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CHAPTER 3 

Coupled-Channel Optical Method (CCOM) 

In this chapter, the formalism of the CCOM for positron-H scattering is 

presented. This formalism is based on the work of electron-H scattering by McCarthy 

and Stelbovics (1983a) and positron-H scattering by Ratnavelu and Rajagopal (1999). 

This method was also extended to positron scattering by alkali atoms (Natchimuthu and 

Ratnavelu 2001 and Ratnavelu and Ng 2006). Here, we outline the basics of the 

formalism. 

3.1 Optical Potential Formalism 

For the derivation of the optical potential, the Schrodinger equation is rewritten 

as: 

𝐸 − 𝐾 − 𝑣 = 0     (3.1) 

where 𝑣 = 𝑣1 + 𝑣2 + 𝑣3 and 𝐾 = 𝐾1 + 𝐾2 . 𝑣 represents the potential operator while 𝐾 

stands for kinetic energy. The subscripts 1, 2 and 3 are the electron 1-core, electron 2-

core and electron 1-electron 2 subsystem, respectively.  

The Schrodinger equation is decomposed using Feshbach projection operators, 𝑃 

and 𝑄. After the decomposition, the whole space of target wavefunction is decomposed 

into 2 subspaces which are 𝑃 space and 𝑄 space. 𝑃 space is a finite set including the 

ground state and 𝑄 space describes the continuum states. Following Ratnavelu and Ng 

(2006), both P and Q can be divided again into orthogonal subspaces P1, P2, Q1 and Q2, 

with subscripts 1 and 2 representing the atomic and Ps channels respectively: 

𝑃 = 𝑃1 + 𝑃2 =    𝜓𝑎   𝜓𝑎    𝑎∈𝑃1
+    𝜙𝑏   𝜙𝑏    𝑏∈𝑃2

   (3.2a) 
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𝑄 = 𝑄1 + 𝑄2 =    𝜓𝑐   𝜓𝑐   𝑐∈𝑄1
+    𝜙𝑑    𝜙𝑑    𝑑∈𝑄2

   (3.2b) 

The term 𝜓𝑎  and 𝜙𝑏  are the asymptotic „free‟ state vectors that describe the target 

system and the Ps in the state „𝑎‟ and „𝑏‟ in a particular atomic and Ps entrance 

channels, respectively. The state „𝑐‟ and „𝑑‟ represents the neglected discrete and 

continuum channels in the atomic target and Ps, respectively. However, in the present 

work, the optical potential approach is only allowed for the discrete and continuum 

states of the H atom. With this approximation, the labels P represents 𝑃1  and Q 

represents 𝑄1 in the analysis below. By using the following properties of projection 

operator: 

𝑄 = 1 − 𝑃          𝑄−1𝑄 = 1          𝑃𝑄 = 𝑄𝑃 = 0           𝑃2 = 𝑃           𝑄2 = 𝑄         (3.3) 

It can be shown that: 

  𝜓𝛼   𝐸 − 𝐾 − 𝑣  𝑃 + 𝑄  𝜓𝛼 ′  𝐹𝛼 ′ = 0

𝛼 ′

 

  
  𝜓𝛼  𝑃 𝐸 − 𝐾 − 𝑣  𝑃 + 𝑄  𝜓𝛼 ′  𝐹𝛼 ′ = 0𝛼 ′

  𝜓𝛼  𝑃 𝐸 − 𝐾 − 𝑣  𝑃 + 𝑄  𝜓𝛼 ′  𝐹𝛼 ′ = 0𝛼 ′

  

 

  
  𝜓𝛼  𝑃 𝐸 − 𝐾 − 𝑣 𝑃 𝜓𝛼 ′  𝐹𝛼 ′ +  𝜓𝛼  𝑃 𝐸 − 𝐾 − 𝑣 𝑄 𝜓𝛼 ′  𝐹𝛼 ′ = 0𝛼 ′

  𝜓𝛼  𝑄 𝐸 − 𝐾 − 𝑣 𝑃 𝜓𝛼 ′  𝐹𝛼 ′ +  𝜓𝛼  𝑄 𝐸 − 𝐾 − 𝑣 𝑄 𝜓𝛼 ′  𝐹𝛼 ′ = 0𝛼 ′

  

 

  
  𝜓𝛼  𝑃 𝐸 − 𝐾 − 𝑣 𝑃 𝜓𝛼 ′  𝐹𝛼 ′ +  𝜓𝛼  𝑃 𝐸 − 𝐾 𝑄 𝜓𝛼 ′  𝐹𝛼 ′ =  𝜓𝛼  𝑃𝑣𝑄 𝜓𝛼 ′  𝐹𝛼 ′𝛼 ′

