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CHAPTER 4 

Computational and Numerical Details 

This chapter consists of 3 parts. The first part is the description of the numerical 

solution of the LS equations. The second part will be the discussion on the difficulties 

encountered during the CC and CCO calculations. Finally, the last part consists of the 

numerical convergence test. The CC, CCO and UBA calculations are done using the 

computer code developed by Mitroy (Mitroy (1993a, 1996)). 

4.1 Numerical solutions of Lippmann-Schwinger Equations 

In order to assist our discussion, we need to abbreviate the T-matrix and V-

matrix of the partial-wave form LS equations (equation (2.60)): 

𝑇
𝛼 ′ 𝐿′ 𝛼𝐿

(𝐽 )
= 𝑇𝛼 ′ 𝛼                         𝑉

𝛼 ′ 𝐿′ 𝛼𝐿

(𝐽 )
= 𝑉𝛼 ′ 𝛼                       (4.1a) 

𝑇
𝛽 ′ 𝐿′ 𝛼𝐿

(𝐽 )
= 𝑇𝛽 ′ 𝛼                         𝑉

𝛽 ′ 𝐿′ 𝛼𝐿

(𝐽 )
= 𝑉𝛽 ′ 𝛼                       (4.1b) 

So, equation (2.60) can be rewritten as: 
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 (4.2b) 

In equation (4.2), the 2 different Green‟s functions are defined as: 

𝐺𝛼 ′′  𝑞2 = ℜ 
1

1

2
 𝑘

𝛼′′
2 −𝑞2 

 −
𝑖𝜋

𝑘𝛼′′
𝛿 𝑘𝛼 ′′ − 𝑞    (4.3a) 
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𝐺𝛽 ′′  𝑞2 = ℜ 
1

1

2
 𝑘

𝛽 ′′
2 −𝑞2 

 −
𝑖𝜋

𝑘𝛽 ′′
𝛿 𝑘𝛽 ′′ − 𝑞    (4.3b) 

The term ℜ is the principal value of the Green‟s functions. The term 𝑞 is an off shell 

momentum and it can take any value. The terms 𝑘𝛼 ′′
2  and 𝑘𝛽 ′′

2  are the on shell momenta 

of the target electrons for channel 𝛼′′  and the Ps formation for channel 𝛽′′ , respectively: 

𝑘𝛼 ′′
2 = 2 𝐸 − 𝜖𝛼 ′′                         𝑘𝛽 ′′

2 = 4 𝐸 − 𝜖𝛽 ′′    (4.4) 

where the terms 𝜖𝛼 ′′  and 𝜖𝛽 ′′  correspond to: 

𝜖𝛼 ′′ = 𝜀𝑐𝑜𝑟𝑒 + 𝜀𝛼 ′′                  𝜖𝛽 ′′ = 𝜀𝑐𝑜𝑟𝑒 + 𝜀𝛽 ′′         (4.5) 

The Gaussian quadrature method is used to solve the equations. In order to apply 

this method, we transform the LS equations into an algebraic form and the equations 

can be expressed in term of the coordinate 𝑥𝑔𝑛  which is defined as: 

𝑥𝑔𝑛 =  
𝑘𝑔    𝑤𝑒𝑟𝑒   𝑛 = 1                         

𝑞𝑛−1  𝑤𝑒𝑟𝑒   𝑛 = 2,3, … , 𝑁 + 1
    (4.6) 

where the subscript term 𝑔  indicates the type of Green‟s function, i.e. 𝑔 = 𝛼′′  for 

Green‟s function for channel 𝛼′′  and 𝑔 = 𝛽′′  for Green‟s function for channel 𝛽′′ . After 

defining the coordinate 𝑥𝑔𝑛 , the potential matrices ( 𝑉𝛼 ′ 𝛼 ′′   𝑥𝛼 ′ 𝑛 , 𝑥𝛼 ′′ 𝑛 , 

𝑉𝛼 ′ 𝛽 ′′   𝑥𝛼 ′ 𝑛 , 𝑥𝛽 ′′ 𝑛 , 𝑉𝛽 ′ 𝛼 ′′   𝑥𝛽 ′ 𝑛 , 𝑥𝛼 ′′ 𝑛 , 𝑉𝛽 ′ 𝛽 ′′   𝑥𝛽 ′ 𝑛 , 𝑥𝛽 ′′ 𝑛 ) and solution vectors 

(𝑇𝛼 ′ 𝛼 𝑥𝛼 ′ 𝑛 , 𝑘𝛼 , 𝑇𝛽 ′ 𝛼 𝑥𝛽 ′ 𝑛 , 𝑘𝛼 ) can be written in coordinate form as well.  

By using the relations below, the singularities caused by the Green‟s function at 

𝑞 = 𝑘𝛼 ′′  and 𝑞 = 𝑘𝛽 ′′  can be removed: 

ℜ 𝑑𝑞  
𝑞2

1

2
 𝑘

𝛼′′
2 −𝑞2 

 
∞

0
= 0         (4.7a) 
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ℜ 𝑑𝑞  
𝑞2

1

2
 𝑘

𝛽 ′′
2 −𝑞2 

 
∞

0
= 0       (4.7b) 

Thus, the LS equations are: 
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(4.8b) 

Defining 4 kernels: 

𝐾𝛼 ′ 𝛼 ′′  𝑥𝛼 ′ 𝑛 , 𝑥𝛼 ′′ 𝑛 = 𝑊𝛼 ′′ 𝑛𝑉𝛼 ′ 𝛼 ′′   𝑥𝛼 ′ 𝑛 , 𝑥𝛼 ′′ 𝑛   (4.9a) 

𝐾𝛼 ′ 𝛽 ′′  𝑥𝛼 ′ 𝑛 , 𝑥𝛽 ′′ 𝑛 = 𝑊𝛽 ′′ 𝑛𝑉𝛼 ′ 𝛽 ′′   𝑥𝛼 ′ 𝑛 , 𝑥𝛽 ′′ 𝑛   (4.9b) 

𝐾𝛽 ′ 𝛼 ′′  𝑥𝛽 ′ 𝑛 , 𝑥𝛼 ′′ 𝑛 = 𝑊𝛼 ′′ 𝑛𝑉𝛽 ′ 𝛼 ′′   𝑥𝛽 ′ 𝑛 , 𝑥𝛼 ′′ 𝑛   (4.9c) 

𝐾𝛽 ′ 𝛽 ′′  𝑥𝛽 ′ 𝑛 , 𝑥𝛽 ′′ 𝑛 = 𝑊𝛽 ′′ 𝑛𝑉𝛽 ′ 𝛽 ′′   𝑥𝛽 ′ 𝑛 , 𝑥𝛽 ′′ 𝑛   (4.9d) 

where 𝑊𝛼 ′′ 𝑛  and 𝑊𝛽 ′′ 𝑛  are the superweights which are represented by: 

𝑊𝛼 ′′ 𝑛 =  
𝑥𝛼 ′′ 𝑛

2 𝑤𝑛−1  
1

2
 𝑘𝛼 ′′

2 − 𝑥𝛼 ′′ 𝑛
2   

−1

                                        

−𝑘𝛼 ′′
2  𝑤𝑛 ′ −1

𝑁+1
𝑛 ′ =1  

1

2
 𝑘𝛼 ′′

2 − 𝑥𝛼 ′′ 𝑛
2   

−1

− 𝑖𝜋𝑘𝛼 ′′ 𝑛 ′         

  

