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CHAPTER 3 

 

METHODOLOGY 

 

The present chapter shall deals with the procedures of solving the Hartree-Fock 

equations. In the first sub-section (3.1), the resulting eigenvalues and eigenfunctions 

obtained by solving the Hamiltonian with a deformed harmonic oscillator potential are 

briefly discussed. The basis parameters which are related to the deformed harmonic 

oscillator basis states are then introduced. These parameters will be optimised in the 

course of performing the calculation which will then be described. Section 3.2 will 

detail the calculation of the local densities from the eigenfunctions which are solutions 

to the deformed harmonic oscillator potential. The next section (3.3) will give the 

expression of the local densities as well as the scalar functions which are needed for the 

calculation of the Hartree-Fock equations which are written in terms of the well known 

Hermite and associated Laguerre polynomials. Subsequently, section 3.4 will describe 

the calculation of the matrix elements of the Hartree-Fock equations while section 3.5 

presents the calculation of the matrix elements of Coulomb interaction starting from a 

Gaussian interaction. Finally, we shall conclude the present chapter with some notes on 

the pairing strength and pairing window of the BCS approach in Section 3.6. 

 

3.1. OPTIMIZATION OF BASIS PARAMETERS 

 

3.1.1.  Solution to the deformed harmonic oscillator  

As aforementioned, one needs an ansatz for the density in order to solve the Hartree-

Fock equations. The densities can be calculated by approximating the one-body 
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potential to be a deformed harmonic oscillator potential since most heavy nuclei tend to 

have a deformed shape except for some magic nuclei and around. By solving the static 

Schrodinger equation for the harmonic oscillator Hamiltonian, one would get the 

eigenvalues and their corresponding eigenfunctions necessary for the calculation of the 

local densities. The deformed potential in a Cartesian coordinate is written as: 

 

          
 

 
   

    
 

 
   

    
 

 
   

    (1) 

 

which assumes that the nucleus has an axial symmetry along the z-direction. One can 

then transform the expression of V from Cartesian coordinates into cylindrical 

coordinates by introducing the radial part of the position as: 

 

          (2) 

 

The potential is then written in the form of: 
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Solving the static Schrodinger equation in a three dimensional space using the harmonic 

oscillator potential, one would obtain the solution for the total energy as: 

 

                    
 

 
  (4) 

 

with           ,   being the third component of the angular momentum. The label 

          refers to the nodes in the radial and z- directions. The eigenfunction of the 

harmonic oscillator (see Vautherin (1973)): 
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is written as a separable function in the radial and z- direction. For the z- direction, the 

wavefunction is written in terms of Hermite polynomials,    
   : 

 

    
       

  
   

         
                     (6) 

 

while the radial part on the other hand is written in terms of associated Laguerre 

polynomial    
     as: 

 

    
        

                 
     (7) 

 

The symbol   and   are the “stretched” coordinates associated with the z-axis and 

radial parts given by the relation: 

 

                                               
  (8) 

 

and    and    are the oscillator constants defined by: 
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The normalization constants are given as: 

 

    
  

 

         
 

   
     

   
   

       
 

   
 (10) 
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3.1.2.  Parameter    and q 

Having obtained the harmonic oscillator eigenfunction, one could then expand the 

neutron (or proton) single particle states in terms of this oscillator states such that: 

 

               
             (11) 

 

where α represents the set of quantum numbers,             of the harmonic oscillator 

states. In principle, the expansion is carried out for the sum over all α. However, in 

performing the Hartree-Fock calculation, such expansion on the oscillator state is 

obviously truncated so that the sum is only taken up to a certain total number of nodes, 

   (in the spherical case). An energy cut-off is imposed onto the total energy, E, so that 

(Flocard et al., 1973): 

 

                  
 

 
            (12) 

 

with    corresponding to the angular frequency of a spherical nucleus and its relation to 

the other angular frequencies by: 

 

   
    

    (13) 

 

with its corresponding oscillator parameter being: 
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In performing the variational calculation, one needs to optimise the parameter    for a 

given basis size,   . Optimization is made by varying and finding the value of the 

oscillator parameter which gives the lowest (most stable) total energy. As discussed 

earlier, when solving approximately (as in the Hartree Fock approach) the static 

Schrodinger equation by using the variational method, one obtains quite generally an 

energy eigenvalue that is higher than the real ground state energy. Therefore, a lower 

value of the total energy is always a better approximation to the ground state energy of 

the nucleus. 

 

 Another parameter which needs to be optimised is the deformation parameter, q 

given by (Flocard et al., 1973): 

 

   
  

  
 

  

  
 (15) 

 

The symbol    and    refers to the semi axes of the nucleus in the z- and radial 

direction respectively. As the name suggest, the deformation parameter gives an 

indication of the deviation of the nuclear shape from spherical point. For a spherical 

shape, the value of q is 1. An oblate shape has q<1 while for prolate, q > 1. Similar to 

the oscillator constant, one also needs to find the optimal value of the deformation 

parameter which gives the lowest total energy. The method described by Flocard et al. 