  𝜓𝛼  𝑄 𝐸 − 𝐾 𝑃 𝜓𝛼 ′  𝐹𝛼 ′ +  𝜓𝛼  𝑄 𝐸 − 𝐾 − 𝑣 𝑄 𝜓𝛼 ′  𝐹𝛼 ′ =  𝜓𝛼  𝑄𝑣𝑃 𝜓𝛼 ′  𝐹𝛼 ′𝛼 ′

  

(3.4) 

Since 𝑃 and 𝑄 spaces are orthogonal, the following relationship can be established: 

 𝜓𝛼  𝑃 𝐸 − 𝐾 𝑄 𝜓𝛼 ′  = 0       (3.5a) 

 𝜓𝛼  𝑄 𝐸 − 𝐾 𝑃 𝜓𝛼 ′  = 0       (3.5b) 
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So, it can be shown that: 

  
  𝜓𝛼  𝑃 𝐸 − 𝐾 − 𝑣 𝑃 𝜓𝛼 ′  𝐹𝛼 ′ =  𝜓𝛼  𝑃𝑣𝑄 𝜓𝛼 ′  𝐹𝛼 ′𝛼 ′                  (3.6a)

  𝜓𝛼  𝑄 𝐸 − 𝐾 − 𝑣 𝑄 𝜓𝛼 ′  𝐹𝛼 ′ =  𝜓𝛼  𝑄𝑣𝑃 𝜓𝛼 ′  𝐹𝛼 ′                 𝛼 ′ (3.6b)
  

  
𝑃 𝐸 − 𝐾 − 𝑣 𝑃 = 𝑃𝑣𝑄                                                                      (3.7a)

𝑄 𝐸 − 𝐾 − 𝑣 𝑄 = 𝑄𝑣𝑃                                                                      (3.7b)
  

Multiplying both sides of equation (3.7b) with 𝑄
1

𝑄 𝐸−𝐾−𝑣 𝑄
 the following equation can 

be shown: 

𝑄𝜓𝛼 ′ = 𝑄
1

𝑄 𝐸−𝐾−𝑣 𝑄
𝑄𝑣𝑃𝜓𝛼 ′       (3.8) 

Substituting equation (3.8) into equation (3.7a): 

𝑃 𝐸 − 𝐾 − 𝑣 𝑃𝜓𝛼 ′ = 𝑃𝑣𝑄
1

𝑄 𝐸−𝐾−𝑣 𝑄
𝑄𝑣𝑃𝜓𝛼 ′   (3.9) 

Since 𝑣2 does not connect the 𝑃 and 𝑄, equation (3.9) can be written as: 

𝑃 𝐸 − 𝐾 − 𝑣1 − 𝑣2 − 𝑣3 𝑃𝜓𝛼 ′ = 𝑃(𝑣1 + 𝑣3)𝑄
1

𝑄 𝐸−𝐾−𝑣 𝑄
𝑄(𝑣1 + 𝑣3)𝑣𝑃𝜓𝛼 ′       (3.10a) 

𝑃 𝐸 − 𝐾 − 𝑣2 𝑃𝜓𝛼 ′ = 𝑃 𝑣1 + 𝑣3 𝑃𝜓𝛼 ′ + 𝑃(𝑣1 + 𝑣3)𝑄
1

𝑄 𝐸 − 𝐾 − 𝑣 𝑄
𝑄(𝑣1 + 𝑣3)𝑣𝑃𝜓𝛼 ′  

(3.10b) 

The optical potential, 𝑉(𝑄) can then be defined as : 

𝑉(𝑄) =  𝑣1 + 𝑣3 +  𝑣1 + 𝑣3 𝑄
1

𝑄 𝐸−𝑘−𝑣 𝑄
𝑄 𝑣1 + 𝑣3   (3.11) 

Equation (3.11) can be also written as: 

𝑉(𝑄) = 𝑉 + 𝑊(𝑄)          (3.12) 

where the first and second terms of equation (3.12) are known as the static-exchange 

potential and the complex polarization term, respectively. 
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Following Faddeev (1965), the Green‟s function in the spherical representation 

is defined as: 

1

𝑄 𝐸 + −𝐾−𝑉 𝑄
= 𝑄    Ψ𝑙

(−)  𝑙
1

𝐸(+)−𝐸𝑙
  Ψ𝑙

 − 
(𝑞) 𝑄    (3.13) 

The spectral index 𝑙 is a discrete notation for the continuum. It defines the asymptotic 

partition of the 3-body system into the bound or ionized states as well as specifying the 

momentum and quantum number within each partition. The Green‟s function is 

diagonal in 𝑄 space, provided that 𝑣3 is diagonal in the 𝑄 space.  