(4.10a) 

when 𝑛 = 2,3, … , 𝑁 + 1 

when 𝑛 = 1 
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𝑊𝛽 ′′ 𝑛 =  
𝑥𝛽 ′′ 𝑛

2 𝑤𝑛−1  
1

2
 𝑘𝛽 ′′

2 − 𝑥𝛽 ′′ 𝑛
2   

−1

                                        

−𝑘𝛽 ′′
2  𝑤𝑛 ′ −1

𝑁+1
𝑛 ′ =1  

1

2
 𝑘𝛽 ′′

2 − 𝑥𝛽 ′′ 𝑛
2   

−1

− 𝑖𝜋𝑘𝛽 ′′ 𝑛 ′         

  

(4.10b) 

Thus, the final form of equation (4.8) can be written as: 

       

   

























"

'n""

N

'n

'n"n'"'

"

N

'n

'n""'n"n'"'n''n''

k,kx,x

k,kx,xk,xk,x

TK

TKVT

1

1

1

1
  (4.11a) 

       

   

























"

'n""

N

'n

'n"n'"'

"

N

'n

'n""'n"n'"'n''n''

k,kx,x

k,kx,xk,xk,x

TK

TKVT

1

1

1

1
  (4.11b) 

4.2 Numerical Details in Electron-Rb Scattering Calculations 

Until the present work, the CC, CCO and UBA calculations had only been used 

for electron and positron scattering from lighter atoms such as sodium and lithium. We 

encountered a number of challenges in attempting this work for a large atomic system 

such as Rb. In the following sections, we describe and discuss various aspects of the 

numerics. 

 4.2.1 Quadrature Points 

Solving the LS equations using Gaussian quadrature has been well detailed by 

McCarthy and Stelbovics (1983a). Amongst the biggest challenges is the distribution of 

the quadrature points in the calculations. This aspect becomes more taxing in the two-

centre calculations that are solved in the positron scattering, as explained by Mitroy 

(1993a) and Ratnavelu et al. (1996). 

when 𝑛 = 2,3, … , 𝑁 + 1 

when 𝑛 = 1 
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In the electron-Rb scattering case, we apply the single Gaussian mesh used by 

McCarthy and Stelbovics (1983a) (which we will refer to as the bunching 

transformation method or Method A). Following McCarthy and Stelbovics (1983a), the 

integration mesh of the coupled channel equation must cover small and large 𝑘 in order 

to account for the diffuse structure for monopole transitions. It must cover the closely 

spaced points near the on-shell values of 𝑘 to represent the detail of dipole as well. Let a 

set of Gaussian quadrature with points 𝑢𝑗  and weights 𝑤𝑗  be defined on the interval 

[0,1]. A standard conformal transformation for points z defined in the interval [0,1] to 

points k defined on the interval [0,∞] is: 

𝑘 =
𝑎𝑧

1−𝑧
     (4.12) 

where parameter a is the scale parameter and z is defined as: 

𝑧 =
(𝑢−𝑏1)3+(𝑢−𝑏2)3+𝑏1

3+𝑏2
3

(1−𝑏1)3+(1−𝑏2)3+𝑏1
3+𝑏2

3     (4.13) 

where 𝑏1 = 0.5 + 𝑏 and 𝑏2 = 0.5 − 𝑏. The values of the bunching parameter, b must be 

less than 1 which will cluster the points around a. 

Table 4.1 shows 3 sets of quadrature points generated by varying the scale 

parameter a with fixed bunching parameter b in order to observe the changes of the 

quadrature points due to change of scale parameter a. We observed that if we increases 

the scale parameter constantly by 0.01 (1.876  1.896), each of the quadrature points 

will increase by a fixed value. For instance, the 10
th

 quadrature point increases by 

0.009334 when the scale parameter increases by 0.01.  
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Table 4.1 : 3 sets of 24 quadrature points for electron-Rb scattering at 50 eV with 

different scale parameter a and fixed bunching parameter b. The columns (setA 2 - setA 

1) and (setA 3 - setA 2) is the values of difference of each quadrature point between 

different set of quadrature points. 

 

 
24 quadrature points (fixed b = 0.063) 

  

no. 

setA 1  

(a = 1.876) 

setA 2 

 (a = 1.886) 

setA 3  

(a = 1.896) setA 2 - setA 1 setA 3 - setA 2 

1 0.017924 0.018019 0.018115 0.000096 0.000096 

2 0.093740 0.094240 0.094739 0.000500 0.000500 

3 0.227149 0.228360 0.229571 0.001211 0.001211 

4 0.412489 0.414688 0.416887 0.002199 0.002199 

5 0.640274 0.643687 0.647100 0.003413 0.003413 

6 0.896007 0.900783 0.905559 0.004776 0.004776 

7 1.159368 1.165548 1.171728 0.006180 0.006180 

8 1.405238 1.412729 1.420220 0.007491 0.007491 

9 1.608272 1.616845 1.625418 0.008573 0.008573 

10 1.751014 1.760347 1.769681 0.009334 0.009334 

11 1.831785 1.841549 1.851314 0.009764 0.009764 

12 1.866821 1.876772 1.886723 0.009951 0.009951 

13 1.885216 1.895265 1.905314 0.010049 0.010049 

14 1.921079 1.931319 1.941559 0.010240 0.010240 

15 2.008142 2.018847 2.029551 0.010704 0.010704 

16 2.178883 2.190498 2.202112 0.011615 0.011614 

17 2.467757 2.480912 2.494066 0.013154 0.013154 

18 2.918517 2.934074 2.949631 0.015557 0.015557 

19 3.598307 3.617488 3.636669 0.019181 0.019181 

20 4.628169 4.652840 4.677510 0.024670 0.024670 

21 6.261568 6.294945 6.328322 0.033377 0.033377 

22 9.136608 9.185310 9.234013 0.048703 0.048703 

23 15.412068 15.494222 15.576376 0.082154 0.082154 

24 39.081922 39.290248 39.498573 0.208326 0.208325 

 

Table 4.2 shows 3 sets of quadrature points for electron-Rb generated by varying 

the bunching parameter b with the fixed scale parameter a in order to observe the 

changes of the quadrature points due to bunching parameter b. We observe that as the 

bunching parameter b increases, the difference between the scale parameter a with each 

quadrature point increases (observing the columns (|1.886 - set 1|), (|1.886 - set 2|) and 

(|1.886 - set 3|) of 12
th

 and 13
th

 quadrature points). This roughly shows the idea of the 

role of bunching parameter b in clustering the points around the scale parameter a.  
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Table 4.2 : 3 sets of 24 quadrature points for electron-Rb scattering at 50 eV with 

different bunching parameters b and fixed scale parameter a. The columns (|1.886 - set 

1|), (|1.886 - set 2|) and (|1.886 - set 3|) are the absolute difference between the scale 

parameter a with each quadrature points. 