(1973) is used for the optimization of the parameter q. For an ellipsoidal liquid drop, the 

deformation parameter is related to the quadrupole moment by: 
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with             
     . Using the curve of Q(q), one can then approximate the 

optimal value  of the deformation parameter for a given quadrupole moment. 

 

 For calculations involving different types of nuclei, one first determines a 

sufficient basis size, N0 by fixing the parameters    and q for a particular nuclear shape 

while varying N0. Figure 3.1 shows the ground state total energy obtained with different 

basis sizes for 
208

Pb at spherical shape (q=1) and by fixing   =0.40. One can see a 

general trend of a decreasing total energy with the inclusion of larger basis size. By 

enlarging the basis size, one actually has a larger basis “area” in which to search for and 

thus increases the chances of obtaining a total energy similar or closer to the real ground 

state. In principle, one would prefer to work with a large basis size since it will give a 

more accurate result. However, performing such calculation requires extensive 

computational time especially if one were to work on very heavy nucleus. Moreover, in 

the present study, we are only interested with the variation of the energy e.g. 

deformation. Therefore, it would be sufficient to perform the calculation whereby the 

truncation effect is small compared to the order of magnitude of the results being 

considered. In Figure 3.1, the energy difference between N0=12 and N0=14 is much 

smaller as compared with what is obtained with the N0=10 and N0=12 calculation. Thus, 

further calculations will be carried out with N0=12. 
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Figure 3.1: Optimization of basis size, N0 with a fixed value of β0. 

 

After fixing the basis size, one then fix the parameter q to be 1 (when one is dealing 

with a spherical shape nucleus) while varying the value of parameter   . One then 

strives to obtain the minimal energy as a variation of   . One then takes for the optimal 

value of    the one corresponding to the minimal total energy. Figure 3.2 shows an 

example for the optimization process of parameter    for 
208

Pb with N0=12 (more 

details on optimization of    and q in Flocard et al. (1973)). 

 

 

Figure 3.2: Optimization of oscillator parameter, β0 by fixing N0=12 and q=1. 
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3.2.  Calculation of the local densities from the wavefunctions 

Let us calculate the three local densities which will be needed to determine the one-

body potential. These local densities are given in equations (91) to (93) of Chapter 2. 

Assuming that an even-even nucleus possesses an axial symmetry along the z- axis then 

the third component of the angular momentum, Lz is a good quantum number. Let    

be the eigenvalue of the operator Jz for the state m. One then writes the neutron (or 

proton) single particle wavefunction in the cylindrical coordinate and spin coordinate,   

in the form of (Vautherin, 1973): 

 

               
                      

                    (16) 

with: 

         
 

 
 (17) 

For the wavefunction in the spin coordinate (called spinor  
 

 

 

), the quantum number 

 
 

 
 and   

 

 
 represent a spin up and spin down nucleon state respectively. As can be 

seen, the wavefunction on the right hand side is sub-divided into two parts 

corresponding to the two spin quantum number values. As such, one can drop the 

summation over the spin state in the initial form of the equation for the nucleon density 

so that the neutron (or proton) density is now written in a more explicit form: 

 

             
            

           (18) 

 

By writing the gradient operator in cylindrical coordinate: 
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one then have the expression for the kinetic energy density term as: 

 

              
       

 
      

       
 

  
 

  
     

                             

 

 

   
 

       
 

             
       

 
      

       
 
  (20) 

 

The divergence of the spin-orbit density, div   can be obtained from the definition of the 

spin orbit density such that: 

 

                  
                               (21) 

 

with    being the spin operator. By writing the operator           as (Vautherin, 1973): 
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and using the gradient operator in cylindrical coordinate as in equation (19), the 

divergence of the spin-orbit density can be written as: 
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It is well known (Kramers degeneracy) that the time reversed  state,     of the single 

particle state    has the same single particle energy eigenvalue if one were to solve the 

Hartree-Fock equation with a time even HF Hamiltonian which is the case for an even-

even nucleus. For such a nucleus, the Slater determinant is time-reversal invariant and 

thus the Hartree-Fock Hamiltonian also possesses the time reversal property. Following 

this time reversal invariance property, one can then calculate local densities for only the 

positive values of the third component of the total angular momentum,    and then 

multiply when summing over all single particle states the calculation results by 2 to 

account for the negative values of   . 