 Defining 𝑄 =    𝜙𝑚   𝑚∈𝑄
  𝜙𝑚

   and substituting equation (3.13) into equation 

(3.11): 

𝑉(𝑄) =  𝑣1 + 𝑣3 +    𝑣1 + 𝑣3 

𝑚∈𝑄𝑙

  𝜙𝑚     𝜙𝑚
   Ψ𝑙

 − 
(𝑞) 

1

𝐸 + − 𝐸𝑙

 

×  Ψ𝑙
 −  (𝑞)  𝜙𝑚     𝜙𝑚

   𝑣1 + 𝑣3          (3.14) 

The momentum-space representation of the optical potential connecting channels 𝛼 and 

𝛼′  in 𝑃 space is written as: 

𝑉
𝛼𝛼 ′
 𝑄 

 𝑘, 𝑘′ =  𝑘𝜙𝛼  𝑉(𝑄) 𝜙𝛼 ′ 𝑘′       (3.15) 

 Following Ratnavelu and Rajagopal (1999), the polarization term in momentum-

space representation is: 

𝑊𝛼𝛼 ′ (𝑘, 𝑘′) =  𝑑𝑞     𝑘𝜙𝛼    𝑣1 + 𝑣3 

𝑚,𝑚′∈𝑄𝑙

  𝜙
𝑚
    𝜙

𝑚
   Ψ𝑙

 − 
(𝑞) 

1

𝐸(+) − 𝐸𝑙

 

×  Ψ𝑙
 − 

(𝑞)   𝜙
𝑚′

    𝜙
𝑚′

   𝑣1 + 𝑣3  𝛼′𝑘′          (3.16) 

 Following the weak-coupling approximation from McCarthy and Stelbovics 

(1980), the partial overlap term,   𝜙𝑚
   Ψ𝑙

 − 
(𝑞)  is a distorted wave in the space of 

electron 1: 
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  𝜙𝑚
   Ψ𝑙

(−)
 ≡ |  𝒳𝑛

 − (𝑞)    𝑛 ≡ 𝑚𝑙  (3.17) 

So, after substituting equation (3.17) into equation (3.14): 

𝑉(𝑄) =  𝑣1 + 𝑣3 +   𝑣1 + 𝑣3 𝑛∈𝑄   𝜙𝑚𝒳𝑛
 − 

(𝑞)  
1

𝐸(+)−𝐸𝑛

  𝜙𝑚𝒳𝑛
 − 

(𝑞)    𝑣1 + 𝑣3  (3.18) 

 Following Ratnavelu and Rajagopal (1999), the polarization term in momentum-

space representation can be rewritten as: 

𝑊𝛼𝛼 ′  𝑘, 𝑘′ =  𝑑𝑞   𝑘𝛼 (𝑣1 + 𝑣3) 𝜙𝑚𝒳𝑛
 − 

(𝑞) 

𝑛∈𝑄

1

𝐸 − 𝜀 −
1
2 𝑞2

 

×  𝒳𝑛
 − 

(𝑞)𝜙𝑚   𝑣1 + 𝑣3  𝛼′𝑘′          (3.19) 

Equation (3.19) can be separated into Hermitian and anti-Hermitian parts: 

𝑊𝛼𝛼 ′  𝑘, 𝑘′ = 𝑈𝑅 + 𝑖𝑈𝐼          (3.20) 

where 𝑈𝑅  and 𝑈𝐼 is the real and imaginary parts of the Green‟s function respectively. 𝑈 

represents the real polarization term involving the off-energy-shell excitation into 𝑄 

space while 𝑊 is the absorptive term involving the on-shell excitation. 