 
24 quadrature points (fixed a = 1.886) 

   

no 

set 1  

(b = 0.053) 

set 2  

(b = 0.063) 

set 3  

(b = 0.073) |1.886 - set 1| |1.886 - set 2| |1.886 - set 3| 

1 0.018179 0.018019 0.017838 1.867821 1.867981 1.868162 

2 0.095078 0.094240 0.093285 1.790922 1.791760 1.792715 

3 0.230411 0.228360 0.226026 1.655589 1.657640 1.659974 

4 0.418451 0.414688 0.410409 1.467549 1.471312 1.475591 

5 0.649570 0.643687 0.637005 1.236430 1.242313 1.248995 

6 0.908987 0.900783 0.891473 0.977013 0.985217 0.994527 

7 1.175897 1.165548 1.153815 0.710103 0.720453 0.732185 

8 1.424485 1.412729 1.399411 0.461515 0.473271 0.486589 

9 1.628654 1.616845 1.603468 0.257346 0.269155 0.282532 

10 1.770469 1.760347 1.748871 0.115531 0.125653 0.137129 

11 1.848347 1.841549 1.833830 0.037653 0.044451 0.052170 

12 1.879161 1.876772 1.874054 0.006839 0.009228 0.011946 

 
a = 1.886 

13 1.892860 1.895265 1.898008 0.006860 0.009265 0.012008 

14 1.924274 1.931319 1.939370 0.038274 0.045319 0.053370 

15 2.007584 2.018847 2.031742 0.121584 0.132847 0.145742 

16 2.175469 2.190498 2.207735 0.289469 0.304498 0.321735 

17 2.462434 2.480912 2.502137 0.576434 0.594912 0.616137 

18 2.912207 2.934074 2.959224 1.026207 1.048074 1.073224 

19 3.591888 3.617488 3.646966 1.705888 1.731488 1.760966 

20 4.622485 4.652840 4.687828 2.736485 2.766840 2.801828 

21 6.257491 6.294945 6.338157 4.371491 4.408945 4.452157 

22 9.135225 9.185310 9.243142 7.249225 7.299310 7.357142 

23 15.415410 15.494222 15.585280 13.529410 13.608222 13.699280 

24 39.098630 39.290248 39.511721 37.212630 37.404248 37.625721 
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Table 4.3 : On-shell coordinate for electron-Rb scattering at 50 eV. a = 1.886 and b = 

0.063. 

 

channel on-shell coordinate  weight 

1 (5s) 1.9170037 -4.593757 

2 (5p) 1.8864632 -0.450765 

3 (4d) 1.8704297 -5.304390 

4 (6s) 1.8685345 -3.353649 

5 (6p) 1.8596407 1.996859 

6 (5d) 1.8549138 4.909573 

7 (7s) 1.8534129 6.109608 

8 (7p) 1.8495792 10.706448 

 

In principle, the quadrature mesh must cover the closely spaced points near the on-

shell value of 𝑘 . Table 4.3 shows the on-shell coordinates for each channel in the 

electron-Rb scattering at 50 eV. By following the previous observations, the value of 

scale parameter a and bunching parameter b can be adjusted until we obtain a satisfying 

set of quadrature points. Thus, we can avoid getting quadrature points which are too 

close to the on-shell values in order to avoid the singularity in the calculation due to the 

Green‟s function. The weights of the on-shell coordinates provide a glance on the 

quality of the quadrature points. A set of points is considered good when the weight for 

each channel is small. Table 4.1 is an example of reasonable low weights for each 

channel when a = 1.886 and b = 0.063. The weight of the on-shell value is merely a 

simple guide on getting a good calculation.  

4.2.2 Convergence of the Cross Section 

The convergence of the cross section is crucial in the calculations. In order for 

the cross sections to converge, the total angular momentum, JMAX, must be sufficiently 

large. Higher JMAX are needed as the incident energy increases. 

Comparing the partial-wave (PW) sum and extrapolated PW sum in Table 4.4, 

we can observe a difference of 0.2% for the 5s channel and 53.2% for the 5p channel.  
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Table 4.4 : TCS for each channel in the unit of 𝜋𝑎0
2 obtained from the CC8 calculation 

at 100 eV. JMAX used for the calculation is 60. PW is the short form for partial-wave. 

 
5s 5p 4d 6s 6p 5d 7s 7p 

PW sum 7.2419 16.942 0.61103 0.38637 0.56328 1.5515 0.48664 0.15836 

integral 7.2433 24.226 0.74994 0.38422 0.59097 1.5525 0.48675 0.16073 

extrapolated 

PW sum 7.2565 25.959 0.61419 0.39102 0.57183 1.5527 0.48979 0.1809 

Table 4.5 : TCS for each channel in the unit of 𝜋𝑎0
2 obtained from the CC8 calculation 

for 100 eV. JMAX used for the calculation is 180.  

 
5s 5p 4d 6s 6p 5d 7s 7p 

PW sum 10.328 26.355 0.64917 0.39588 0.58414 1.5558 0.4885 0.16963 

integral 7.285 24.697 0.65669 0.38881 0.58183 1.5544 0.48866 0.16982 

extrapolated 

PW sum 10.328 27.458 0.65322 0.39494 0.58443 1.5558 0.4885 0.16917 

 

The large differences in 5p channel indicate that the cross sections of the 5p scattering 

are not converged yet. In order to get converged 5p cross sections, we need higher 

JMAX in the calculation. In Table 4.5, we increase the JMAX of the calculation to JMAX 

= 180 and we observe that there is a great improvement in the convergence of the 5p 

cross sections.  

 

 

 

 

 

 

 

Fig. 4.1 : Partial-wave cross section for 5s channel in the unit of 𝜋𝑎0
2 obtained from the 

CC8 calculation for 100 eV. JMAX=100 and UBA is the uniterized Born approximation. 
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The differences of PW sum and extrapolated PW sum have dropped to 4.2% which is 

reasonably good. But, we observe another problem in Table 4.5. The PW sum and 

extrapolated PW sum from Table 4.5 differ a lot from Table 4.4. In order to trace down 

the problem, we investigate the PW cross section of the CC8 calculation. 

We observe from Figure 4.1 that there are fluctuations in the CC8 PW cross 

section from J=60 onward due to the decrease in the quality of the calculation due to 

numerical inaccuracies and limitation of the computational resources, i.e. the CC8 

calculation is inconsistent after J = 60. Since the Born Approximation PW cross section 

is good at J = 60 onward, we can get rid of the fluctuations problem by merging the 

calculations of CC and CCOM with the uniterized Born approximation (UBA). Let 

JMAX1 be the JMAX of CC or CCOM before the quality of the calculations decreases 

and JMAX2 be the JMAX of UBA. By using a merging program, we can merge the T-

matrices of the CC/CCO and UBA calculations to produce a new T-matrix where the 

new JMAX is the combination of JMAX1 and JMAX2a (JMAX1+1 ≤ JMAX2a ≤ JMAX2). 

For example, at 100 eV, JMAX = 180 where JMAX1 = 60, JMAX2 = 180 and JMAX2a 

(JMAX1+1 ≤ JMAX2a ≤ JMAX2) = 61-180. 

Table 4.6 : TCS for each channel in the unit of 𝜋𝑎0
2. JMAX used for the CC8 calculation 

is 180. The JMAX used is the new JMAX after the merging.  

 
5s 5p 4d 6s 6p 5d 7s 7p 

PW sum 7.2531 25.354 0.7517 0.39361 0.59247 1.5526 0.48695 0.16162 

integral 7.2636 24.181 0.75905 0.38699 0.59117 1.5528 0.48735 0.16162 

extrapolated 

PW sum 7.2532 27.117 0.76037 0.39431 0.59467 1.5526 0.48695 0.16183 

 

By using the merged T-matrices, the calculation yields converged cross sections 

for all the channels as shown in Table 4.6, as well as getting rid of the inconsistency in 

the CC8 calculation after J=60 as shown in Figure 4.2. 
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Fig. 4.2 : PW cross section for 5s channel in the unit of 𝜋𝑎0
2 for the CC8 calculation at 

100 eV. 

