SIMULATION OF LITHIUM-ION CONCENTRATION PROFILES IN SEPARATOR AND CATHODE OF LITHIUM-ION BATTERY USING THETA FORMULATION UNDER FINITE DIFFERENCE METHOD

MD JAUHARUL HAQAIQ BIN HARUN

DISSERTATION SUBMITTED IN FULFILLMENT OF THE REQUIREMENT FOR THE DEGREE MASTER OF SCIENCE

INSTITUTE OF MATHEMATICAL SCIENCES FACULTY OF SCIENCE UNIVERSITY OF MALAYA KUALA LUMPUR

2012

DECLARATION

UNIVERSITI MALAYA ORIGINAL LITERARY WORK DECLARATION

Name of Candidate	: MD JAUHARUL HAQAIQ BIN HARUN
I.C No	: 860405355601
Matric No	: SGP090002
Name of Degree	: MASTER DEGREE IN SCIENCES
Title of Dissertation	: SIMULATION OF LITHIUM-ION CONCENTRATION
	PROFILES IN SEPARATOR AND CATHODE OF LITHIUM-
	ION BATTERY USING THETA FORMULATION UNDER
	FINITE DIFFERENCE METHOD
Field of Study	: MATHEMATICAL MODELING

I do solemnly and sincerely declare that:

- (1) I am the sole author/writer of this Work;
- (2) This Work is original;
- (3) Any use of any work in which copyright exists was done by way of fair dealing and for permitted purposes and any excerpt or extract from, or reference to or reproduction of any copyright work has been disclosed expressly and sufficiently and the title of the Work and its authorship have been acknowledged in this Work;
- (4) I do not have any actual knowledge nor do I ought reasonably to know that the making of this work constitutes an infringement of any copyright work;
- (5) I hereby assign all and every rights in the copyright to this Work to the University of Malaya ("UM"), who henceforth shall be owner of the copyright in this Work and that any reproduction or use in any form or by any means whatsoever is prohibited without the written consent of UM having been first had and obtained;
- (6) I am fully aware that if in the course of making this Work I have infringed any copyright whether intentionally or otherwise, I may be subject to legal action or any other action as may be determined by UM.

Candidate's Signature :

Date :

Subscribed and solemnly declared before,

Witness's Si	ignature :
Name	:
Designation	:

Date :

ACKNOWLEDGEMENT

This thesis is the outputs of my two years research project for the degree Master of Science in Mathematics at the University of Malaya.

Firstly, I would like to thank Allah S.W.T. and Prophet Muhammad S.A.W. for giving me the strength to finish this thesis. I prayed that this project and thesis is blessed by Allah S.W.T.

Secondly, I would like to thank the University of Malaya. Not only for the facilities they offered, but also for the good education program they provided and for the financial support (Skim Biasiswa Universiti Malaya). I would like to thank my supervisor Prof. Madya Dr. Siti Aishah Hashim Ali for her clear guidance and constant support throughout the project. Despite her busy schedules, she is always willing to help me whenever I asked for it.

I also would like to take this opportunity to thank to my parents and my whole family, for their love and support and to all my friends. Finally, I would like to thank all the people that I was not declare their name here for their involvement in this project

Md Jauharul Haqaiq Bin Harun

ABSTRACT

This research focuses on the material balance equation governing the lithium-ion concentration in an electrolyte/solution phase of a lithium-ion battery. The main objective of this research is to obtain the solution for this governing equation in order to simulate the concentration profile of a lithium-ion battery during discharge process. The second objective of this research is to study the behavior of these lithium-ion concentrations in the electrolyte/solution phase of a lithium-ion battery under various conditions. In order to achieve the second objective of this study, various simulations of lithium-ion concentrations in the electrolyte/solution phase of a lithium-ion battery were performed. Several difference parameter values of discharge current (I), electrode porosity (ϵ), discharge time (τ) and combination of separator/cathode thicknesses (L_s/L_c) were used to simulate the behavior of lithium-ion in the battery system.

