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CHAPTER 4 

 

RESULTS AND DISCUSSION 

 

4.1. EXCHANGE COULOMB ENERGY AS A FUNCTION OF MASS 

NUMBER 

 

4.1.1. Closed shell nuclei 

Calculations using exact expressions for the Coulomb interaction were first performed 

for a series of closed and doubly closed shell (spherical) nuclei ranging from light to 

super heavy ones. As the exact Coulomb treatment (as opposed to a Slater 

approximation) affects only the exchange part, the main result of the present study 

consists in the magnitude of the exchange Coulomb energy difference. The difference in 

exchange Coulomb energy is presented in terms of percentage defined by: 

                   
              

      
     

 

where        refers to the exact calculation of the exchange Coulomb energy while 

        is the exchange Coulomb energy calculated using the Slater approximation. 

 

Figure 4.1 shows the percentage difference (error) in the exchange Coulomb 

energy for magic nuclei calculated using the SkM* interaction. Pairing interaction is 

known to be unimportant for nucleon numbers in a given charge state which are magic. 

One can thus neglect it for doubly magic nuclei. From Figure 4.1, it is apparent that the 

percentage error decreases, as expected,  with increasing mass number, A. One observes 
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that for Oxygen-16, the difference in exchange Coulomb energy is close to 8 % 

compared to Calcium-40 which is about 5 %. Nuclei with mass number around 100 and 

above exhibit a slower decline of the percentage energy difference as a function of A, in 

the region of 2-4 %. As we have already discussed, the declining pattern of the 

correction in exchange Coulomb energy with increasing mass number can be attributed 

to the plane wave assumption used in the Slater approximation. This assumption is of 

course less suitable for light nuclei since they are much too small in size to present a 

significant saturated density region and their wavefunctions cannot be described 

properly by plane waves. On the other hand, we know that with increasing mass 

number, the radius of the nucleus increases as well with the saturation relation: 

     
 

   

Therefore, heavy nuclei have a larger extension of radius making it more reasonable to 

approximate the single particle wavefunctions as plane waves. 

 

 

Figure 4.1: Difference in exchange Coulomb energy given in percentage calculated 

using SkM* force for closed and semi-closed nuclei 
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The percentage exchange Coulomb energy obtained by Skalski (2001) 

calculated using the SkP parameterization are presented in Figure 4.2 as individual 

points along our present results obtained using SkM* for comparison. The agreement 

between the two results is indeed very striking which has led Skalski in his work to 

conclude that the results are interaction independent. To support further this idea, 

calculations were made for the three lighter closed shell nuclei using the SIII force 

which had been used in the pioneering work of Titin-Schnaider and Quentin (1974) for 

some light nuclei with a much smaller basis size. Our results are compared in Table 4.1 

with theirs. They are very close. Table 4.2 gives the percentage exchange Coulomb 

energy difference from the present calculation and those of Skalski using the SkP force. 

They are very much in agreement. One could thus confirm the conclusion that indeed 

the results do not depend on the type of nucleon-nucleon force used in the calculation 

(provided of course that they are reasonably realistic). 

 

 

Figure 4.2: Comparison of percentage exchange Coulomb energy difference using SkP 

and SkM* forces. 

 



63 
 

Table 4.1: Results of the exchange Coulomb energy (in MeV) from exact calculation 

and the difference in the exchange Coulomb energy (in percentage). The last 

two columns correspond to the results obtained from T. Schnaider and 

Quentin (1974) using SIII force. 
 

 

A 

This work Titin-Schnaider & Quentin 

(1974) 

Eexact_exch_coul % Eexact_exch_coul % 

O 16 -3.106 7.6 -3.110 7.7 

Ca 40 -7.918 4.9 -7.910 4.9 

Ni 56 -11.328 4.3 -11.230 4.4 

 

 

Table 4.2: Exchange Coulomb energy given in MeV and the energy difference (in 

percentage) from present work and those of Skalski (2001). 
 

Nucleus A 

SkM* (this work) SkP from Skalski (2001) 

Eexact_exch_coul % Eexact_exch_coul % 

O 16 -3.039 7.6 -3.009 7.7 

Ca 40 -7.859 4.9 -7.826 5.1 

Ni 48 -11.359 4.1 -11.258 4.2 

Ni 56 -11.387 4.2 - - 

Zr 90 -15.875 3.5 -15.816 3.6 

Sn 100 -20.476 3.2 -20.367 3.4 

Sn 132 -19.508 3.3 -19.450 3.4 

Pb 208 -32.117 2.6 -32.077 2.7 

Z=114 298 - - -44.193 2.3 

Z=126 310 -49.273 2.0 -49.249 2.1 
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4.1.2. Isotonic series 