 

4.3 Numerical Details in Positron-Rb Scattering Calculations 

4.3.1 Quadrature Points 

Similar to the electron scattering case, the challenge once again lies in the 

distribution of the quadrature points. For the electron case, we adjust the values of scale 

and bunching parameters to distribute the quadrature points. For the positron case, since 

we have atomic on-shell coordinates as well as the Ps on-shell coordinates, so we need 

to distribute the quadrature points by using another method. The other bunching 

transformation method which is the 5-panels mesh is also known as Method B. Method 

B is explained in the work by Ratnavelu et al. (1996). In Method B, we distribute the 

quadrature points into 5 regions, determined by these parameters: smk1, smk2, smk3, 

dmk1, dmk2. 

In the positron-Rb scattering, the difference between the on-shell values of the 

Ps and atomic states are quite large at intermediate and high energy (the difference 
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increases when the energy increases). The quadrature points are distributed carefully 

among the 5 regions so that only the quadrature points in Region 2 will be close to the 

atomic channels on-shell coordinates while the quadrature points in Region 4 will be 

close to the Ps channels on-shell coordinates. The values of the parameters (smk1, smk2, 

smk3, dmk1, dmk2) need to be adjusted carefully to fulfil this condition. From Figure 

4.3 we can see that smk1 and dmk1 will determine the “area” of Region 2 while smk2 

and dmk2 determine the “area” of Region 4.  

Table 4.7 - 4.11 show the effects of varying the parameters smk1, smk2, dmk1 

and dmk2 on the distribution of the quadrature points in Region 2 and Region 4. Since 

we are using 68 quadrature points in the calculations, so Region 1 contains 1
st
 to 24

th
 

points (24 points), Region 2 contains 25
th

 to 36
th

 points (12 points), Region 3 contains 

37
th

 to 46
th

 points (10 points), Region 4 contains 47
th

 to 58
th

 points (12 points) and 

Region 5 contains 59
th

 to 68
th

 points (10 points).   

By changing the magnitudes of smk1 and smk2, the values of the quadrature points will 

change according to the magnitudes of changes of smk1 and smk2. For example, by 

increasing the smk1 by 0.02 (Table 4.7 set C), all the quadrature points in Region 2 will 

be increased by 0.02 (Table 4.7 set C-set A). Similarly, by decreasing the smk2 by 0.03 

(Table 4.8 set B), all the quadrature points in Region 4 will be decreased by 0.03 (Table 

4.8 set B-set A).    

Fig. 4.3 : The quadrature points are distributed among the 5 regions as shown. The regions 

are determined by the values of smk1, smk2, smk3, dmk1 and dmk2. 
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Table 4.7 : The effects of varying smk1 on the distribution of quadrature points in 

Region 2. The smk1 of set B differs from set A by -0.03 and set C differs from set A by 

+0.02. 

 
smk1 

  

 
set A set B set C set B-set A set C-set A 

no 1.1352 1.1052 1.1552     

25 1.083925 1.053925 1.103925 -0.03 0.02 

26 1.094336 1.064336 1.114336 -0.03 0.02 

27 1.108743 1.078743 1.128743 -0.03 0.02 

28 1.122034 1.092034 1.142034 -0.03 0.02 

29 1.130672 1.100672 1.150672 -0.03 0.02 

30 1.134381 1.104381 1.154381 -0.03 0.02 

31 1.136019 1.106019 1.156019 -0.03 0.02 

32 1.139728 1.109728 1.159728 -0.03 0.02 

33 1.148366 1.118366 1.168366 -0.03 0.02 

34 1.161658 1.131658 1.181658 -0.03 0.02 

35 1.176064 1.146064 1.196064 -0.03 0.02 

36 1.186475 1.156475 1.206475 -0.03 0.02 

 

Table 4.8 : The effects of varying smk2 on the distribution of quadrature points in 

Region 4. The smk2 of set B differs from set A by -0.03 and set C differs from set A by 

+0.02. 

 
smk2 

  

 
set A set B set C set B-set A set C-set A 

no 1.6724 1.6424 1.6924     

47 1.54991 1.51991 1.56991 -0.03 0.02 

48 1.574781 1.544781 1.594781 -0.03 0.02 

49 1.609196 1.579196 1.629196 -0.03 0.02 

50 1.640948 1.610948 1.660948 -0.03 0.02 

51 1.661584 1.631584 1.681584 -0.03 0.02 

52 1.670443 1.640443 1.690443 -0.03 0.02 

53 1.674357 1.644357 1.694357 -0.03 0.02 

54 1.683216 1.653216 1.703216 -0.03 0.02 

55 1.703852 1.673852 1.723852 -0.03 0.02 

56 1.735604 1.705604 1.755604 -0.03 0.02 

57 1.770019 1.740019 1.790019 -0.03 0.02 

58 1.79489 1.76489 1.81489 -0.03 0.02 

 

The dmk1 and dmk2 change the quadrature points by a fixed “rate”. In Table 4.9 

and 4.10, the values of dmk1 and dmk2 of set B differ from set A by -0.001 and set C 

by +0.002. If we take the ratio of the difference, it will be 1:2. It is not difficult for us to 

notice that the ratio of |set B-set A| and |set C-set A| is also about 1:2. So, dmk1 and 
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dmk2 directly control the ranges of Region 2 and Region 4. By increasing or decreasing 

dmk1 and dmk2, we can increase or decrease the ranges of Region 2 and Region 4 

accordingly. 

Table 4.9 : The effects of varying dmk1 on the distribution of quadrature points in 

Region 2. The dmk1 of set B differs from set A by -0.001 and set C differs from set A 

by +0.002. 

 
dmk1 

  

 
set A set B set C |set B-set A| |set C-set A| 

no 0.054 0.053 0.056     

25 1.083925 1.084875 1.082026 0.0009496 0.001899 

26 1.094336 1.095093 1.092823 0.0007568 0.0015134 

27 1.108743 1.109232 1.107763 0.0004899 0.0009799 

28 1.122034 1.122278 1.121547 0.0002438 0.0004877 

29 1.130672 1.130756 1.130505 8.39E-05 0.0001677 

30 1.134381 1.134396 1.13435 1.52E-05 3.03E-05 

31 1.136019 1.136004 1.13605 1.52E-05 3.03E-05 

32 1.139728 1.139644 1.139895 8.39E-05 0.0001677 

33 1.148366 1.148122 1.148854 0.0002438 0.0004877 

34 1.161658 1.161168 1.162637 0.0004899 0.0009799 

35 1.176064 1.175307 1.177577 0.0007568 0.0015134 

36 1.186475 1.185526 1.188374 0.0009496 0.001899 

 

Table 4.10 : The effects of varying dmk2 on the distribution of quadrature points in 

Region 4. The dmk2 of set B differs from set A by -0.001 and set C differs form set A 

by +0.002. 

 
dmk2 

  

 
set A set B set C |set B-set A| |set C-set A| 

no 0.129 0.128 0.131     

47 1.54991 1.550859 1.548011 0.0009495 0.0018991 

48 1.574781 1.575538 1.573268 0.0007567 0.0015135 

49 1.609196 1.609686 1.608216 0.0004899 0.0009799 

50 1.640948 1.641192 1.640461 0.0002438 0.0004876 

51 1.661584 1.661668 1.661416 8.38E-05 0.0001677 

52 1.670443 1.670458 1.670413 1.51E-05 3.04E-05 

53 1.674357 1.674342 1.674388 1.51E-05 3.04E-05 

54 1.683216 1.683132 1.683384 8.38E-05 0.0001677 

55 1.703852 1.703608 1.704339 0.0002438 0.0004876 

56 1.735604 1.735114 1.736584 0.0004899 0.0009799 

57 1.770019 1.769262 1.771533 0.0007567 0.0015135 

58 1.79489 1.793941 1.79679 0.0009495 0.0018991 
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In summary, smk1 and smk2 in Method B are similar to the scale parameter a in 

Method A while dmk1 and dmk2 in Method B are similar to the bunching parameter b  

in Method A. 