 

3.3.  Calculation of the scalar functions entering the Hartree-Fock equation 

For the purpose of calculating the average one-body potential, U whose expression was 

given in equation (73) of Chapter 2, one would need to first calculate some scalar 

functions namely the nucleon density, kinetic energy density, div        and          

in coordinate space as the evaluation of the average potential is done in coordinate space 

as well. In order to calculate the first three functions, one would need the expression for 

  
      

  and     
 . The expression for   

  can be obtained directly from the 

expansion of the single particle states onto the harmonic oscillator wavefunction with 

  
  as the expansion coefficient (Vautherin, 1973): 

 

   
   

    
         

 
 

 
  

   
  

   
 

 

        
   

        
      

      (26) 

 

For the other two functions, one shall use the relations: 

      
        

   
                    

     (27) 
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    (28) 

 

In the equations above, the symbol     
     and     

    of the associated Laguerre and 

Hermite polynomial are given by: 

     
        

             (29) 

 

     
               

                   
     (30) 

 

These two relations can be derived by using the general expression for the two 

considered types of polynomials. For the associated Laguerre polynomial, the general 

expressions are (Erdelyi, 1953): 

 

            
                   

                
     (31) 

 

  
    

    

  
      

                
     (32) 

 

while the relations for Hermite polynomial are: 

 

               
                (33) 

 

 
    

   

  
             (34) 

 

One can then used the relations given above to obtain the divergence of the 

wavefunction in the radial and z- direction as given below: 
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Finally, the function          can be evaluated using the relation: 
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The operator     
    

 

    is to act as (Vautherin, 1973): 
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Using these relations as well as the notation for the density matrix whereby taking into 

account the occupation probability,   
  of the single particle states: 

 

          
     

  
 
   

      (39) 

 

one can then obtain the final expression for all the four functions discussed thus far: 



50 
 

 

       
    

         

 
            

   
    

    
 

  
     

      
       

       
 

  
       

  (40) 

 

       
    

         

 
            

   
    

    
 

  
    

  

                                                      

     
     

       
       

       
 

  
                                         

     
    

      
         

        
 

  
          

       
 

  
      (41) 

 

                  
    

         

 
            

   
    

    
 

  
  

  

                      

    
      

      
     

 

 
     

              

                                
      

       
       

 
  

    (42) 

 

            
    

         

 
                

   
    

    
 

  

             

                
       

        
       

 
  

                                                 

                                    
       

       
       

 
  

     

         
  

  
     

      
       

        
 

  
                           (43) 

 

3.4.  Calculation of the matrix elements in Hartree-Fock equations 

Having obtained the expressions for the single particle wavefunctions and consequently 

the three local densities, one can then solve the Hartree-Fock equation by calculating the 

matrix elements of the single particle Hamiltonian,     given by: 
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                                 (44) 

 

The terms on the left hand side correspond to the single particle kinetic energy term, 

one-body potential term and the spin-orbit term respectively and they in turn, depends 

on the Skyrme parameters as well as the three local densities (see Chapter 2). To obtain 

the single particle energy,   , one shall take the expectation value of the single particle 

Hamiltonian with respect to the single particle states which are expanded on the 

deformed harmonic oscillator basis state. The expectation value of the single particle 

Hamiltonian,     in the deformed harmonic oscillator basis state, α (with   

           ) can be written as: 

 

               
    

         
    (45) 

with: 

                   
  

   
                                    (46) 

 

The first term on the right hand side being a kind of kinetic energy term can be written 

after integration by parts as: 
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where                     is the axially deformed harmonic oscillator wavefunction. 

By writing the gradient operator in cylindrical coordinate and using the expression of 

the harmonic oscillator wavefunctions given in equation (6) and (7), the expectation 

value of the kinetic energy term was shown to be (Vautherin, 1973): 
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The relations for     
    and     

     are given in equations (29) and (30) while the 

oscillator constants in the perpendicular and z-direction are given in equation (9). The 

matrix element of the one-body central is written as (see Vautherin (1973)): 
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while the spin-orbit term is: 
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Numerical calculation of the integration in equations (48) to (50) are carried out using 

the Gauss-Hermite and Gauss-Laguerre quadrature formulas. The Gauss-Hermite 

quadrature formula for an integration of a function     
     is given as (see e.g. 

Abramowitz and Stegun (1972)): 

 

      
    

 

  
      

 
         (51) 

 

where    is the i
th

 zeros of the Hermite polynomial,        and    refers to its 

associated weight given by the relation: 

 

    
          

            
  (52) 

 

The index n represents the number of points used to approximate the integration. The 

calculation for the present study uses 50 Gauss-Hermite points. 

 

 On the other hand, the formula for the integration of a function         using 

the Gauss-Laguerre quadrature is given as (see e.g. Abramowitz and Stegun (1972)): 

 

         
 

 
    

 
         (53) 

 

where    is the i
th

 zeros of the associated Laguerre polynomial,   
      while its 

corresponding weight is denoted here by  
 
 with the relation: 

 

    
       

           
      

  (54) 
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The index n is similar to the Gauss-Hermite case, referring to the number of integration 

points which is taken to be 16 in present calculations. 