 Following Ratnavelu and Rajagopal (1999), the summation   𝑛∈𝑄 in equation 

(3.19) is replaced by  𝑑𝑞′, defining 𝑞′ as the momentum of the ionized electron. The 

orthogonalized Born-Oppenheimer (OBO) is used to calculate the ionization cross 

sections. Considering 2 particles moving at different speed: the slower particle is 

described by the full Coulomb wave while the faster particle is described by a plane 

wave orthogonalized to the ground state of the atom. This is represented by: 

 |𝜙𝑚  =  |𝜓 − (𝑞′)    |𝒳𝑛
 −  =  |𝑞   𝑞 ≥ 𝑞′  (3.21a) 

 |𝜙𝑚  =  |𝑞′    |𝒳𝑛
 − 

(𝑞) =  |𝜓 − 𝑞   𝑞 < 𝑞′  (3.21b) 
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Substituting equations (3.21) into equation (3.19) yields: 

𝑊𝑐 =  𝑑𝑞  𝑑𝑞′  𝑘′𝜙𝛼 ′  𝑣3 𝜓
 − (𝑞<)𝑞> 

1

𝐸(+) −
1
2 (𝑞2 + 𝑞′2)

 

×  𝑞>𝜓 − (𝑞<) 𝑣3 𝜙𝛼𝑘         (3.22) 

Separating equation (3.22) into Hermitian and anti-Hermitian parts: 

𝑊𝑐 = 𝑍𝑅 + 𝑖𝑍𝐼     (3.23) 

where 𝑍𝑅  and 𝑍𝐼  are the real and imaginary parts of the polarization potential, 

respectively. 𝑍𝐼(0) is obtained when  𝑘𝑖  =  𝑘𝑓  . 

So, the total ionization cross section is defined as: 

𝜍𝑖𝑜𝑛 =  
2

𝑘
  2𝜋 3𝑍𝐼(0)    (3.24) 

After obtaining the optical potential, the T-matrix of the positron-Rb scattering 

can be rewritten as: 

 𝑘′Ψ𝛼 ′  𝑇 𝑘Ψ𝛼  =   𝑘′Ψ𝛼 ′   𝑉(𝑄)  𝑘Ψ𝛼     

+   𝑑3𝑘′′  
  𝑘′Ψ𝛼 ′   𝑉(𝑄)  𝑘′′ Ψ𝛼 ′′   

𝐸(+) −
1
2 𝑘′′ 2 − 𝜖𝛼 ′′ − 𝜖𝑐𝑜𝑟𝑒

  𝑘′′Ψ𝛼 ′′  𝑇 𝑘Ψ𝛼 

𝛼 ′′

 

+   𝑑3𝑘′′  
 𝑘′Ψ𝛼 ′  𝑉 𝑘′′ Φ𝛽 ′′ Ω𝛾 ′′  

𝐸(+) −
1
4 𝑘′′ 2 − 𝜖𝛽 ′′ − 𝜖𝑐𝑜𝑟𝑒

  𝑘′′Φ𝛽 ′′ Ω𝛾 ′′  𝑇 𝑘Ψ𝛼 

𝛽 ′′ 𝛾 ′′

 

(3.25a) 

 𝑘′Φ𝛽 ′ Ω𝛾 ′  𝑇 𝑘Ψ𝛼  =  𝑘′Φ𝛽 ′ Ω𝛾 ′  𝑉 𝑘Ψ𝛼              

+   𝑑3𝑘′′  
 𝑘′Φ𝛽 ′ Ω𝛾 ′  𝑉 𝑘′′ Ψ𝛼 ′′  

𝐸(+) −
1
2 𝑘′′ 2 − 𝜖𝛼 ′′ − 𝜖𝑐𝑜𝑟𝑒

  𝑘′′Ψ𝛼 ′′  𝑇 𝑘Ψ𝛼 

𝛼 ′′
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+   𝑑3𝑘′′  
 𝑘′Φ𝛽 ′ Ω𝛾 ′  𝑉 𝑘′′ Φ𝛽 ′′ Ω𝛾 ′′  

𝐸(+) −
1
4 𝑘′′ 2 − 𝜖𝛽 ′′ − 𝜖𝑐𝑜𝑟𝑒

  𝑘′′Φ𝛽 ′′ Ω𝛾 ′′  𝑇 𝑘Ψ𝛼  
𝛽 ′′ 𝛾 ′′

 

(3.25b) 

 Due to the reason that in this thesis we also report the CCOM calculations for 

electron-Rb scattering, the LS equation for the electron-Rb scattering is written as: 

 𝑘′𝜓𝛼′ 𝑇 𝑘𝜓𝛼  =  𝑘′𝜓𝛼′ 𝑉
(𝑄) 𝑘𝜓𝛼  +   𝑑3𝑘′′

 𝑘′𝜓𝛼′ 𝑉
(𝑄) 𝑘′′𝜓𝛼′′  𝑘′′𝜓𝛼′′ 𝑇 𝑘𝜓𝛼  

 𝐸(+) − 𝜀𝛼′′ −
1
2 𝑘′′

2 𝛼′′

 

