m is a real variables.

As in the previous section, we will explore the best solution of the above

total cost based on two policies with 2 cases of the shipment sizes:

1. Policy 1 : Equal cycle time

(a) Equal shipment sizes

(b) Unequal shipment sizes and unequal shipment periods

2. Policy 2 : Unequal cycle time
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(a) Equal shipment sizes

(b) Unequal shipment sizes and unequal shipment periods

The objective in every policies is to find an optimal ti,j and qi,j for a given

n and m which gives the minimum total cost, TC.

4.6.1 Policy 1 : Equal cycle times

In this policy, the value of Ti is assumed to be equal. Equation (4.21) and

Equation (4.22) in Section 4.3.3 are remain. We will explore this policy

with equal shipment sizes and unequal shipment sizes and unequal shipment

periods.

4.6.1.1 Policy 1 (a) : Equal shipment sizes

In this policy the shipment sizes and shipment periods are equal for every

batch. So, we have fixed value of qi,j which is similar to the equation (4.23)

in Section 4.3.3.1.

The illustration of this policy is given by Figure 4.17. The shipment times

can be expressed as

ti,j =
qi,j
P

+ ti,j−1, i = 1, 2, . . . , n, j = 1, 2, . . . ,m (4.54)

Substituting (4.54) into (4.53) will give the total cost for this policy.
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4.6.1.2 Solution procedure

The computer algorithm of the solution procedure is outline below :

1. Let n = 1

2. Let m = 1

3. Set Ti = H/n, i = 1, 2, . . . , n

4. Set ti,1 = 0, tn,m+1 = H

5. Set qi,j = Di/n, (i = 1, 2, · · · , n and j = 1, 2, . . .m)

6. Compute ti,j, (i = 1, 2, · · · , n, j = 1, 2, · · · ,m) using (4.54) and

TC1(a)(n,m, t⃗ ) using (4.53)

7. Set TC1(a)(n,m, t⃗ ) as TC1(a)(n,m
∗, t⃗ ). Increase m by 1 and repeat

step 3 to 6. Stop when TC1(a)(n,m, t⃗ ) ≥ TC1(a)(n,m
∗, t⃗ )

8. Increase n by 1 and repeat step 2 to 7. Set TC1(a)(n,m
∗, t⃗ ) as

TC1(a)(n
∗,m∗, t⃗ ).Stop when TC1(a)(n,m

∗, t⃗ ) ≥ TC1(a)(n
∗,m∗, t⃗ )

The basic idea of the above algorithm is to start with n = 1 and m = 1.

Next, we increase m to improve the total system cost until the first m = m∗

that satisfies the conditions TC1(a)(n,m
∗, t⃗ ) < TC1(a)(n,m

∗ − 1, t⃗ ) and

TC1(a)(n,m
∗, t⃗ ) < TC1(a)(n,m

∗ + 1, t⃗ ). Then we increase n to improve

the total system cost until the first n = n∗ that satisfies the conditions

TC1(a)(n
∗,m∗, t⃗ ) < TC1(a)(n

∗ − 1,m∗ − 1, t⃗ ) and TC1(a)(n
∗,m∗, t⃗ ) <

TC1(a)(n
∗ + 1,m∗ + 1, t⃗ ).
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4.6.1.3 Policy 1(b) : Unequal shipment sizes and unequal ship-

ment periods

In this policy the shipment sizes are assumed to be unequal. We set qi,j as

the changing variable. The constraint optimization problem is as follow :

Minimum TC1(b)(n,m, t⃗ ) (4.55)

Subject to

a

b

{
1−

√
1−

(
2b

a2

)[
ati,j−1 −

b

2
t2i,j−1 + qi,j

]}
− ti,0 ≥

j∑
1

qi,j+1

P
(4.56)

m∑
j=1

qi,j = Di (4.57)

Our objective is to minimize the total system cost, that is equation (4.55)

subject to the constraints (4.56) and (4.60).