Having some inkling on the magnitude of the correction due to the Slater approximation 

for magic and semi-magic nuclei, it is then interesting to extend the study beyond the 

closed shells. Since the Coulomb interaction takes place between protons, it is 

imperative to investigate the trend of the correction due to the Slater approximation by 

varying the number of protons in the nucleus. Figure 4.3 shows the difference in 

exchange Coulomb energy for different isotonic series, calculated by constraining the 

nucleus to be of spherical shape. The nucleus that gives the largest correction for each 

series is labelled in the figure. The choice of the basis size and the pairing strength 

parameter (Gn for neutron and Gp for proton) used in the calculation of isotonic series 

depends on the mass number A, as given in Table 4.3. The top of the single particle 

energy window (above the Fermi level) used for the pairing calculations is also listed. It 

was set to 5.0 MeV with a diffuse cut-off of 0.2 MeV except for very heavy nuclei with 

mass numbers larger than 230 in which case a 6.0 MeV window was used. 

 

Table 4.3: List of basis size, pairing window and pairing strengths for different mass 

number, A. 
 

A N0 Pairing 

window 

Diffuseness Gn (MeV) Gp (MeV) 

< 100 10 5.0 0.2 17.1 16.5 

< 130 12 5.0 0.2 17.1 16.5 

< 208 12 5.0 0.2 18.0 17.5 

> 230 14 6.0 0.2 14.3 15.5 

 

One can clearly identify the nuclei that necessitate the largest correction for the 

exchange Coulomb energy. They are in fact doubly magic or magic nuclei. For 

example, 
48

Ca and 
56

Ni are doubly magic nuclei with atomic number and neutron 
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numbers 20 and 28, and 28 and 28 respectively. Moving away from magic numbers, the 

difference in the exchange Coulomb energy reduces dramatically as can be seen from 

the isotones N=78 series. Nevertheless, when the atomic number approaches a magic 

number the percentage difference increases again as shown in the isotones with N=106. 

The variation in the percentage difference as one moves away from a proton magic 

number is clearly shown in the two series of isotones with N=64 and N=126. Moreover, 

the percentage correction for magic nuclei is always larger than for non-magic nuclei. 

The magic nuclei included in this study dealing with some series of isotones, are 
48

Ca, 

56
Ni, 

114
Sn and 

208
Pb. 

 

 

Figure 4.3: Difference in exchange Coulomb energy (given in %) for various isotones 

series. 

 

 From the results obtained from the study on magic nuclei, one would have 

expected that the percentage correction to the exchange Coulomb energy to decrease 

smoothly as a function of mass number. However, this is not the case as shown above 
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(see also Table 4.4 where these percentages are given along with the exact Coulomb 

energies). Away from magic number, one observes that the percentage correction is 

always smaller. The filling of the protons outside the closed shell into higher energy 

state does produce large variation in the percentage correction, an effect dubbed as a 

structural or shell effect.  

 

4.1.3. Isotopic series 

Finally, calculations were made for three isotopic series, namely for some 

Hafnium, Lead and Uranium isotopes to gain a more complete view of the percentage 

correction of the exchange Coulomb energy. We expect a priori the variation to be small 

since in all these series the proton number which has appeared important (in its 

closeness to a magic number) is invariant. The basis size and pairing parameters are as 

listed in Table 4.3. The calculation is also made upon imposing a spherical shape and 

the results are plotted in Figure 4.4 along with the previous results discussed earlier so 

as to give an overview on the subject matter. As it turns out, the variation of percentage 

correction for each individual isotopic series is rather small. Although the percentage 

correction increases with the number of neutrons, the increment is somewhat 

insignificant. Rather, one can conclude that the order of percentage correction for a 

particular isotopic series depends strongly on the distance of the atomic number from its 

neighbouring magic numbers. For example, the Hafnium and Uranium isotopes being 

non-magic nuclei have a very small percentage correction. In fact, the percentage 

corrections for these two isotopic series have negative values which mean that the Slater 

approximation overestimates the binding energy coming from the exchange part of the 

Coulomb interaction. 
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Figure 4.4: Results for all the calculations on magic nuclei, isotones and isotopes series 

with the nuclear shape constrained to be spherical. 

 

 On the other hand, isotopes of lead have a large correction of the exchange 

Coulomb energy because of the magic character of its atomic number. In this closed 

proton shell nuclei, the addition of neutrons into the nuclear system yields no effect 

whatsoever onto the percentage correction as shown in Figure 4.4.  

 

To conclude this subsection 4.1, we may state that the correction of the 

exchange Coulomb depends almost completely only on the atomic number, Z, only, and 

in particular the distance of the atomic number away from magic numbers. 
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Table 4.4: Exchange Coulomb energy (in MeV) from exact calculation and percentage 

correction for isotonic series. 
 