By adjusting the values of smk1, smk2, dmk1 and dmk2 carefully, we want to 

distribute the quadrature points in Region 2 and Region 4 so that the points in the 

regions can cover the closely spaced points near the on-shell coordinates of the atomic 

and the Ps channels. Similarly to the electron-case, a set of points is considered to be 

good when the weight of each channel is small. 

  At lower energy (≤6 eV), the on-shell values of the atomic and Ps states will 

overlap, thus Method B will be less effective in distributing the quadrature points. 

Method B is applicable when the atomic and Ps on-shell coordinates do not overlap (as 

shown in Figure 4.4). In Method B, we can distribute the quadrature points in such a 

way that the quadrature points in Region 2 will only associate with the atomic channels 

while the quadrature points in Region 4 will associate with the Ps channels. 

Table 4.11 : The on-shell coordinates for the CC(5,3) calculation at 6 eV and 15 eV. 

 
On-shell coordinates 

States 6 eV 15 eV 

Ps(1s) 0.989718 1.565089 

Rb(5s) 0.544767 1.015752 

Rb(5p) 0.424983 0.956865 

Rb(4d) 0.34695 0.924854 

Ps(2s) 0.479104 1.30365 

Ps(2p) 0.479104 1.30365 

Rb(6s) 0.336584 0.921015 

Rb(6p) 0.283073 0.902835 
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When the atomic on-shell coordinates (Region 2) are overlaping with Ps on-shell 

coordinates (Region 5) as shown in Figure 4.5, Region 3 vanishes and Method B is not 

suitable anymore because Method B is a 5 regions based method. We might face 

problems in distributing the quadrature points and the calculations will be inaccurate as 

the quadrature mesh does not cover points near the on-shell coordinates effectively. The 

best solution for this problem is to resort to Method A for those lower energies for 

which their on-shell coordinates overlap. 

4.4 Numerical Convergence of the Lippmann-Schwinger Solution 

In this section, the numerical convergence of the LS solution is studied. The 

CC(5,3) and CC(8,6) models are used for this purpose. The CC(5,3) calculation consists 

of 5 Rb atomic states and 3 Ps states while the CC(8,6) consists of 8 Rb atomic states 

and 6 Ps states. For testing purposes, we only choose certain energies to represent 

certain scattering energy range. For instance, we choose 5 eV and 10 eV to represent 

low scattering energies, and 20 eV as the intermediate scattering energy.  

Fig. 4.4 : The illustration of the on-shell coordinates for CC(5,3) calculations at 15 eV.  

Fig. 4.5 : The illustration of the on-shell coordinates for CC(5,3) calculations at 6 eV. 

The grey area is the overlapping region of atomic and Ps on-shell coordinates. 
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As discussed in Sections 4.1 and 4.2, we have applied 2 types of quadrature 

point meshes known as Method A and Method B in our calculations. Method B consists 

of 5 regions, thus we labelled the integration mesh as R(m1, m2, m3, m4, m5). The term 

mi indicates that the number of quadrature points distributed in the ith (i = 1, 2, 3, 4, 5) 

region. Each region can contain 6-48 quadrature points and the total quadrature points 

(Q-points) in all the regions can reach a maximum of 116 points. 

The numerical convergence test of Method A is quite straight forward. We used 

a variety of total quadrature points such as 24, 32 and 48 Q-points in the electron case, 

and 32, 48, 56, 64 and 84 Q-points in the positron case. For Method B, we used various 

combinations of quadrature distribution in all the regions. The combinations are 

obtained by changing the quadrature points in each region. First of all, we randomly 

define an integration mesh. Then, we increase or decrease the quadrature points in a 

particular region but remain the number of quadrature points in the other regions. By 

doing this, we can observe the changes in the cross section of each channel by the 

change of the integration mesh.  

Our main goal for the numerical convergence test is to obtain an optimal mesh 

that yields the most converged cross sections in all the channels. Besides, we also want 

to choose the mesh that consumes less computational time but still is able to produce 

converged results. Generally, the lesser the total quadrature points, the lesser the 

computational time required to perform the calculations. 

Table 4.12 - 4.14 show the numerical convergence of CC(5,3) calculation at 5 

eV, 10 eV and  20 eV. We used Method A for 5 eV as discussed in Section 4.2. The 

calculations are done using JMAX = 10 as it is sufficient for the testing purpose. At 5 eV 

(Table 4.12), we start by choosing 32 Q-points, followed by 48, 56, 64 and 84 points. 

We choose 48 Q-points as it yields converged cross sections in almost all the channels,  
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which are less than 3% different compared to the higher Q-points calculations. 

Although the 48 Q-points mesh does not yield good convergence in Rb(6s) and Rb(6p) 

channels (with more than 7% absolute error), the contributions from both of these 

channels are relatively insignificant (less than 1% of the TCS), so the errors can be 

ignored. Although 32 Q-points mesh can also yield converged results and consume 

lesser computational time, we will still stick to 48 Q-points. The only reason we choose 

48 Q-points rather than 32 Q-points is because we can obtain low weight in each 

channel by using 48 Q-points compared to 32 Q-points (refer to Section 4.1.1 for the 

explanation of the role of weight in each channel). 

Table 4.13 is the tabulation of numerical convergence of CC(5,3) calculation at 

10 eV using JMAX = 10. Our first randomly chosen integration mesh is 

R(24,12,10,12,10). We compared this mesh with R(24,12,6,12,10) and we concluded 

that the number of Q-points in Region 3 does not affect the result of the calculation very 

much (less than 0.1% of absolute errors in all channels). We continue our analysis by 

comparing R(24,12,10,12,10) and R(24,12,10,12,6) and we observe that the number of 

Q-points in Region 5 also does not affect the result of the calculation very much (<1% 

of absolute error). After dealing with Region 3 and Region 5, we wanted to deal with 

Region 1. We analyse the results which are obtained by using R(20,12,10,12,10), 

R(24,12,10,12,10), R(20,16,10,12,10), R(24,16,10,12,10), R(20,12,10,16,10) and 

R(24,12,10,16,10). The results are compared in this way:  

R(20,12,10,12,10)  R(24,12,10,12,10); 

R(20,16,10,12,10)  R(24,16,10,12,10); 

R(20,16,10,12,10)  R(24,16,10,12,10); 

We can observe that by increasing the number of Q-points in Region 1 from 20 

points to 24 points, the absolute errors in all the channels are less than 1%, which is 

very low and thus can be ignored.  We choose to allocate 24 Q-points in this region. We 
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could have allocated 20 points in Region 1 to decrease the computational time but we 

opt to sacrifice a bit of the computational time for better converged results. 