The material balance equation governing the lithium-ion concentration in the electrolyte/solution phase of a lithium-ion battery for separator is defined as

$$\frac{\partial(c)}{\partial t} = \nabla \cdot (D\nabla c) - \frac{i_2 \cdot \nabla t_+^0}{z_+ v_+ F}$$

and for cathode is defined as

$$\varepsilon \frac{\partial(c)}{\partial t} = \nabla \cdot \left(\varepsilon D_{eff} \nabla c\right) - \frac{i_2 \cdot \nabla t_+^0}{z_+ v_+ F} + \frac{a j_n \left(1 - t_+^0\right)}{v_+}$$

These equations are solved using the Theta formulation from Finite Difference Method (FDM) based on the relevant initial and boundary conditions. Three schemes are considered from this Theta formulation, which are explicit scheme ($\alpha = 0$), implicit scheme ($\alpha = 1$) and Crank Nicolson scheme ($\alpha = 0.5$). The coding for all three schemes are done using Wolfram MATHEMATICA 8 software and were solved.

The significant *t*-test is used to prove that the profiles of lithium-ion concentration calculated from this work are in good agreement with the published analytical results within 95% confidence interval. The Root Mean Square Error (RMSE) and Mean Absolute Error (MAE) are used to evaluate the effectiveness and accuracy of the profiles of lithium-ion concentration calculated from this work compared to the published work. Computational time needed by Wolfram Mathematica 8 software to solve the equation is also recorded to identify the fastest scheme based on the same style of computer coding from Theta formulation.

ABSTRAK

Kajian ini memberi tumpuan pada persamaan imbangan bahan yang mempengaruhi kepekatan ion litium di dalam elektrolit/fasa larutan bateri ion litium. Tujuan utama dari kajian ini adalah untuk mendapatkan penyelesaian bagi persamaan imbangan bahan ini bagi membolehkan dilakukan simulasi profil kepekatan bateri litium-ion semasa proses nyahcas. Tujuan kedua dari kajian ini adalah untuk mempelajari perilaku kepekatan ion litium dalam elektrolit/fasa larutan bateri litium-ion di bawah pelbagai keadaan. Bagi mencapai tujuan kedua kajian ini, pelbagai simulasi kepekatan ion litium dalam elektrolit/fasa larutan bateri litium-ion telah dijalankan. Beberapa nilai parameter yang berbeza seperti arus nyahcas (I), keporosan elektrod (ϵ), masa nyahcas (τ) dan kombinasi ketebalan pemisah/katod (L_s/L_c) telah digunakan untuk mensimulasi perilaku ion litium di dalam sistem bateri.

Persamaan imbangan bahan yang mempengaruhi kepekatan ion litium di dalam fasa elektrolit/larutan bateri litium-ion untuk pemisah ditakrifkan sebagai

$$\frac{\partial(c)}{\partial t} = \nabla \cdot (D\nabla c) - \frac{i_2 \cdot \nabla t_+^0}{z_+ v_+ F}$$

dan untuk katod sebagai

$$\varepsilon \frac{\partial(c)}{\partial t} = \nabla \cdot \left(\varepsilon D_{eff} \nabla c\right) - \frac{i_2 \cdot \nabla t_+^0}{z_+ v_+ F} + \frac{a j_n \left(1 - t_+^0\right)}{v_+}$$

Persamaan imbangan bahan ini diselesaikan dengan formulasi Theta dari Kaedah Beza Terhingga berdasarkan nilai awal dan nilai sempadan yang relevan. Tiga skim dipertimbangkan dalam formulasi Theta iaitu skim eksplisit ($\alpha = 0$), skim implisit ($\alpha = 1$) dan skim Crank Nicolson ($\alpha = 0.5$). Pengatucaraan komputer untuk ketiga-tiga skim ini dibuat mengunakan perisian Wolfram MATHEMATICA 8 dan diselesaikan.

Ujian signifikan-t digunakan untuk membuktikan bahawa profil kepekatan ion litium yang dikira dari kajian ini adalah menepati keputusan analitik yang pernah diterbitkan bagi 95% julat kesahihan. Ralat Bagi Punca Kuasa Dua Min dan Ralat Mutlak Min digunakan untuk menilai keberkesanan dan ketepatan profil kepekatan ion litium yang didapati dari kajian ini dibandingkan dengan hasil kerja analitik yang pernah diterbitkan. Masa pengkomputeran yang diperlukan oleh perisian Wolfram Mathematica 8 untuk menyelesaikan persamaan imbangan bahan ini juga direkodkan untuk mengenalpasti skim penyelesaian terpantas berdasarkan gaya pengaturcaraan yang sama dari formulasi Theta.