4.6.1.4 Solution procedure

The algorithm is given as follow :

1. Let n = 1

2. Let m = 1

3. Set Ti = H/n, i = 1, 2, . . . , n

4. Set ti,0 = 0, ti,m+1 = H
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5. Determine qi,j i = 2, 3, · · · , n which satisfied the constraints (4.56) and

(4.60)

6. Compute ti,j, (i = 1, 2, · · · , n, j = 1, 2, · · · ,m) using (4.54) and

TC1(b)(n,m, t⃗ ) using (4.53)

7. Set TC1(b)(n,m, t⃗ ) as TC1(b)(n,m
∗, t⃗ ). Increase m by 1 and repeat

step 5 to 6. Stop when TC1(b)(n,m, t⃗ ) ≥ TC1(b)(n,m
∗, t⃗ )

8. Increase n by 1 and repeat step 5 to 7. Set TC1(b)(n,m
∗, t⃗ ) as

TC1(b)(n
∗,m∗, t⃗ ). Stop when TC1(b)(n,m

∗, t⃗ ) ≥ TC1(b)(n
∗,m∗, t⃗ )

Similarly, the basic idea of the above algorithm is to start with n = 1 and

m = 1. Next, we increase m to improve the total system cost until the first

m = m∗ that satisfies the conditions TC1(b)(n,m
∗, t⃗ ) < TC1(b)(n,m

∗ − 1, t⃗ )

and TC1(b)(n,m
∗, t⃗ ) < TC1(b)(n,m

∗ + 1, t⃗ ). Then we increase n to improve

the total system cost until the first n = n∗ that satisfies the conditions

TC1(b)(n
∗,m∗, t⃗ ) < TC1(b)(n

∗ − 1,m∗ − 1, t⃗ ) and TC1(b)(n
∗,m∗, t⃗ ) <

TC1(b)(n
∗ + 1,m∗ + 1, t⃗ ).

4.6.2 Policy 2 : Unequal cycle time

In this policy, the value of Ti is unknown. We used equation (4.36) in Section

3.3.4 and find the optimal value of Ti which gives the minimum total cost.

We will explore this policy with equal shipment sizes and unequal shipment

sizes and unequal shipment periods.
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4.6.2.1 Policy 2 (a) : Equal shipment sizes

In this policy, the shipment sizes are assumed to be equal for every batch.

Similarly, as in Section 4.6.1.1, the fixed value of qi,j is similar to the Equa-

tion (4.23) in Section 4.3.3.1. The shipment times, ti,j is similar to the

Equation (4.54) in Section 4.6.1.1. Substituting (4.54) into (4.53) will give

the total cost for this policy.

The constraint optimization problem is as follow :

Minimum TC2(a)(n,m, t⃗ ) (4.58)

Subject to

Ti =
n∑

i=1

H (4.59)

m∑
j=1

qi,j = Di (4.60)

Our objective is to minimize the total system cost, that is equation (4.58)

subject to the constraints (4.59) and (4.60).

4.6.2.2 Solution procedure

The computer algorithm of the solution procedure is outline below :
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1. Let n = 1

2. Let m = 1

3. Set ti,0 = 0, tn,m+1 = H

4. Set qi,j = Di/n, (i = 1, 2, · · · , n and j = 1, 2, . . .m)

5. Determine Ti, i = 1, 2, . . . , n which satisfied constraint (4.59) and

(4.60), if it exists.

6. Compute ti,j, (i = 1, 2, · · · , n, j = 1, 2, · · · ,m) using (4.54) and

TC2(a)(n,m, t⃗ ) using (4.53)

7. Set TC2(a)(n,m, t⃗ ) as TC2(a)(n,m
∗, t⃗ ). Increase m by 1 and repeat

step 5 to 6. Stop when TC2(a)(n,m, t⃗ ) ≥ TC2(a)(n,m
∗, t⃗ )

8. Increase n by 1 and repeat step 5 to 7. Set TC2(a)(n,m
∗, t⃗ ) as

TC2(a)(n
∗,m∗, t⃗ ). Stop when TC2(a)(n,m

∗, t⃗ ) ≥ TC2(a)(n
∗,m∗, t⃗ )

The basic idea of the above algorithm is to start with n = 1 and m = 1.

Next, we increase m to improve the total system cost until the first m = m∗

that satisfies the conditions TC2(a)(n,m
∗, t⃗ ) < TC2(a)(n,m

∗ − 1, t⃗ ) and

TC2(a)(n,m
∗, t⃗ ) < TC2(a)(n,m

∗ + 1, t⃗ ). Then we increase n to improve

the total system cost until the first n = n∗ that satisfies the conditions

TC2(a)(n
∗,m∗, t⃗ ) < TC2(a)(n

∗ − 1,m∗ − 1, t⃗ ) and TC2(a)(n
∗,m∗, t⃗ ) <

TC2(a)(n
∗ + 1,m∗ + 1, t⃗ ).
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4.6.2.3 Policy 2(b) : Unequal shipment sizes and unequal ship-

ment periods

Finally, we consider the case where the cycle times, Ti, the shipment sizes

and shipment periods are unequal. The constraint optimization problem is

as follow :