Region 2 and Region 4 consist of the Q-points which are needed to cover the on-

shell coordinates of the atomic and Ps channels. So, the number of Q-points must be 

large enough to cover all the coordinates but low enough to save computational time. 

We analyse the results of R(24,12,10,12,10), R(24,16,10,12,10), R(24,12,10,16,10), 

R(24,16,10,16,10), R(24,20,10,16,10), R(24,16,10,20,10) and R(24,20,10,20,10). 

R(24,12,10,12,10) yields sufficiently converged cross sections in all the channels by 

having less than 2% absolute errors compared to all the other meshes. Considering the 

satisfying converged results and shorter computational time, we concluded that 

R(24,12,10,12,10) is the optimal mesh for 10 eV. 

We carried out similar numerical convergence test on the CC(5,3) calculations at 

20 eV (Table 4.14) and we still observe that R(24,12,10,12,10) is the best mesh at 20 eV 

with the absolute error less than 0.7%. As a conclusion, we decided to do all the CC(5,3) 

calculations by using this mesh. 

We also undertook numerical convergence tests on the CC(8,6) calculations at 5 

eV, 10 eV and 20 eV using JMAX = 10 (Table 4.15 - 4.17). The analysis procedures are 

identical to the analysis of the CC(5,3) calculations. We faced challenges in choosing 

the optimal mesh for CC(8,6) at 5 eV as the cross sections for all the channels have 

barely converged. 

 Thus, we decided to analyse some of the major channels (that is, Rb(5s,5p,6s,6p) 

and Ps(1s,2s,2p)). We found that the TCS calculated using 32 Q-points (about 180𝜋𝑎0
2) 

does not converge with the other meshes (about 176𝜋𝑎0
2), so it is not the optimal mesh. 

Then, we studied the convergence using 48 Q-points. The 48 Q-points mesh produces 

satisfactorily converged cross sections in almost all the major channels with the highest  
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absolute error to be less than 12.5%. Thus, we choose the 48 Q-points mesh as the 

optimal mesh for CC(8,6) at 5 eV because this mesh can yield converged results at 

lowest computational resources. 

The numerical analysis on the results of the CC(8,6) calculations at 10 eV and 

20 eV is similar to the CC(5,3) case and thus we will not repeat the explanation. We 

conclude that the integration mesh, R(24,12,10,12,10), yielded the most converged 

results in all the testing energies by having the average absolute error to be <5% and  

<4% in most all of the channels at 10 eV and 20 eV, respectively. 

In comparison to the CC(5,3), it is harder to decide the optimal mesh for CC(8,6) 

because we have more channels to be considered in CC(8,6). Note that most of the high 

magnitude errors (absolute error >5%) come from the Rb(6s,6p,7s,7p) and Ps(3s,3p,3d) 

channels. Since these channels are not the dominant channels in the positron-Rb 

scattering system, they are less significant in the analysis. We finally decide to use the 

R(24,12,10,12,10) mesh in all the CC(8,6) calculations. 

No numerical convergence test on the CC(5,6) and CC(8,3) calculations was 

undertaken as we expect the results to be converged. This is due to the fact the CC(5,3) 

and CC(8,6) calculations have the smallest and largest atomic and Ps states among our 

present calculations. If the CC(5,3) and CC(8,6) calculations can produce converged 

results, we expect the same on the CC(5,6) and CC(8,3) calculations. 

 

  



 

 

 

 

 

Integrating 

mesh 

Total  Cross Section (𝝅𝒂𝟎
𝟐) 

Q-Points Ps1s Rb5s Rb5p Rb4d Ps2s Ps2p Rb6s Rb6p TCS 

Method A 

32 9.40 76.65 57.20 24.97 7.45 9.10 1.44 1.27 180.42 

48 9.34 76.21 57.93 23.96 7.40 9.17 1.46 1.18 179.65 

56 9.11 76.94 58.57 24.27 7.30 9.10 1.35 1.14 180.81 

64 9.41 76.67 58.26 23.55 7.45 9.20 1.35 1.15 180.05 

84 9.21 76.80 58.34 23.94 7.34 9.14 1.34 1.15 180.29 

 

 

 

 

 

Integrating 

mesh 

Total  Absolute Errors (%) 

Q-Points Ps1s Rb5s Rb5p Rb4d Ps2s Ps2p Rb6s Rb6p TCS 

Method A 

32 0.65 0.58 1.26 4.20 0.71 0.86 1.65 7.46 0.43 

48 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

56 2.47 0.96 1.10 1.29 1.43 0.81 7.46 3.89 0.65 

64 0.83 0.60 0.57 1.72 0.71 0.27 7.35 2.74 0.22 

84 1.40 0.78 0.71 0.08 0.88 0.42 8.11 3.15 0.36 

 

 

 

 

 

Table 4.12a : The numerical convergence for CC(5,3) calculation at 5 eV (JMAX = 10).  

 

Table 4.12b : The absolute errors between 48 Q-points mesh with the other meshes for CC(5,3) calculation at 5 eV 

(JMAX = 10).  

 



 

 

Integrating mesh 
Total  Cross Section (𝝅𝒂𝟎

𝟐) 

Q-Points Ps1s Rb5s Rb5p Rb4d Ps2s Ps2p Rb6s Rb6p TCS 

R(20,12,10,12,10) 64 2.01 43.30 165.57 39.45 5.69 18.24 0.92 3.11 123.33 

R(24,12,6,12,10) 64 2.03 43.50 165.68 39.53 5.66 18.20 0.93 3.14 123.41 

R(24,12,10,12,6) 64 2.05 43.52 165.58 39.57 5.67 18.23 0.93 3.13 123.47 

R(24,12,10,12,10) 68 2.03 43.50 165.66 39.53 5.66 18.20 0.93 3.14 123.41 

R(20,16,10,12,10) 68 2.00 43.24 164.43 39.51 5.66 18.17 0.94 3.10 123.15 

R(20,12,10,16,10) 68 2.01 43.30 166.06 39.51 5.77 18.14 0.93 3.11 123.29 

R(24,16,10,12,10) 72 2.02 43.45 164.42 39.59 5.63 18.12 0.95 3.13 123.24 

R(24,12,10,16,10) 72 2.03 43.49 166.15 39.60 5.74 18.10 0.93 3.14 123.37 

R(24,16,10,16,10) 76 2.02 43.44 164.90 39.66 5.71 18.03 0.95 3.13 123.19 

R(24,20,10,16,10) 80 2.02 43.39 164.42 39.67 5.70 18.01 0.94 3.14 123.13 

R(24,16,10,20,10) 80 2.02 43.43 164.89 39.70 5.76 17.97 0.95 3.13 123.18 

R(24,20,10,20,10) 84 2.02 43.38 164.41 39.71 5.74 17.95 0.94 3.14 123.11 

 

 

 

Integrating mesh 
Total  Absolute Errors (%) 