 

 

 

 

 

 

 

 Nucleus A Eexact_exch_coul % 

N=28 

Ca 48 -7.811 4.9 

Ti 50 -8.391 1.4 

Cr 52 -9.198 0.7 

Fe 54 -10.190 1.7 

Ni 56 -11.388 4.2 

Zn 58 -11.965 2.4 

Ge 60 -12.771 2.5 

Se 62 -13.341 1.0 

N=64 

Zr 104 -15.165 1.7 

Mo 106 -15.954 1.1 

Ru 108 -16.800 0.9 

Pd 110 -17.752 1.2 

Cd 112 -18.812 2.0 

Sn 114 -19.994 3.2 

Te 116 -20.447 1.6 

Xe 118 -21.059 0.6 

Ba 120 -21.740 0.0 

Ce 122 -22.460 -0.4 

N=78 

Te 130 -20.012 1.3 

Xe 132 -20.612 0.2 

Ba 134 -21.299 -0.5 

Ce 136 -22.051 -0.9 

Nd 138 -22.858 -1.0 

Sm 140 -23.707 -1.0 

N=106 

Er 174 -25.534 -0.5 

Yb 176 -26.434 -0.4 

Hf 178 -27.368 -0.2 

W 180 -28.342 0.2 

Os 182 -29.360 0.6 

Pt 184 -30.423 1.2 

Hg 186 -31.528 1.8 

N=126 

Os 202 -28.805 0.6 

Pt 204 -29.861 1.2 

Hg 206 -30.957 1.8 

Pb 208 -32.117 2.6 

Po 210 -32.611 1.5 

Rn 212 -33.215 0.8 

Ra 214 -33.890 0.3 

N=146 

Rn 232 -32.509 0.8 

Ra 234 -33.209 0.4 

Th 236 -33.968 0.1 

U 238 -34.767 0.0 

Pu 240 -35.596 -0.1 

Cm 242 -36.436 -0.2 

Cf 244 -37.287 -0.2 

Fm 246 -38.152 -0.2 
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4.2. CORRECTION TO THE EXCHANGE COULOMB ENERGY AS A 

FUNCTION OF DEFORMATION 

 

The viability of the Slater approximation as a function of deformation was tested on 

Selenium-70 (
70

Se) for the quadrupole deformation mode. The pairing strength is 

chosen such that Gn = 17.1 MeV for neutrons and Gp = 16.5 MeV for protons. The 

pairing window is taken to be          in MeV (with   being the chemical potential) 

with a diffuseness of 0.2 MeV (see subsection 3.6 for the definitions of these 

quantities). 

 

The deformation energy curve of 
70

Se (which was extensively studied in 

Bonneau and Quentin (2005)) was reproduced up to about 40 barn and it is plotted in 

Figure 4.5. The two points far on the right hand side of the figure corresponds to two 

35
Cl separated fission fragments (note that we have obtained such a fragmentation since 

left-right reflection symmetry is assumed). At each of this point, an exact Coulomb 

calculation was made and the comparison of the exchange Coulomb energy (given in 

terms of percentage correction as defined above) was plotted in Figure 4.6. 

 

At ground state (corresponding to a spherical shape), the Slater approximation is 

rather good giving rise to a small percentage error of about 0.6 %. However, the 

difference in exchange Coulomb between an exact calculation and the Slater 

approximation increases tremendously as the nucleus becomes more and more 

deformed. The percentage error peaks at about 4% at 15 barn before plummeting to 

about 2 % at 20 barn. Thereafter, the correction value remains range bound around 2.5 

%. After the scission point (corresponding to the last two points on the far right in 

Figure 4.6), the percentage correction lies at about 2.2 %. These percentage corrections 
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together with the calculated values of the exact Coulomb exchange energy are reported 

in Table 4.5. 

 

 

Figure 4.5: Deformation energy curve (in MeV) against quadrupole deformation (given 

in unit of fm
2
) for 

70
Se.  The two disconnected points on the far right 

corresponds to the total energy of two fission fragments. 

 

 Leaving for the moment the two points where two different pieces of nuclear 

matter appear, we will now discuss some possible explanation for the behaviour of the 

percentage correction to the exchange Coulomb energy exhibited in Figure 4.6. 

Actually, we have found that a high value of the percentage error seems to be correlated 

with a low density of single particle proton energy levels at the Fermi sea surface 

(density which might have been obtained after Strutinsky averaged calculations or 

through a semi classical approximation).  
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Figure 4.6: Correlation between proton pairing gap (in MeV) and the percentage 

correction at different quarupole deformation points for 
70

Se. 