Minimum : TC2(b)(n,m, t⃗ ) (4.61)

Subject to

Ti =
n∑

i=1

H (4.62)

a

b

{
1−

√
1−

(
2b

a2

)[
ati,j−1 −

b

2
t2i,j−1 + qi,j

]}
− ti,0 ≥

j∑
1

qi,j+1

P
(4.63)

m∑
j=1

qi,j = Di (4.64)

Our objective is to minimize the total system cost, that is equation (4.61)

subject to the constraints (4.62), (4.63) and (4.64).

4.6.2.4 Solution procedure

The algorithm is given as follow :

1. Let n = 1

2. Let m = 1

3. Set ti,0 = 0, ti,m+1 = H

147



4. Determine Ti and qi,j i = 2, 3, · · · , n and j = 1, 2, · · · ,m which satisfied

the constraints (4.62), (4.63) and (4.64) if they exist

5. Compute ti,j, (i = 1, 2, · · · , n, j = 1, 2, · · · ,m) using (4.54) and

TC2(b)(n,m, t⃗ ) using (4.53)

6. Set TC2(b)(n,m, t⃗ ) as TC2(b)(n,m
∗, t⃗ ). Increase m by 1 and repeat

step 5 to 6. Stop when TC2(b)(n,m, t⃗ ) ≥ TC2(b)(n,m
∗, t⃗ )

7. Increase n by 1 and repeat step 5 to 7. Set TC2(b)(n,m
∗, t⃗ ) as

TC2(b)(n
∗,m∗, t⃗ ). Stop when TC2(b)(n,m

∗, t⃗ ) ≥ TC2(b)(n
∗,m∗, t⃗ )

Similarly, the basic idea of the above algorithm is to start with n = 1 and

m = 1. Next, we increase m to improve the total system cost until the first

m = m∗ that satisfies the conditions TC2(b)(n,m
∗, t⃗ ) < TC2(b)(n,m

∗ − 1, t⃗ )

and TC2(b)(n,m
∗, t⃗ ) < TC2(b)(n,m

∗ + 1, t⃗ ). Then we increase n to improve

the total system cost until the first n = n∗ that satisfies the conditions

TC2(b)(n
∗,m∗, t⃗ ) < TC2(b)(n

∗ − 1,m∗ − 1, t⃗ ) and TC2(b)(n
∗,m∗, t⃗ ) <

TC2(b)(n
∗ + 1,m∗ + 1, t⃗ ).

4.6.3 Numerical examples and sensitivity analysis

To show the effectiveness of the proposed policies, we adopt the same nu-

merical examples as in case h1 < h2 except for the value of h1. For easy

reference, the parameter values are restated here :
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a=200, b=20, H=5, h2 = 5, P=1000, A1=400, A2=25, D=750.

Note that in this example, h1 = 6 is selected, as in the consignment policy,

h1 must be greater than h2.

Table 4.4 gives the total cost for Policy 1(a) and Policy 1(b) for some

combinations of n and m where n = 1, 2, · · · , 6 and m = 1, 2, · · · , 11. Sim-

ilarly, the value of the total cost for Policy 1(b) is given in the parenthesis.

The underlined values represent the minimum total cost for a given m while

increasing the value of n, and the double underlined values represent the

minimum total cost for n while increasing the value of m . Overall, it shows

that when n and m increase, the total cost decreases until it reached the

minimum value.

For example, when n = 1, the minimum total cost reached at m = 10 for

both Policies 1(a) and 1(b). If we consider m = 1 while increasing the value

of n, the minimum total cost is at n = 5 for both Policies 1(a) and 1(b).

As expected, the total cost for Policy 1(b) is always lower than Policy

1(a). This result suggests that unequal shipment sizes policy performs very

well when compared to the equal shipment sizes policy. The optimal total

cost for Policy 1(a) reached at n = 4 and m = 3 and Policy 1(b) reach its

minimum at n = 4 and m = 3. It shows that Policy 1(b) gives a better

solution which is 144.95 less than Policy 1(a) where the optimal total cost,
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Table 4.4: The minimum total costs for Policies 1(a) and (b)

Total relevant cost

m ↓ → n 1 2 3 4 5 6

1 9508.33 5819.56 4706.46 4321.62 4253.51 4358.84

(9508.33) (5819.56) (4706.46) (4321.62) (4253.51) (4331.45)