TABLE OF CONTENTS

			pages
Declai	ation		ii
Ackno	wledgement		iii
Abstra	ict		iv
Abstra	ık		vi
Table	of Contents		viii
List of	Paper Publis	hed & Presented	x
List of	Symbols		xi
List of	Tables		xiii
List of	Figures		xv
CHAP	TER 1	INTRODUCTION	` 1
1.1	Research Bac	kground	1
1.2	Objective		6
1.3	Thesis Organi	zation	7
СНАР	TER 2	LITERATURE REVIEW	9

CHAI	PTER 3 MODEL DEVELOPMENT	50
3.1	Mathematical Modeling	50
3.2	Governing Equations	54
CHAI	PTER 4 METHODOLOGY	75
4.1	Analytical and Numerical	75
4.2	Finite Difference Method (FDM)	78
4.3	Wolfram Mathematica 8 Software	87
4.4	Wolfram Mathematica 8 Software Algorithm	96
CHAI	PTER 5 RESULTS AND DISCUSSION	106
CHAI 5.1	PTER 5 RESULTS AND DISCUSSION Concentration Profiles	106 106
_		
5.1	Concentration Profiles	106
5.1 5.2 5.3	Concentration Profiles Effectiveness and Accuracy	106 114
5.1 5.2 5.3	Concentration Profiles Effectiveness and Accuracy Simulation of Lithium-ion Cell	106 114 127
5.15.25.3CHAI	Concentration Profiles Effectiveness and Accuracy Simulation of Lithium-ion Cell PTER 6 CONCLUSIONS	 106 114 127 147

LIST OF PAPERS

A. Paper published

1. **M. J. H. Harun** & S. A. Hashim Ali (2011). Numerical Simulation of Concentration Profile in the Cathode of a Lithium-ion Cell, Materials Research and Innovation. Accepted for publication.

B. Paper presented

 M. J. H. Harun & S. A. Hashim Ali (2010). Numerical Simulation of Concentration Profile in the Cathode of a Lithium-ion Cell. 3rd International Conference on Functional Material and Devices (ICFMD) 2010, 13 – 17 June 2010.

LIST OF SYMBOLS

а	specific interfacial area (cm ⁻¹)
C_i	concentration of species $i \text{ (mol/dm}^3)$
c_T	total concentration
D	diffusion coefficient (cm ² /s)
$f_{\scriptscriptstyle +-}$	mean molar activity coefficient of the electrolyte
F	Faraday's constant (96487 C/cq)
Ι	superficial current density (mA/cm ²)
j_n	pore wall flux of lithium-ion across interface $(mol/m^2/s)$
K_{ij}	friction coefficients (or interaction coefficients)
m	molality
n	number of electrons transferred in electrode reaction
N_i	diffusive flux of species $i \pmod{2/s}$
R	universal gas constant (8.3143 J/mol/K)
t	time (seconds)
t_{+}^{0}	transference number of lithium-ion
Т	temperature (K)
v_i	velocity of species i
x	distance along x-axis (µm)
у	dimensionless distance
Z_i	ionic valence of the charged species <i>i</i> .

Greek letters

- ε porosity
- δ thickness
- *if* diffusion coefficient of the electrolyte based on a thermodynamic driving force
- ϑ dimensionless concentration
- τ dimensionless time
- μ_i electrochemical potential of species *i*
- γ_{+-} mean molal activity coefficient

Subscripts/Superscripts

- A anode
- C cathode
- S separator
- 0 initial condition
- 2 electrolyte/solution phase

LIST OF TABLES

Table 1.1: History of Battery Development.	2
Table 1.2: Comparison among three common commercialize batteries	5
Table 2.1: Comparison between several materials of cathode	12
Table 2.2: Partial list of macroscopic full-cell sandwich battery models, with year of publication.	13
Table 2.3: Comparison of lithium-ion technologies being developed by various companies.	14
Table 3.1: Summary of model equations in dimensionless form	74
 Table 4.1: Comparison of mathematical programs for data analysis in aspect of (a) installation, learnability and usability, (b) mathematical functionality, (c) graphical functionality, (d) data handling, (e) Available operating systems, (f) speed comparison, (g) Functionality of the programming environment and (h) overall result	94
Table 5.1: Parameters and values used by (Doyle and Newman 1997)	06
Table 5.2: p value from t-test (significant test) compared to Doyle & Newman (1997) for 5 minutes of discharge with 0.5, 1.0 and 1.39 mA/cm ² discharge current for three techniques in Theta formulation.	15
Table 5.3: RMSE compared to Doyle & Newman (1997) for 5 minutes of discharge with 0.5, 1.0 and 1.39 mA/cm² discharge current for three techniques in Theta formulation	3

