EXTRACTION BEHAVIOR OF Cu(II) AND Fe(III) FROM CHLORIDE MEDIUM TO THE HYDROPHOBIC IONIC LIQUIDS USING 1,10-PHENANTHROLINE

NURUL YANI BINTI RAHIM

FACULTY OF SCIENCE UNIVERSITY OF MALAYA KUALA LUMPUR

2011

EXTRACTION BEHAVIOR OF Cu(II) AND Fe(III) FROM CHLORIDE MEDIUM TO THE HYDROPHOBIC IONIC LIQUIDS USING 1,10-PHENANTHROLINE

NURUL YANI BINTI RAHIM

DISSERTATION SUBMITTED IN FULL RESEARCH FULFILLMENT OF THE REQUIREMENT FOR THE DEGREE OF MASTER OF SCIENCE

DEPARTMENT OF CHEMISTRY FACULTY OF SCIENCE UNIVERSITY OF MALAYA KUALA LUMPUR

2011

ORIGINAL LITERARY WORK DECLARATION

Name of Candidate: Nurul Yani Binti Rahim Registration/Matric No: SGR 090117

Name of Degree: Masters

Title of Project Paper/Research Report/Dissertation/Thesis ("this work"):

EXTRACTION BEHAVIOR OF Cu(II) AND Fe(III) FROM CHLORIDE MEDIUM TO THE HYDROPHOBIC IONIC LIQUIDS USING 1,10-PHENANTHROLINE

Field of Study: Analytical Chemistry

I do solemnly and sincerely declare that:

- (1) I am the sole author/writer of this Work:
- (2) This Work is original;

(3) Any use of any work in which copyright exists was done by way of fair dealing and for permitted purposes and any excerpt or extract from, or reference to or reproduction of any copyright work has been disclosed expressly and sufficiently and the title of the Work and its authorship have been acknowledged in this Work:

(4) I do not have any actual knowledge nor ought I reasonably to know that the making of this work constitutes an infringement of any copyright work:

(5) I hereby assign all and every rights in the copyright to this Work to the University of Malaya ("UM"), who henceforth shall be owner of the copyright in this Work and that any reproduction or use in any form or by any means whatsoever is prohibited without the written consent of UM having been first had and obtained:

(6) I am fully aware that if in the course of making this Work I have infringed any copyright whether intentionally or otherwise, I may be subject to legal action or any other action as may be determined by UM.

Candidate's Signature

Subscribed and solemnly declared before,

Witness's Signature

Date

Date

(I.C/Passport No: 851121-03-5652)

Name:

Designation:

EXTRACTION BEHAVIOR OF Cu(II) AND Fe(III) FROM CHLORIDE MEDIUM TO THE HYDROPHOBIC IONIC LIQUIDS USING 1,10-PHENANTHROLINE

ABSTRACT

The study of liquid-liquid extraction of Cu(II) and Fe(III) ion was carried out using a series of hydrophobic ionic liquid; 1-butyl-3-methylimidazolium hexafluorophosphate ([C₄mimPF₆]), 1-hexyl-3-methylimidazolium hexafluorophosphate ([C₆mimPF₆]), 1-butyl-3-methylimidazolium bistrifluoromethylsulfonyl imide ([C₄mimNTf₂]) and 1-hexyl-3-methylimidazolium bistrifluoromethylsulfonyl imide ([C₆mimNTf₂]) as the extraction phase. Cu(II) showed a preferential extraction into less hydrophobic ionic liquid, [C₄mimPF₆]. The extraction behavior of Cu(II) ions depend on the type of counter ion present. The extraction process of Cu(II) ion in ionic liquid proceeded via similar mechanism to that of a molecular organic solvent. From the results obtained, an ion pair mechanism is proposed for the extraction of Cu complexes from chloride medium. Fe(III) favors extraction into [C₆mimNTf₂], the most hydrophobic ionic liquid. Anion exchange is the mode of extraction of Fe complexes from chloride medium.

PERANGAI PENGEKSTRAKAN Cu(II) DAN Fe(III) DARIPADA MEDIA KLORIDA KEPADA CECAIR IONIK HIDROFOBIK MENGGUNAKAN 1,10-PHENANTHROLINE