2 8455.21 5240.05 4523.68 4069.66 4086.32 4236.85

(7886.14) (4876.54) (4256.93) (3859.45) (3910.17) (4089.48)

3 8120.83 5078.85 4254.06 4004.40 4113.47 4304.98

(7650.55) (4782.39) (4037.11) (3873.75) (3970.50) (4185.37)

4 7966.15 5023.00 4253.24 4092.62 4189.46 -

(7576.23) (4780.67) (4076.59) (3953.83) (4073.46) -

5 7883.33 5009.41 4282.69 4157.13 4285.02 -

(7557.53) (4808.09) (4136.23) (4042.15) (4189.03) -

6 7836.46 4968.32 4327.30 4233.45 4390.39 -

(7558.01) (4844.14) (4202.72) (4135.94) (4308.82) -

7 7810.12 5036.66 4380.58 4310.94 4501.36 -

(7567.29) (4887.58) (4272.32) (4231.42) (4430.53) -

8 7796.61 5063.90 4439.29 4398.95 4615.83 -

(7581.35) (4932.05) (4343.59) (4328.68) (4551.81) -

9 7791.67 5096.20 4501.61 4489.61 4732.65 -

(7598.30) (4978.00) (4415.86) (4426.67) (4676.60) -

10 7789.90 5132.04 4566.47 4582.15 - -

(7617.19) (5024.90) (4488.80) (4525.14) - -

11 7793.46 5170.45 4614.59 4676.04 - -

(7637.50) (5072.49) (4563.80) (4623.93) - -
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TC∗
Policy 1(b) is 3859.45.

Figure 4.18: Plot of the inventory level for the consignment policy at the

vendor

We plotted the inventory level at the vendor for n = 4 and m = 3 in

Figure 4.18. For example, at the first batch, the vendor produces and deliv-

ers the first shipment, q1,1=12.63 at t1,1= 0.013. They continue producing

and delivering 63.34 units as the second shipment at t1,2=0.076. The last

shipment is at t1,3 = t1,p = 0.234. There will be no production after this time

until they start their production for the next batch at t2,0 = T1 = 1.250.

We also plotted the inventory level at the buyer as in Figure 4.19. For

example, in the first batch, the buyer finished up the first shipment q1,1=12.63

until the vendor replenish the buyer’s inventory in the second shipment,
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q1,2=63.34. The buyer used up 31.23 between t1,1 and t1,2, therefore they

still have 32.10 at t1,2. At t1,2 the vendor deliver 158.41, so that the total

inventory at the buyer at t1,2 is 190.52. The buyer finished up this stock until

the second batch at t2,0 = 1.250. This process is repeated until the end of

the production cycle, H.

Figure 4.19: Plot of the inventory level for the consignment policy at the

buyer

Next, Table 4.5 gives the result for Policies 2(a) and 2(b). It shows the

same pattern as in Policies 1(a) and 1(b). The minimum total cost for Policy

2(a) is at n = 4 and m = 3, while Policy 2(b) reached its minimum at n = 4

and m = 2. Similarly, Policy 2(b) gives the best minimum solution compared

to Policy 2(a). TC∗
2(b) is 3843.00 which is 145.820 less than TC∗

2(a).
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Table 4.5: The minimum total costs for Policies 2(a) and (b)

Total relevant cost

m ↓ → n 1 2 3 4 5 6

1 9508.33 5786.61 4673.79 4293.73 4233.54 4312.84

(9508.33) (5787.20) (4673.79) (4293.73) (4233.55) (4310.90)

2 8455.21 5212.90 4518.22 4049.88 4071.39 4222.67

(7886.14) (4850.36) (4254.38) (3843.00) (3897.02) (4078.09)

3 8120.83 5053.32 4232.58 3988.82 4100.06 4292.70

(7650.55) (4757.64) (4018.20) (3859.14) (3958.68) (4175.41)