Table 5.4: MAE compared to Doyle & Newman (1997) for 5 minutes of discharge with 0.5, 1.0 and 1.39 mA/cm ² discharge current for three techniques in Theta formulation	121
Table 5.5: Computational time needed by Wolfram Mathematica 8 to perform the result of concentration profile during 5 minutes of discharge with 0.5, 1.0 and 1.39 mA/cm ² discharge current for three techniques in Theta formulation	124
Table 5.6: Parameters and values for Li//LiMn ₂ O ₄ as reported by various worker	127

LIST OF FIGURES

Figure 1.1: Four variations of Volta's electric battery
Figure 1.2: Example of lithium-ion battery that was used in some devices nowadays5
Figure 2.1: Example of the structure of Lithium-ion Battery9
Figure 2.2: The mechanism of (a) discharging and (b) charging process. (http://electronics.howstuffworks.com/lithium-ion-battery1.htm)10
Figure 2.3: Concentration Profile at (a) long time and (b) short time: $I = 10 \text{ A/m}^2$ discharge. Dashed line divides the separator and composite cathode. Initial concentration is 1000 mol/m^3 . (Doyle et al. 1993)17
Figure 2.4: Concentration profiles across the cell during galvanostatic discharge at $I = 4 \text{ mA/cm}^2$. Carbon negative electrode is 21.5% thicker than the manganese dioxide positive electrode. The separator region is set off by the dashed lines. (Fuller et al. 1994)
Figure 2.5: Salt concentration profiles across (a) cell 1 during galvanostatic discharge at $I = 1.75 \text{ mA/cm}^2$, (b) cell 2 during galvonostatic discharge at $I = 10.416 \text{ mA/cm}^2$ and (c) cell 2 during galvonostatic discharge at $I = 6.25 \text{ mA/cm}^2$ The separator region is set off by dashed lines. Time since the beginning of discharge is given in minutes. (Doyle and Newman 1996)
Figure 2.6: Simulated salt concentration profiles across the thin cell during galvanostatic discharge at the (a) $C/6$ rate (0.387 mA/cm^2) and (b) $3C$ rate (6.936 mA/cm ²). The separator region is set off by dashed lines. Times since the beginning of discharge are given in minutes. (Arora et al. 2000)
Figure 2.7: (a) and (b) Comparison dimensionless transient profile in a time in a lithium-ion cell sandwich with previous Doyle and Newman work. (c) Concentration profiles in a lithium-ion cell sandwich as a function on applied current <i>J</i> at particular time $\tau = 1$. (Subramanian and White 2001)

Figure 2.8: Electrolyte concentration profile for a galvanostatic theoretical discharge rate of 2C at short ($t=15s$) and long times ($t=390s$). (Botte and White 2001)
Figure 2.9: Dimensionless concentration at the (a) electrode/separator interface, (b) current collector for different (b) rate of discharge and (c) values of <i>r</i> (ratio of electrode length to separator length) is plotted against dimensionless time at the <i>1C</i> rate of discharge (60 A/m^2). The solid lines represent the exact model and the dotted lines represent the approximate solution. (Subramanian et al. 2004)
Figure 2.10: LiPF ₆ concentration profile across the electrode after 2.0 Ah had been discharged from the cells. (Valøena and Reimers 2005)31
Figure 2.11: (a) Classified about micro-scale and macro-scale diffusion model and (b) Electrolyte concentration inside the cell sandwich predicted using an approximate model for the solid phase concentration is compared with electrolyte concentration obtained using 20 nodes in the particles. Solid line represents the node model (rigorous solution) and solid dots represent the approximate model. (Subramanian et al. 2005)
Figure 2.12: Change in the solution phase concentration at various rates of discharge as predicted by the PP model. (Santhanagopalan et al. 2006)
Figure 2.13: Simulations of lithium concentration in the electrolyte phase. (Ning et al. 2006)
Figure 2.14: Concentration profile in solid-phase across the cathode for (a) short-time interval and (b) long-time interval during galvanostatic discharge $I=1.39 \text{ mA/cm}^2$. (Hashim Ali et al. 2002)
Figure 2.15: Concentration profile in solution phase across the cathode for (a) short-time interval during galvanostatic discharge ($I=1.0 \text{ mA/cm}^2$ and $I=1.39 \text{ mA/cm}^2$), (b) long-time interval during galvanostatic discharge ($I=1.39 \text{ mA/cm}^2$) and (c) various discharge current rate, <i>I</i> . (Hashim Ali et al. 2002)