ABSTRAK

Kajian pengekstrakan pelarut untuk Cu(II) dan Fe(III) ion dijalankan dengan menggunakan satu siri cecair ionik yang hidrofobik di mana 1-butyl-3methylimidazolium hexafluorophosphate ($[C_4 mim PF_6]$), 1-hexyl-3-methylimidazolium hexafluorophospahate $([C_6 mim PF_6]),$ 1-butyl-3-methylimidazolium bistrifluoromethylsulfonyl imide ([C₄mimNTf₂]) dan 1-hexyl-3-methylimidazolium imide ($[C_6 mimNTf_2]$) sebagai bistrifluoromethylsulfonyl fasa pengekstrakan. Pengekstrakan Cu(II) mencapai tahap tertinggi oleh $[C_4 mimPF_6]$ iaitu cecair ionik yang paling kurang hidrofobik. Pengekstrakan Cu(II) ion bergantung kepada jenis ion Lawan Pengekstrakan ion Cu(II) dalam sistem cecair ionik berlaku melalui yang hadir. mekanisme yang sama seperti dalam pelarut organik molekul. Daripada keputusan yang diperolehi, mekanisme yang dicadangkan untuk pengekstrakan kompleks Cu daripada media klorida adalah mekanisme ion berpasangan. Fe(III) lebih berminat untuk ekstrak ke dalam $[C_6 mimNTf_2]$ iaitu cecair ionik yang paling hidrofobik. Penukar anion dikenalpasti sebagai mod pengekstrakan kompleks Fe daripada media klorida.

ACKNOWLEDGEMENTS

I would like to express my thanks and deepest gratitude to Allah S.W.T. because without HIS blessing, I could not have done my research project successfully. I also would like to acknowledge all the people who were directly or indirectly involved in supporting and encouraging me to finish my research.

I am forever grateful to my supervisor Dr. Sharifah Mohamad for her great guidance, advice and continuous support throughout this research. She has been an inspiring leader and has taught me to never give up even when the circumstances seem dire. Once again, I would like to thank her for her understanding, patience and sense of humor. I also would like to thank my co-supervisor, Professor Dr. Yatimah Alias for her support to my research.

A special thank you to my lab mates, Fairuz Liyana Mohd Rasdi, Nurul Huda Mohd Yusof, Siti Nurur Raihan Mohd Kamal and Nur Hayati Hussein who were very supportive and were always ready to help me with any questions that I had. I would also like to take this opportunity to express gratitude to all the members of UMCIL group.

Last but not least, I would like to thank my family for their continuous support throughout my research.

TABLE OF CONTENTS

Page

ORIGINAL LIT	ERARY V	WORK	DECLARATION	ii
ABSTRACT				iii
ABSTRAK				iv
ACKNOWLEDG	GEMENT	S		v
TABLE OF CON	TENTS			vi
LIST OF FIGUR	ES			viii
LIST OF TABLE	ES			X
LIST OF ABBRE	EVIATIO	NS		xi
CHAPTER 1 INTRODUCTION		ΓΙΟΝ		
	1.1	Backg	round of Study	1
	1.2	Resear	ch Objective	5
CHAPTER 2	LITE	ERATURE REVIEW		6
CHAPTER 3	METHODOLOGY			
	3.1	Materi	als	14
	3.2	-	mental General Extraction Procedure	15 15
		3.2.2	Optimization of the Parameter of Extraction	15
	`	3.2.3	Examining the Stoichiometry of Metal	
			Complexes	16
		3.2.4	Investigation Mechanism of Extraction	17
		3.2.5	PF_6^- and NTf_2^- Partitioning	17

CHAPTER 4 RESULTS AND DISCUSSION

	4.1	Optimization of the Parameter of Extraction		18
		-		
		4.1.1	Effect of Extraction Time	18
		4.1.2	Effect of Phase Volume Ratio	19
		4.1.3	Effect of phen Concentration	19
	4.2	Solub	ility Measurements of ILs via Ultraviolet	
		Specti	roscopy	21
	4.3	Cu(II) Extraction	22
		4.3.1	The Selectivity of ILs toward the Extraction	22
		4.3.2	The Stoichiometry of Cu(II)-phen Complexes	23
		4.3.3	Mechanism of Extraction	25
	4.4	Fe(III)) Extraction	31
		4.4.1	The Selectivity of ILs toward the Extraction	31
		4.4.2	The Stoichiometry of Fe(III)-phen	
			Complexes	32
		4.4.3	Mechanism of Extraction	34
CHAPTER 5	CON	CONCLUSION 3		39