Q-Points Ps1s Rb5s Rb5p Rb4d Ps2s Ps2p Rb6s Rb6p TCS 

R(20,12,10,12,10) 64 0.92 0.44 0.05 0.20 0.43 0.20 0.87 0.88 0.06 

R(24,12,6,12,10) 64 0.00 0.00 0.01 0.01 0.01 0.01 0.03 0.01 0.00 

R(24,12,10,12,6) 64 0.92 0.06 0.05 0.11 0.17 0.13 0.56 0.25 0.05 

R(24,12,10,12,10) 68 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

R(20,16,10,12,10) 68 1.30 0.59 0.74 0.06 0.13 0.20 0.68 1.27 0.21 

R(20,12,10,16,10) 68 0.84 0.46 0.24 0.04 1.81 0.34 0.73 0.84 0.10 

R(24,16,10,12,10) 72 0.50 0.12 0.75 0.15 0.63 0.43 1.58 0.32 0.14 

R(24,12,10,16,10) 72 0.08 0.01 0.30 0.17 1.37 0.54 0.15 0.04 0.03 

R(24,16,10,16,10) 76 0.41 0.13 0.46 0.33 0.73 0.96 1.74 0.28 0.18 

R(24,20,10,16,10) 80 0.44 0.25 0.75 0.35 0.55 1.05 1.24 0.03 0.23 

R(24,16,10,20,10) 80 0.41 0.14 0.46 0.44 1.59 1.30 1.77 0.28 0.19 

R(24,20,10,20,10) 84 0.43 0.26 0.75 0.47 1.40 1.40 1.27 0.02 0.24 

 

 

Table 4.13a : The numerical convergence for CC(5,3) calculation at 10 eV (JMAX = 10).  

 

Table 4.13b : The absolute errors between R(24,12,10,12,10) mesh with the other meshes for CC(5,3) calculation 

at 10 eV (JMAX = 10).  

 



 

 

 

Integrating mesh 
Total  Cross Section (𝝅𝒂𝟎

𝟐) 

Q-Points Ps1s Rb5s Rb5p Rb4d Ps2s Ps2p Rb6s Rb6p TCS 

R(24,12,10,12,10) 68 0.5589 16.3650 25.7320 6.7725 0.5429 1.1988 0.5988 1.4377 53.21 

R(24,16,10,12,10) 72 0.5588 16.3650 25.7250 6.7669 0.5432 1.1985 0.6011 1.4382 53.20 

R(24,12,10,16,10) 72 0.5592 16.3660 25.7320 6.7724 0.5421 1.1989 0.5987 1.4375 53.21 

R(24,16,10,16,10) 76 0.5590 16.3660 25.7250 6.7667 0.5424 1.1986 0.6011 1.4380 53.20 

R(24,20,10,16,10) 80 0.5584 16.3650 25.7300 6.7688 0.5418 1.1982 0.6007 1.4363 53.20 

R(24,16,10,20,10) 80 0.5591 16.3660 25.7250 6.7667 0.5422 1.1987 0.6010 1.4380 53.20 

R(24,20,10,20,10) 84 0.5585 16.3660 25.7300 6.7685 0.5407 1.1986 0.6006 1.4361 53.20 

 

 

 

 

Integrating mesh 
Total  Absolute Errors (%) 

Q-Points Ps1s Rb5s Rb5p Rb4d Ps2s Ps2p Rb6s Rb6p TCS 

R(24,12,10,12,10) 68 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

R(24,16,10,12,10) 72 0.03 0.00 0.03 0.08 0.05 0.03 0.39 0.03 0.02 

R(24,12,10,16,10) 72 0.04 0.01 0.00 0.00 0.14 0.01 0.01 0.01 0.00 

R(24,16,10,16,10) 76 0.01 0.01 0.03 0.09 0.09 0.02 0.38 0.02 0.02 

R(24,20,10,16,10) 80 0.10 0.00 0.01 0.05 0.20 0.05 0.32 0.10 0.01 

R(24,16,10,20,10) 80 0.03 0.01 0.03 0.09 0.13 0.01 0.38 0.02 0.02 

R(24,20,10,20,10) 84 0.08 0.01 0.01 0.06 0.39 0.02 0.31 0.11 0.01 

 

 

 

Table 4.14a : The numerical convergence for CC(5,3) calculation at 20 eV (JMAX = 10).  

 

Table 4.14b : The absolute errors between R(24,12,10,12,10) mesh with the other meshes for CC(5,3) calculation at 20  eV 

(JMAX = 10). 

 



 

 

 

 

Integrating 

mesh 

Total  Cross Section (𝝅𝒂𝟎
𝟐) 

Q-Points Ps1s Rb5s Rb5p Rb4d Ps2s Ps2p Rb6s Rb6p Rb5d Rb7s Ps3s Ps3p Ps3d Rb7p TCS 

Method A 

32 5.90 77.25 53.52 22.87 4.63 6.50 2.10 1.92 1.44 0.48 0.54 1.52 1.59 0.73 180.98 

48 5.41 74.29 53.92 21.51 4.29 6.73 2.19 2.01 2.10 0.72 0.28 1.06 1.53 0.46 176.50 

56 5.65 75.14 50.94 22.63 4.39 6.89 1.92 1.77 2.10 0.56 0.37 1.53 1.61 0.67 176.17 

64 5.58 74.36 51.01 23.71 4.81 7.14 1.71 1.90 1.87 0.66 0.51 1.53 1.63 0.46 176.88 

84 5.68 73.83 51.16 22.64 4.24 6.97 1.92 1.81 1.94 0.55 0.57 1.70 1.71 0.54 175.25 

 

 

 

 

 

Integrating 

mesh 

Total  Absolute Errors (%) 

Q-Points Ps1s Rb5s Rb5p Rb4d Ps2s Ps2p Rb6s Rb6p Rb5d Rb7s Ps3s Ps3p Ps3d Rb7p TCS 

Method A 

32 9.09 3.99 0.74 6.33 7.87 3.40 4.22 4.78 31.57 33.02 93.11 43.53 3.98 56.02 2.54 

48 4.46                             

56 4.46 1.14 5.52 5.20 2.18 2.33 12.06 11.93 0.15 21.22 32.02 44.78 5.38 44.52 0.19 

64 3.19 0.10 5.38 10.23 12.09 5.97 21.93 5.77 10.88 7.89 80.62 44.93 6.58 0.77 0.22 

84 5.06 0.62 5.11 5.24 1.19 3.53 12.15 10.32 7.84 22.94 102.68 60.66 11.79 15.53 0.71 

 

 

 

 

 

 

Table 4.15a : The numerical convergence for CC(8,6) calculation at 5 eV (JMAX = 10). 

 

Table 4.15b : The absolute errors between 48 Q-points mesh with the other meshes for CC(8,6) calculation at 5 eV (JMAX = 10). 