C	Profiles of lithium ion concentration for various (a) times $(t = 0, 300, 600, 900, 1500 \text{ and } 14400 \text{ seconds})$ with the initial concentration 1000 mol/m ³ and (b) discharge current $(I = 0.5, 1.0, 1.39 \text{ and } 1.92 \text{ mA/cm}^3)$. (Hashim Ali et al. 2003)
	Profile of lithium-ion concentration in (a) solution phase and (b) solid phase under various time, <i>t</i> . (Hashim Ali et al. 2004)39
-	Concentration profile across (a) separator and cathode during galvanostatic discharge at 60 min for $I = 0.5$, 1.0, 1.39 and 1.92 mA/cm ² , (b) separator and cathode during galvanostatic discharge at 240 min for $I = 0.5$, 1.0, 1.39 and 1.92 mA/cm ² and (b) cathode during galvanostatic discharge of $I = 1.92 \text{ mA/cm}^2$ for time $t=5$, 15, 20 and 60 minutes. (Ali and Mohamed 2006)40
	Concentration profiles in solution phase across cathode (a) compared with previous published results and (b) during galvanostatic discharge at a particular time ($\tau = 1$). (Johan and Arof 2007)
	Flowchart of Subramanian et al. work regarding to their model simplification (Subramanian et al. 2007)42
Figure 2.21:	Comparison of the predictive capability of the simplified model solution by Subramanian et al. for predicting the electrolyte concentration with rigorous numerical solution. (Subramanian et al. 2007)
-	(a) Electrolyte concentration distributions during 5 C discharge from 50% SOC initial condition: CFD model (o) and 5th order negative electrode/5th order positive electrode/3rd order electrolyte linear submodels (–) and (b) Distribution of electrolyte surface concentration at various times during 30 C discharge from 100% SOC initial condition with sluggish electrolyte diffusion, $D_e = 2.6 \times 10^7$ cm ² /s. (Smith et al. 2007)
Figure 2.23:	Interdependency of macro- and micro-scales. (Golmon et al. 2009)46
Figure 2.24:	 (a) Evolution of Li⁺ concentration in electrolyte over time and (b) Normalized Li concentration in cathode for different porosities at average utilization of the cathode material of 0.35. (Golmon et al. 2009)

left: results of (Doyle predicted by numeric	centration in electrolyte for $t \le 20s$; e et al. 1993) right: results ral framework presented in their paper
Figure 2.26: Lithium-ion concentr (Abe et al. 2009)	ation distribution in electrolyte. 47
(b) with $t = 10, 30$ and	a of the lithium-ion across distance with $I = 0.5$, 1.0 and $0.5mA/cm^2$ and d 60 minutes for $I = 1.39 mA/cm^2$.
with an insertion-type	(a) the "rocking-chair" type battery cathode and (b) the lithium ion battery with
Figure 4.1: Grid Lines commonly	used in Finite Difference Method (FDM)81
Figure 4.2: WM8 notebook sheet.	
under FDM compared different discharge cur scheme, (c) Crank Nic	using three schemes of Theta Formulation with Doyle and Newman (1997) at rents. (a) explicit scheme, (b) implicit solson scheme and (d) Doyle and Newman mes together
under FDM compared applied current, $J = -1$ (c) Crank Nicolson scl	using three schemes of Theta Formulation with Subramanian and White (2001) at . (a) explicit scheme, (b) implicit scheme, heme and (d) Subramanian and White mes together
during 1.75 mA/cm ² di	concentration in the solution phase scharge current at various values of
during 1.75 mA/cm ² di	concentration in the solution phase scharge current at various values of , y

Figure 5.5: Profile for lithium-ion concentr during 1.75 mA/cm ² discharge	ration in the solution phase current in 3D Simulation130
• · · · ·	ration across the cathode for 1.0 mA/cm ² and (b) 1.39 mA/cm ² 131
Figure 5.7: Profile for lithium-ion concentr (a) $\tau = 5$ and (b) $\tau = 30$ for diffe	ration across the cathode during erent discharge current133-134
	ration across the cathode at .0 mA/cm ² and (b) 1.93 mA/cm ² 135-136
	ration across the cathode at fferent discharge times with electrode 0.2138
	tration across the cathode during erent discharge current with electrode = 0.2140-141
	tration across the cathode for different rosity (a) $\varepsilon = 0.8$ and (b) $\varepsilon = 0.2$
Figure 5.12: Profile for lithium-ion concent thicknesses combination of set thicknesses of separator and conduring certain discharge curre	parator and cathode. The