 (3.26) 

3.2 Computational Details of the Optical Potentials 

 Following McCarthy and Stelbovics (1980), by using the equivalent local 

potential, equation (3.22) can be written as: 

𝑊𝐿𝐶 =
1

2
 𝑑𝑢

1

−1
 𝑑𝑞1  𝑑𝑞2 𝑓∗ 𝑘, 𝑞1, 𝑞2 

1

 𝐸−𝐾 
𝑓 𝑘′ , 𝑞1, 𝑞2   (3.27) 

as equation (3.22) is a non-local continuum polarization potential. 𝑓(𝑘, 𝑞1, 𝑞2) is the 

direct breakup matrix element. By using the Gaussian hypergeometric series, the 

analytical expression in the integrals of 𝑓(𝑘, 𝑞1, 𝑞2)  can be obtained. In order to 

integrate equation (3.27), we need to partition the Green‟s function into principal value 

and imaginary parts. Firstly, we define some of the terms in hyperspherical forms: 

𝑞1 = 𝜍 cos 𝛼                       𝑞2 = 𝜍 sin 𝛼                      𝑞1
2 + 𝑞2

2 = 𝜍2 

𝑞2
2𝑑𝑞2

2𝑞1
2𝑑𝑞1

2 = 𝜍5 cos 𝛼 sin 𝛼 2𝑑𝛼𝑑𝜍   (3.28) 

where 0 ≤ 𝛼 ≤
𝜋

4
 and 0 ≤ 𝜍 ≤ ∞. 

Rewriting equation (3.27) as: 
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𝑊𝐿𝐶 =
1

2
 𝑑𝑢

1

−1

 𝑑𝑞 1  𝑑𝑞 2  𝑑𝛼

𝜋
4

0

 𝑃  𝑑𝜍
𝐽𝐹 𝑘, 𝑘′ , 𝑞1, 𝑞2 

 𝜇 −
1
2 𝜍2 

∞

0

  

 −𝑖𝜋𝐹𝑜𝑛  𝑘, 𝑘′ , 𝜍𝜇 , 𝜍𝜇 𝐽𝛼𝜇2         (3.29) 

where: 

𝐽𝛼 =  sin 𝛼 cos 𝛼 2             𝐹𝑜𝑛 = 𝐹 𝑘, 𝑘′ , 𝜍𝑊 , 𝜍𝑊              𝐽 = 𝜍5𝐽𝛼  

𝑊 = 2𝐸                 𝜍𝑊 =  2𝐸 
1

2                       (3.30) 

The term, 𝐹, is the product of 𝑓(𝑘′ , 𝑞1, 𝑞2) and 𝑓∗(𝑘, 𝑞1, 𝑞2). Following McCarthy and 

Stelbovics (1980), the imaginary part of 𝐹 is omitted while the real part is retained in 

order to satisfy the requirements of Hermiticity for the two components of 𝑊𝑐 . 

 The principal value integral can be transformed into a regular integral by using 

the identity: 

𝑃  
𝑑𝜍

𝐸−
1

2
𝜍2

∞

0
= 0    (3.31) 

Subtracting the on-shell values of the integrand, the following integrals can be obtained: 

𝑅𝑒𝑊𝐿𝐶 =  𝑑𝑞 1  𝑑𝑞 2  𝑑𝜍
∞

0
 𝑑𝛼

𝜋

4
0

𝐽𝛼  
𝜍4𝐹−𝑊2𝐹𝑜𝑛

𝑊−𝜍2     (3.32a) 

𝐼𝑚𝑊𝐿𝐶 = −𝜋  𝑑𝑞 1  𝑑𝑞 2  𝑑𝜍
∞

0
 𝑑𝛼

𝜋

4
0

𝐽𝛼𝑊2𝐹𝑜𝑛    (3.32b) 

These integrals are integrated using the Diophantine method. Expressing some of the 

terms in equation (3.32) in Diophantine variables (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7): 

𝜙 = 2𝜋𝑥2                   𝜙′ = 2𝜋𝑥4                  𝑐 = 2𝑥1 − 1                  𝑐′ = 2𝑥3 − 1 

𝛼 =
𝜋

4
𝑥5                     𝜍 =

𝛼𝑥6

1−𝑥6
                     𝑢 = 2𝑥7 − 1                
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 𝑑𝑐
1