REFERENCES	41
APPENDICES	47

LIST OF FIGURE

Figur	re	Page
1.1	1,10-phenanthroline	4
4.1	Effect of extraction time on metal extraction \blacklozenge) Cu(II), \blacksquare) Fe(III) with	
	[Cu(II)=0.0003 M], [Fe(III)= 0.0003 M]	18
4.2	Effect of phen toward the metal extraction at different pH \blacksquare) with phen,	
	♦) without phen [Fe(III)=0.003 M]	20
4.3	Concentration of $C_n \text{mim}^+$ in aqueous phase determined from UV-Vis	
	absorption spectra at 270nm wavelength	22
4.4	Plot of log D as a function of log concentration of free ligand in ILs	
	(a)= $[C_4 mim PF_6]$ (b)= $[C_4 mim NTf_2]$ (c)= $[C_6 mim PF_6]$ (d)= $[C_6 mim NTf_2]$,	
	[Cu(II)]=0.001M, ratio of ionic liquid to aqueous phase 0.5:10,	
	[HCl]=0.01M	24
4.5	Impact of the initial concentrations of a) KPF_6 b) C_4mimBr c) KBr d) KCl	
	on the extraction of Cu(II) by C_4 mimPF ₆ .[Cu(II)]=0.001M, ratio of ionic	
	liquid to aqueous phase 0.5:10, [phen]=0.05M, [HCl]=0.01M	26
4.6	Distribution ratios for Cu(II) with phen in $[C_4mimPF_6]$ with various acid:	
	(\blacklozenge) HCl, (\blacksquare) HNO ₃ , (\blacktriangle) H ₂ SO ₄ .[Cu(II)]=0.001M, ratio of ionic liquid to	
	aqueous phase 0.5:10, [phen]=0.05M	28

4.7 Distribution ratios for Cu(II) with phen in chlorobenzene with various acid: (\blacklozenge) HCl, (\blacksquare) HNO₃, (\blacktriangle) H₂SO₄.[Cu(II)]=0.001M, ratio of ionic liquid to 29 aqueous phase 0.5:10, [phen]=0.05M 4.8 The plot concentration of Cl⁻ ion in C₄mimPF₆ phase within addition of KCl in aqueous phase after extraction. [Cu(II)]=0.001M, ratio of ionic liquid to aqueous phase 0.5:10, [Phen]=0.05M, [HCl]=0.01M 30 4.9 Plot of log D as a function of log concentration of free ligand in ILs (a)= $[C_4 mim PF_6]$ (b)= $[C_4 mim NTf_2]$ (c)= $[C_6 mim PF_6]$ (d)= $[C_6 mim NTf_2]$, [Fe(III)]=0.001M, ratio of ionic liquid to aqueous phase 0.5:10, [HCl]=0.01M 33 4.10 Impact of the initial concentrations of a) C₆mimCl b) LiNTf₂ c) LiBr d) KCl on the extraction of Fe(III) by C₆mimNTf₂.[Fe(III)]=0.001M, ratio of ionic liquid to aqueous phase 0.5:10, [phen]=0.05M, [HCl]=0.01M 35 Concentration of NTf₂⁻ in aqueous phase with increasing concentrations of 4.11 KCl in aqueous 36 4.12 The concentration of $C_n mim^+$ in aqueous phase with addition of KCl in aqueous phase determined by UV-Vis spectra at 270nm wavelength 37

LIST OF TABLES

Table		Page
2.1	Typical type of ILs	6
3.1	IL used and types of salt that added into Cu(II) and Fe(III)	
	aqueous to determine the mechanism of extraction.	17
4.1	Extraction percentage of Cu(II) and Fe(III) between IL at different	
	phase volume ratio	19
4.2	Extraction percentage of Cu(II) and Fe(III) between IL with	
	different concentration of phen	20
4.3	Distribution ratio of Cu(II) in ILs phase after extraction	23
4.4	Distribution ratio of Fe(III) in ILs phase after extraction	31

LIST OF ABBRREVATIONS

BF_4^-	Tetrafluoroborate
C ₄ mimBr	1-butyl-3-methylimidazolium Bromide
$C_4 mimNTf_2$	1-butyl-3-methylimidazolium bis(trifluoromethylsulfony)limide
$C_4 mimPF_6$	1-butyl-3-methylimidazolium hexafluorophosphate
C ₆ mimCl	1-hexyl-3-methylimidazolium Chloride
$C_6 mimNTf_2$	1-hexyl-3-methylimidazolium bis(trifluromethylsulfonyl)imide
C ₆ mimPF ₆	1-hexyl-3-methylimidazolium hexafluorophosphate
FAAS	Flame Atomic Absorption Spectroscopy
F-NMR	Fluorin-Nuclear Magnetic Resonance
H NMR	Proton –Nuclear Magnetic Resonance
H_2SO_4	Sulfuric Acid
HCl	Hydrochloric Acid
HNO ₃	Nitric Acid
IC	Ion Chromatography
ILs	Ionic Liquids
KBr	Potassium Bromide
KCl	Potassium Chloride

KPF ₆	Potassium hexafluorophosphate
LiBr	Lithium Bromide
LiNTf ₂	Lithium bis(trifluromethylsulfonyl)imide
mins	minutes
Na ₂ CO ₃	Sodium Carbonate
NaHCO ₃	Sodium Hydrogen Carbonate
NO ₃ ⁻	Nitrate
NTf_2^-	Bis(trifiluoromethylsulfonyl)imide
OAc	Acetate
PF_6^-	Hexafluorophosphate
Phen	1,10-phenanthroline
TfO ⁻	Trifluoromethylsulfonate
UV-VIS	Ultra Violet-Visible Spectroscopy
X	Halide