 



 

 

Integrating mesh 
Total  Cross Section (𝝅𝒂𝟎

𝟐) 

Q-Points Ps1s Rb5s Rb5p Rb4d Ps2s Ps2p Rb6s Rb6p Rb5d Rb7s Ps3s Ps3p Ps3d Rb7p TCS 

R(20,12,10,12,10) 64 1.27 36.99 33.22 20.18 4.21 8.44 1.21 2.12 3.41 0.55 1.63 4.30 4.80 0.92 123.24 

R(24,12,6,12,10) 64 1.32 37.57 32.96 20.41 4.04 8.44 1.10 2.17 3.33 0.60 1.68 4.61 4.46 0.94 123.62 

R(24,12,10,12,6) 64 1.25 37.81 32.89 20.39 4.03 8.43 1.10 2.16 3.33 0.59 1.68 4.65 4.50 0.95 123.76 

R(24,12,10,12,10) 68 1.32 37.57 32.96 20.41 4.04 8.44 1.10 2.17 3.33 0.60 1.68 4.61 4.46 0.94 123.62 

R(20,16,10,12,10) 68 1.26 37.02 33.06 20.15 4.20 8.45 1.16 2.23 3.35 0.54 1.61 4.33 4.80 1.02 123.16 

R(20,12,10,16,10) 68 1.28 36.98 33.44 20.21 4.27 8.43 1.22 2.15 3.37 0.55 1.60 3.96 4.85 0.94 123.27 

R(24,16,10,12,10) 72 1.31 37.60 32.78 20.38 4.04 8.46 1.05 2.30 3.27 0.58 1.66 4.66 4.45 1.03 123.55 

R(24,12,10,16,10) 72 1.33 37.53 33.15 20.47 4.13 8.40 1.10 2.19 3.31 0.60 1.58 4.32 4.51 0.95 123.57 

R(24,16,10,16,10) 76 1.32 37.55 32.97 20.44 4.13 8.42 1.05 2.32 3.26 0.58 1.57 4.36 4.50 1.03 123.50 

R(24,20,10,16,10) 80 1.32 37.53 33.04 20.51 4.13 8.47 1.08 2.25 3.27 0.57 1.59 4.39 4.49 1.01 123.63 

R(24,16,10,20,10) 80 1.31 37.61 33.02 20.44 4.12 8.42 1.05 2.33 3.27 0.58 1.55 4.41 4.58 1.05 123.73 

R(24,20,10,20,10) 84 1.31 37.59 33.09 20.51 4.12 8.47 1.08 2.25 3.28 0.57 1.57 4.43 4.57 1.02 123.86 

 

 

 

Integrating mesh 
Total  Absolute Errors (%) 

Q-Points Ps1s Rb5s Rb5p Rb4d Ps2s Ps2p Rb6s Rb6p Rb5d Rb7s Ps3s Ps3p Ps3d Rb7p TCS 

R(20,12,10,12,10) 64 4.33 1.54 0.81 1.15 4.13 0.01 9.33 2.21 2.26 8.23 2.88 6.53 7.61 1.64 0.31 

R(24,12,6,12,10) 64 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 

R(24,12,10,12,6) 64 5.75 0.64 0.20 0.08 0.34 0.19 0.04 0.16 0.15 0.70 0.29 0.91 0.79 1.77 0.11 

R(24,12,10,12,10) 68 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

R(20,16,10,12,10) 68 5.17 1.48 0.32 1.28 3.91 0.05 5.14 2.72 0.52 9.21 3.87 5.93 7.44 8.53 0.37 

R(20,12,10,16,10) 68 3.57 1.56 1.48 0.98 5.75 0.09 10.53 0.64 1.29 7.23 4.69 14.03 8.74 0.27 0.28 

R(24,16,10,12,10) 72 1.13 0.06 0.54 0.15 0.08 0.16 4.91 6.20 1.77 2.46 0.88 1.21 0.38 9.29 0.06 

R(24,12,10,16,10) 72 0.35 0.11 0.59 0.28 2.38 0.51 0.13 1.00 0.49 0.64 5.54 6.28 1.02 0.78 0.04 

R(24,16,10,16,10) 76 0.63 0.06 0.04 0.12 2.30 0.27 4.80 7.19 2.16 1.93 6.50 5.24 0.75 10.05 0.10 

R(24,20,10,16,10) 80 0.28 0.12 0.27 0.47 2.30 0.33 2.08 3.64 1.96 4.32 5.22 4.75 0.58 7.11 0.01 

R(24,16,10,20,10) 80 1.13 0.11 0.19 0.16 1.92 0.29 4.96 7.43 1.80 2.38 7.75 4.22 2.51 11.61 0.09 

R(24,20,10,20,10) 84 0.76 0.05 0.42 0.51 1.91 0.31 2.30 3.84 1.59 4.82 6.28 3.76 2.32 8.72 0.19 

 

 

Table 4.16a : The numerical convergence for CC(8,6) calculation at 10 eV (JMAX = 10). 

 

Table 4.16b : The absolute errors between R(24,12,10,12,10) mesh with the other meshes for CC(8,6) calculation at 10  eV 

(JMAX = 10). 

 



 

 

 

Integrating mesh 
Total  Cross Section  

Q-

Points Ps1s Rb5s Rb5p Rb4d Ps2s Ps2p Rb6s Rb6p Rb5d Rb7s Ps3s Ps3p Ps3d Rb7p TCS 

R(24,12,10,12,10) 68 0.565 16.349 25.046 6.337 0.112 0.564 0.623 1.163 0.705 0.061 0.394 0.948 0.242 0.301 53.41 

R(24,16,10,12,10) 72 0.572 16.431 24.979 6.328 0.117 0.555 0.626 1.154 0.706 0.059 0.379 0.937 0.237 0.306 53.38 

R(24,12,10,16,10) 72 0.572 16.353 25.043 6.339 0.113 0.562 0.622 1.164 0.706 0.061 0.385 0.983 0.226 0.302 53.43 

R(24,16,10,16,10) 76 0.579 16.435 24.976 6.331 0.118 0.552 0.625 1.154 0.706 0.059 0.371 0.970 0.221 0.307 53.40 

R(24,20,10,16,10) 80 0.567 16.361 25.059 6.342 0.111 0.562 0.621 1.176 0.694 0.060 0.386 0.983 0.227 0.314 53.46 

R(24,16,10,20,10) 80 0.575 16.438 24.979 6.325 0.119 0.553 0.625 1.154 0.705 0.058 0.370 0.959 0.223 0.306 53.39 

R(24,20,10,20,10) 84 0.564 16.365 25.062 6.337 0.112 0.563 0.621 1.175 0.693 0.060 0.386 0.971 0.229 0.312 53.45 

 

 

 

Integrating mesh 
Total  Absolute Errors (%) 

Q-

Points Ps1s Rb5s Rb5p Rb4d Ps2s Ps2p Rb6s Rb6p Rb5d Rb7s Ps3s Ps3p Ps3d Rb7p TCS 

R(24,12,10,12,10) 68                               

R(24,16,10,12,10) 72 1.21 0.50 0.27 0.13 4.02 1.64 0.47 0.82 0.08 3.55 3.98 1.11 2.29 1.63 0.05 

R(24,12,10,16,10) 72 1.23 0.02 0.01 0.03 0.65 0.46 0.13 0.07 0.06 0.08 2.28 3.73 6.82 0.30 0.04 

R(24,16,10,16,10) 76 2.57 0.53 0.28 0.09 4.89 2.17 0.31 0.77 0.14 3.65 5.89 2.38 8.93 1.90 0.01 

R(24,20,10,16,10) 80 0.42 0.07 0.05 0.09 1.00 0.39 0.31 1.11 1.56 0.52 2.03 3.78 6.44 4.07 0.10 

R(24,16,10,20,10) 80 1.85 0.54 0.27 0.18 5.62 2.02 0.36 0.83 0.03 3.74 6.24 1.19 7.86 1.56 0.04 

R(24,20,10,20,10) 84 0.13 0.10 0.06 0.00 0.25 0.24 0.30 1.03 1.73 0.65 2.21 2.51 5.33 3.69 0.08 

 

 

 

Table 4.17a : The numerical convergence for CC(8,6) calculation at 20 eV (JMAX = 10). 

 

Table 4.17b : The absolute errors between R(24,12,10,12,10) mesh with the other meshes for CC(8,6) calculation at 20  eV (JMAX = 10).  

 