4 7966.15 4998.22 4232.92 4076.34 4176.77 -

(7576.23) (4756.54) (4058.25) (3939.65) (4062.04) -

5 7883.33 4985.06 4263.04 4141.49 4272.79 -

(7557.53) (4784.33) (4118.21) (4028.23) (4177.81) -

6 7836.46 4931.84 4308.08 4218.23 4378.40 -

(7558.01) (4820.13) (4184.88) (4122.22) (4297.73) -

7 7810.12 5012.79 4361.74 4297.35 4489.60 -

(7567.29) (4864.18) (4254.60) (4217.76) (4419.52) -

8 7796.61 5040.18 4420.60 4385.40 4604.19 -

(7581.35) (4908.76) (4325.95) (4315.09) (4540.64) -

9 7791.67 5072.60 4483.14 4476.10 4721.11

(7598.30) (4954.78) (4398.28) (4413.13) (4665.68) -

10 7789.90 5108.52 4548.12 4568.65 - -

(7617.19) (5001.74) (4471.27) (4511.63) - -

11 7793.46 5147.00 4591.85 4662.56 - -

(7637.50) (5049.38) (4546.27) (4610.47) - -
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4.6.3.1 Sensitivity analysis

As in Case 1 (h1 < h2), to study the effect of TC1(a), TC1(b), TC2(a) and

TC2(b), we analyze these four policies by varying some parameter values. We

perform a numerical sensitivity analysis by varying the value of b, P , a, h1/h2

and A1/A2 for these policies. We use the following parameter values as the

standard values of the parameter.

a=200, b=20, H=5, h2 = 5, P=1000, A1=400, A2=25, D=750.

In this example, the value of b is 20. As in the case of h1 < h2,
2(aH−P )

H2 <

b < A
h
because of D < P and a − bH > 0. Therefore we vary the value

of b from 5 to 39 for all policies to see the changes of the TC. The other

standard parameter values remain the same. These results are illustrated in

Figure 4.20.

Figure 4.20: The total cost with different b
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As expected, TC2(b) is always minimum compared to the other policies.

In this example, when b increases, the value of D decreases. Hence, with

the same value of P , the number of batches will be decreased with optimal

number of shipments. For example, for Policy 2(b), when b = 5, the demand,

D = 937.50, the minimum total cost is at n = 5 and m = 2, whereas when

b = 39, the demand decrease to 512.50, and the minimum total cost is at

n = 3 and m = 3.

We observed that when b is lower, the total cost of Policy 1(a) gives

almost the same value as the total cost of Policy 2(a). For example, when

b = 5, TC1(a) and TC2(a) are 4557.69 and 4554.48, respectively. Policies 1(b)

and 2(b) also show the same pattern. For example, when b = 5 is TC1(b) and

TC2(b) are 4337.51 and 4337.50, respectively.

However, as b becomes larger, the value of TC1(b) is close to the value of

TC2(a) and intersect at the same value of b and TC. After that TC1(a) >

TC2(a). Moreover, when b becomes larger, the increasing order of the total

cost, TC2(b) < TC2(a) < TC1(b) < TC1(a). It suggests that when b becomes

larger, the unequal shipment periods policy is always better than the equal

shipment periods policy.

Figure 4.21 illustrates the cost savings obtained by using Policy 2(b)

rather than the other three policies (Policy 1(a), 1(b) and 2(a)) for different

values of b. The blue, red and yellow lines represent the total savings by

155



evaluating (TC1(a)−TC2(b)), (TC1(b)−TC2(b)) and (TC2(a)−TC2(b)), respec-

tively. When b is smaller, the red line gives the lowest total cost saving. For

example, when b = 5, (TC1(a) − TC2(b) is 125.61, (TC2(a) − TC2(b)) is 124.72

and (TC1(b) − TC2(b)) is 0.54. However, when b = 39, (TC2(a) − TC2(b)) de-

creases to 113.194 while (TC1(a) − TC2(b)) and (TC1(b) − TC2(b)) increase to

293.019 and 170.553, respectively. This result suggests that the larger the

value of b, the larger the total cost savings can be obtained by implementing

the unequal cycle times policy rather than the equal cycle times.

Figure 4.21: Plot of the total cost savings while varying b

Now, we increase the value of P = 1000 up to 10000 while the other stan-

dard parameter values remain the same. The result is shown in Figure 4.22.

We observed that the total costs of Policies 1(a) and 2(a) increase when P

increases form 1000 up to 2000. However, it decreases when P increases from
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3000 up to 10000. While the total costs for Policies 1(b) and 2(b) increase

when P increases from 1000 until 5000 and after that they decrease until

P=10000.

Figure 4.22: The total cost with different P

At P=5000, the total cost of both Policies 1(a) and 2(a) give the same

value because the optimal total cost for both policies is at n = 5 and m = 1.

Therefore the blue line overlapped with the red line. This also happen to

Policies 1(b) and 2(b). It suggests that when the production rate, P is too

high, the production move on faster, and hence the vendor only needs a single

shipment to deliver the product.