 

This conclusion can only sketchily be drawn from the inspection of the proton single 

particle levels displayed on Figure 4.7. To be quantitative, we have considered as a 

relevant index for the level density, namely the proton pairing gaps. As can be seen 

from Figure 4.6 and Table 4.5, the variation with deformation of the gaps and the 

percentage corrections are very nicely correlated. This provides a strong support to our 

conjecture associating a high percentage correction with a low level density at the Fermi 

sea surface. The latter is also consistent with what has been obtained when varying Z. 

Varying the proton number or the deformation (at least in this range of deformation) the 

validity of the Slater approximation seems to be intimately correlated with the proton 

single particle level density near the Fermi energy. In effect, mid-shell nuclei 

correspond to a single particle level density much close to a semi-classically smoothed 

one and therefore one understands that the Slater approximation being of a (constant 

density) nuclear matter type, should be better in such cases than for low level density 

cases where the nuclear density is less close to its semi-classical approximation. 
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Figure 4.7: Proton single particle levels at different quadrupole deformations for 
70

Se. 

The Fermi level is indicated in each of the spectrum by the symbol λ. The 

single particle level at 0 barn is labelled by its various quantum numbers 

(nlj)
 
 where n is the principal quantum number, l is the angular momentum, 

j is the total angular momentum with the relation     
 

 
 and Ω is the 

projection of j onto the z- axis with          . 
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Table 4.5: Exchange Coulomb energy (in MeV) through exact calculation and the 

percentage correction to the Slater approximation at various quadrupole 

deformation points, Q20 (given in fm
2
) for 

70
Se. 

 

Q20 Eexact_exch_coul % 

0.0 -13.117 0.6 

510.8 -13.323 1.6 

1004.0 -13.332 2.6 

1250.0 -13.182 2.0 

1504.0 -13.411 3.8 

2005.1 -13.031 1.8 

2250.0 -13.038 1.9 

2750.0 -13.060 2.3 

3004.9 -13.089 2.6 

3498.3 -13.039 2.6 

3999.3 -12.935 2.4 

5769.3 -12.896 2.2 

6618.8 -12.897 2.2 
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CHAPTER 5 

 

CONCLUSION 

 

The present work aims at studying the Slater approximation to the exchange 

Coulomb energy in two a priori very different cases. The appropriateness of the Slater 

approximation was investigated on the one hand as a function of mass number while on 

the other hand, the effect brought upon by deformation of the nuclear shape was studied 

in a particular case.  

 

In the first case, it was clearly shown upon studying spherical magic nuclei that 

the Slater approximation is more appropriate for heavy nuclei corresponding to large 

extension of the nuclear radius. For heavy nuclei, the correction to be brought to the 

Slater approximation is of the order of 2 % to 3 % as compared to light nuclei where it 

is for example in 
16

O at about 8 %. This is expected since the Slater approximation, due 

to its intrinsic approximations, should perform well for larger size nucleus where a 

constant nuclear density approximation makes more sense. Indeed, in light nuclei 

almost all nucleon are in the density-varying surface region.  

 

For open shell nuclei, the Slater approximation seems to be a much better 

approximation. The presence of nucleons (more specifically protons and not neutrons) 

outside the closed shells, an effect called the shell effect, seems to play a major role in 

lowering the order of correction to the Slater approximation.  
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This is confirmed by the study of the considered error as a function of the 

deformation in the 
70

Se case. When changing the deformation, one explores different 

regimes of proton single particle (smoothed) level densities at the Fermi sea surface. It 

has been clearly established on one particular case that this level density and the 

percentage correction experience variations are anti-correlated. At a deformation where 

the level density is low the error on the Coulomb exchange energy is high as it is the 

case for a closed shell nucleus. When the former is high the latter is low as it is the case 

for a mid shell nucleus. 

 

It seems therefore that we have exhibited a somewhat robust criterion to evaluate 

a priori the qualitative trend of the error made on the Coulomb exchange energy when 

varying the mean field either with some discrete parameter (as the proton number) or 

some continuous one (as a deformation parameter). This may allow one to hint the 

consequence of using, as usually made, the Slater approximation when evaluating a 

fission barrier height (e.g. the first fission barrier of a heavy nucleus). Clearly at the 

nuclear ground state, the value of the level density is smaller than its value at the top of 

the first fission barrier. Using the Slater approximation should thus lead to an 

underestimation of such a barrier. In actinide nuclei one may estimate that the error 

associated with a difference of 1% (in the percentage correction) between the ground 

state and the top of the barrier corresponds to an underestimation of the first barrier by 

about 0.35 MeV. This was verified for 
238

U in which the difference of the exchange 

Coulomb energy was found to be about 1% larger in ground state compared to its 

corresponding value at the top of the barrier (Le Bloas et al., 2011). 

  