 

3.5.  Calculation of Coulomb matrix elements 

In an earlier work, Quentin proposed to calculate analytically the matrix elements of 

Coulomb interaction starting from Gaussian matrix elements (Quentin, 1972). The 

matrix elements were evaluated in a deformed basis state which consists of the 

eigenvectors of an axially deformed harmonic oscillator Hamiltonian which is indeed 

the one used in the present study. In the discussion below, we shall briefly look at final 

expression of the Gaussian matrix element derived in Quentin (1972) and relate the 

Coulomb interaction and the Gaussian interaction. Having established the relation 

between the two interactions, one could then obtain the matrix elements of the former 

interaction in terms of the latter. Finally, the recursion relations of an integral necessary 

to evaluate the Coulomb matrix elements are presented. 

 

3.5.1.  Matrix element of Gaussian interaction 

For a Gaussian interaction given by: 

 

     
 

          (55) 

 

Quentin showed that the total matrix element of a Gaussian interaction can be written as 

(Quentin, 1972): 
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whereby     
   

 
 is the spherical harmonic oscillator constant with   

    
   . The 

symbol    and    denote the angular frequency in the perpendicular plane and z- 

direction respectively. The integers on the left hand side represent the set of quantum 

numbers     
        of the nucleon state,    with          . The quantum number 

   denotes the number of nodes in the z- direction while   and   are related to the 

number of nodes in the perpendicular direction,    and the third component of the 

angular momentum,   by: 
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The function f and g are given as: 

 

                                    
    (58) 
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The brackets on the right hand side of both equations (58) and (59) are called the 

Moshinsky coeffiecients with the particle states denoted by the quantum numbers for 

example         (or                ) are being written in coordinate   1 and   2 

respectively while the symbol n, N (or a, A and b, B) denotes particle states in the 

relative coordinate,    and “center of mass coordinate”,    : 
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56 
 

The Moshinsky coefficients,          ,           and           are calculated by 

the relation below (which is written for the           case but nevertheless the same 

for the other two transformation brackets with a change of notation) (see e.g. Quentin 

(1972)): 
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The coefficients A(n), C(n,n’,p) and  
         

    
 are given as: 
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in which   
  is the binomial expansion coefficient while    and    are the oscillator 

constants with the relation     
   

 
            . 

 

3.5.2.  Gaussian function and relation to the Coulomb interaction 

The Yukawa interaction can be written in an integral representation in terms of the 

Gaussian interaction by: 

 
          

         
  

 

 
          

 

 

               (65) 
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The Coulomb interaction in     limit of the Yukawa interaction so that one has: 
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3.5.3.  Matrix element of Coulomb interaction from a Gaussian interaction 

Taking the expectation value of the Coulomb interaction with respect to the particle 

states, we have: 
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The term inside the bracket on the right hand side is exactly the expression shown in 

equation (56). Inserting the expression into equation (67) above and after some 

rearrangement of the terms, one can then write the expression above in terms of an 

integral I, such that: 
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where the integral I was defined as: 
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with restrictions on the integers q, l, m and n to be positive numbers and        . 

By introducing the deformation parameter denoted as   
  

  
, the integral I can then be 

written as: 

 

         
      

            

  
    

   
 

                  
         

         

 

 
   (70) 

 

3.5.4.  Calculation of the J integral from recurrence relations 

To obtain the value for the integral I, one will need to evaluate the terms inside integral 

on the right hand side of equation (70). This is done by taking: 
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with: 
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There are two types of deformations to be considered in evaluating this integral. There 

are the prolate shape (α<1) and oblate shape (α>1). At the same time, we have the 

relation,          so that for a prolate shape,     while for an oblate shape, 

    . The following recursion relations for the integral J may be used. They are 

given for different range of m values as (Quentin, 1972): 
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The numerical stability of these recurrence relations has to be checked. In some cases 

(Bloas, 2010) one prefers instead to use some direct integration after some relevant 

changes of integration variables. 

 

3.6.  Pairing strengths and the pairing window 

For each charge state q, the pairing matrix elements are given in terms of an adjustable 

parameter Gq by (Bonneau, Quentin and Samsoen, 2004): 
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where    and    is the pairing strength parameter for neutrons and protons respectively 

while    is the number of nucleons of charge q within the pairing single particle active 

space. For the present study, the pairing active space (or pairing window) is taken from 

the lowest single particle energy state up to some states above the Fermi level  , defined 

as     where   is an adjustable value. Instead of a sharp cut-off for energy levels 

outside the pairing window, a diffuse cut-off of the order of 0.2 MeV is used in the 

present work (see e.g. Bender, Heenen and Reinhard (2003)). 

 

  