Figure 4.23 plotted the cost savings which were obtained while varying the

value of P . We found that as P increases, the total cost saving decreases for

all policies. Furthermore, (TC1(b)−TC2(b)) and (TC1(b)−TC2(b)) overlapped
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Figure 4.23: Plot of the total cost saving while varying P

at P = 5000 until 10000 while (TC2(a) − TC2(b)) produces zero cost saving.

This is because TC1(a) = TC1(b) and TCPolicy2(a) = TC2(b).

Let us consider a different value of a where all the other standard pa-

rameter values remain the same. As noted in the case of h1 < h2, the value

of a must be greater than bH and less than P
H

+ bH
2

because the demand

a − bH > 0 and aH − bH2

2
≤ P . Therefore, in this example, we choose

a = 110, 120, · · · , 240. The result is shown in Figure 4.24.

We found that the total cost for all policies increases as the value of a

increases. The lowest total cost is given by Policies 1(b) and 2(b). This result

suggests that, with the larger initial demand rate, a, the different shipment

sizes policy is more effective compared to the equal shipment sizes. We also

found that the larger the value of a the smaller the difference between the

158



Figure 4.24: The total cost with different a

total costs for Policies 1(a) and 2(a). This also happens to Policies 1(b)

and 2(b). For example, when a = 110 the difference between the total costs

for Policies 1(a) and 2(a) is 91.91 while for Policies 1(b) and 2(b) is 102.12.

When a = 240, the difference decreases to 11.84 and 9.81 respectively.

Figure 4.25: The cost saving with different a
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Figure 4.25 shows the diagrammatic plot of the total cost savings which

is obtained while varying the value of a. The total cost savings for (TC1(a)−

TC2(b)), (TC1(b)−TC2(b)) and (TC2(a)−TC2(b)) decrease when 110 ≤ a ≤ 130.

When 140 ≤ a ≤ 240, the difference increases for (TC1(a) − TC2(b)) and

(TC2(a) − TC2(b)) while decreases for (TC1(b) − TC2(b)).

Next, we increase the ratio of the holding cost, h1/h2 by increasing h1

from 6 up to 15 while h2 = 5. All the other standard parameter values

remain the same as in the previous example. The corresponding results are

displayed in Figure 4.26.

Figure 4.26: The total cost with different h1/h2

It shows that the larger the ratios of h1/h2, the larger the total cost for

all policies. Again, Policy 2(b) always gives the best minimum total cost

followed by Policies 1(b), 2(a) and 1(a). This result suggests that unequal
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shipment sizes and unequal shipment periods case always better than the

equal shipment sizes policy.

Figure 4.27: The cost savings with different h1/h2

Figure 4.27 illustrated the total cost savings obtained by implementing

Policy 2(a) rather than the other three policies. We found that the larger the

value of h1/h2 the lower (TC1(a) − TC2(b)) and (TCPolicy 2(a) − TC2(b)) but a

slight improvement for (TC1(b) − TC2(b)).

Finally, we vary the ratio of the production set up and shipment cost,

A1/A2 by varying the value of A2 while A1 is 400. All the other standard

parameter values remain the same. Figure 4.28 shows that the larger the

ratio of A1/A2, the lower the total cost of all policies where Policy 2(b) gives

the lowest total cost.
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Figure 4.28: The total cost with different A1/A2

The total cost saving by varying the value of A1/A2is given by Figure 4.29.

When 8.89 ≤ A1/A2 ≤ 20, the total cost savings is decrease for (TC1(a) −

TC2(b)), (TC1(b) − TC2(b)) and (TC2(a) − TC2(b)). However, the total cost

savings are constant when 20 ≤ A1/A2 ≤ 80.

Figure 4.29: The cost savings with different A1/A2
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4.7 Conclusion

In this chapter, we have considered the integrated inventory model for n pro-

duction batch where h1 < h2 with equal and unequal cycle time, Ti policies.

Both of these policies discussed the case of equal shipment sizes and un-

equal shipment sizes and unequal shipment periods. We have concluded that

the unequal cycle time with unequal shipment sizes and unequal shipment

periods (Policy 2(b)) is always superior compared to the other three policies.

We have extended this model to the case of h1 > h2. We have also

discussed the equal shipment sizes policy and unequal shipment sizes and

unequal shipment periods policy and found that the best minimum solution

is also given by the unequal cycle time with unequal shipment sizes and

unequal shipment periods policy (Policy 2(b)).
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