−1
= 2  𝑑𝑥1

1

0
                               𝑑𝑐′

1

−1
= 2  𝑑𝑥3

1

0
 

 𝑑𝜙
2𝜋

0
= 2𝜋  𝑑𝑥2

1

0
                          𝑑𝜙′

2𝜋

0
= 2𝜋  𝑑𝑥4

1

0
 

 𝑑𝛼
𝜋

4
0

=
𝜋

4
 𝑑𝑥5

1

0
                                𝑑𝜍

∞

0
=  

𝛼

(1−𝑥6)2 𝑑𝑥6
1

0
             

 𝑑𝑢
1

−1
= 2  𝑑𝑥7

1

0
           

 𝑑𝑞 1 =  𝑑𝑐
1

−1
 𝑑𝜙

2𝜋

0
           𝑑𝑞 2 =  𝑑𝑐′

1

−1
 𝑑𝜙′

2𝜋

0
                     (3.33) 

Substituting equation (3.30) and equation (3.33) into equation (3.32b): 

𝐼𝑚𝑊𝐿𝐶 = −8𝜋4  𝑑𝑥1

1

0

 𝑑𝑥2

1

0

 𝑑𝑥3

1

0

 𝑑𝑥4

1

0

 𝑑𝑥5

1

0

 𝑑𝑥7

1

0

𝐹𝑜𝑛𝐸𝑝
2 

 cos  
𝜋

4
𝑥5 sin  

𝜋

4
𝑥5  

2

                        (3.34) 

Equation (3.34) can be computed using the Diophantine multidimensional integration 

method. (Refer to Appendix V for the summary of Diophantine method) 

 Table 3.1 shows the convergence of the continuum optical potential for 5s-5s 

coupling for various momentum transfers at selected energies. Generally, the imaginary 

part of 𝑊𝐿𝐶  has better convergence compared to the real part. The real part converged 

slowly because of the Green‟s function. In order to obtain good convergence for the 

optical potential, large number of quadrature points are needed. For our convergence 

test, we used up to 800000 qudrature points and we are able to obtain decent 

convergence.  

 The details of the coupled-channel optical method for electron and positron 

scattering can be found in the works by McCarthy and Stelbovics (1980, 1983a) and 

Ratnavelu and Rajagopal (1999).  
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P=0.0 a.u E = 10eV E = 50eV E = 100eV 

Quad. Real Imag Real Imag Real Imag 

8000 -2.630 -0.500 1.857 -1.783 0.105 -1.802 

20000 -2.488 -0.501 -1.798 -1.262 0.262 -1.275 

60000 -2.697 -0.509 -0.957 -1.327 -1.885 -1.144 

120000 -2.636 -0.509 -0.488 -1.304 -11.180 -1.194 

200000 -2.553 -0.506 -0.934 -1.403 -0.726 -1.196 

400000 -2.618 -0.507 -1.159 -1.317 -0.188 -1.217 

800000 -2.668 -0.508 -1.158 -1.324 -1.843 -1.199 

       P=0.5 a.u E = 10eV E = 50eV E = 100eV 

Quad. Real Imag Real Imag Real Imag 

8000 -0.907 -0.080 -0.211 -0.390 -0.065 -0.388 

20000 -0.697 -0.094 -0.200 -0.402 0.038 -0.395 

60000 -0.813 -0.096 -0.401 -0.409 -0.096 -0.362 

120000 -0.692 -0.102 -0.308 -0.413 -0.575 -0.420 

200000 -0.773 -0.097 -0.323 -0.380 -0.173 -0.355 

400000 -0.780 -0.102 -0.337 -0.401 -0.088 -0.374 

800000 -0.789 -0.113 -0.280 -0.395 -0.329 -0.370 

       P=1.0 a.u E = 10eV E = 50eV E = 100eV 

Quad. Real Imag Real Imag Real Imag 

8000 -0.153 0.108 -0.060 -0.080 -0.120 -0.084 

20000 -0.131 0.067 -0.107 -0.067 -0.099 -0.080 

60000 -0.164 0.105 -0.072 -0.060 -0.018 -0.069 

120000 -0.175 0.100 -0.073 -0.060 -0.054 -0.077 

200000 -0.160 0.102 -0.080 -0.062 -0.034 -0.067 

400000 -0.157 0.095 -0.066 -0.061 -0.039 -0.073 

800000 -0.158 0.097 -0.070 -0.061 -0.049 -0.074 

 

 

  

Table 3.1 : Convergence of the continuum polarization potential for 5s-5s 

coupling for various momentum transfers and incident energies.  




