
Chapter 1

Introduction

1.1 Preliminary

When is a torsion-free abelian group free abelian? This problem has been

attacked by many mathematicians for many years, but no satisfactory answer

has emerged. As a result, they have made the theory of abelian groups rich and

diverse. Also, set theory plays an important role in this problem, as pointed out

by Thomas [27, 28].

1.2 Abelian Groups

In this section, we will discuss different types of abelian groups.

Free Abelian Group

An abelian group G is said to be free abelian if G is a direct sum of infinite

cyclic groups. Let K be an index set. If G =
⊕

k∈K〈xk〉 where 〈xk〉 is the infinite

1



cyclic group generated by xk , then we say G is free on {xk : k ∈ K}. Moreover,

every non-zero element g ∈ G has the unique expression

g = mk1xk1 + · · ·+mknxkn

where the mki
’s are nonzero integers and the ki’s are distinct. If G is free on

{xk : k ∈ K} and F is free on {yj : j ∈ J}, then the two free abelian groups are

isomorphic if and only if J and K have the same number of elements, i.e. there

is a one-to-one and onto function (bijection) from J onto K. If |K| = n, then we

say that G has rank n. A non-trivial result will show that a subgroup of a free

abelian group is free (see [23, Theorem 9.22 on p. 189]).

Torsion Abelian Group

An abelian group G is said to be torsion if every element in G has finite order.

This means that, for every g ∈ G, there is an integer n > 0 such that ng = 0.

The structure of finite abelian groups is well-understood. The Basis Theorem of

Finite Abelian Groups states that every finite abelian group is a direct sum of

cyclic p-groups. Torsion abelian groups have similar structure as finite abelian

groups, that is a torsion abelian group is a direct sum of p-groups. Thus, the

study of torsion abelian groups is reduced to that of p-groups. Some examples of

torsion abelian groups are Q/Z and cyclic p-groups.

Torsion-free Abelian Group

An abelian group G is said to be torsion-free if it does not have non-identity

elements of finite order. This means that, if ng = 0 for some g ∈ G, then either
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n = 0 or g = 0.

If G is an abelian group and tG is the torsion subgroup of G, then G/tG is

isomorphic to H where H is torsion-free. Note that if H is free abelian, then

G = t(G) ⊕ H, and tG is a direct summand of G. However, this is not true in

general, that is when H is not free abelian.

Theorem 1.2.1. [23, Theorem 9.2 on p. 178] There exists an abelian group G

whose torsion subgroup is not a direct summand.

The counter-example given in the reference for Theorem 1.2.1 is the direct

product of cyclic groups of prime order for infinitely many primes.

Torsion-free abelian groups have a useful invariant, which is called rank. The

rank of a torsion-free abelian group G is defined to be the number of elements

in a maximal independent subset of G. Observe that a free abelian group is

torsion-free and the two notions of rank coincide. Some examples of torsion-free

abelian groups are free abelian groups, Q, and the product of countably infinitely

many copies of Z which is known as the Baer-Specker group. Baer proved that

the Baer-Specker group, B, is not free abelian in 1937. Later in 1950, Specker

proved that every countable subgroup of B is free abelian.

Theorem 1.2.2. [22, 4.4.4 and 4.4.6 on p. 114 and 115] The Baer-Specker group,

B is not free abelian, but every countable subgroup of B is free abelian.
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Divisible Group

Let n be an integer, we say an element x ∈ G is divisible by n if there is an

element y ∈ G such that ny = x. Let p be a prime. The p-height of x, denoted

by hp(x), is defined to be the largest positive integer n such that pn divides x.

So, if x is divisible by pn but not by pn+1, then hp(x) = n.

We say that a group G is divisible if every element in G is divisible by every

positive integer n. This means that the p-height of every element is infinite for

every prime p. If the p-height of an element is infinite, we say that the element

is p-divisible. Note that a group G is divisible if and only if all its elements are

p-divisible for every prime p (see [23, Exercise 9.29 on p. 184]). Some examples

of divisible groups are Q, the additive group of real numbers R, and the additive

group of complex numbers C.

Pure Subgroup

A subgroup A of G is said to be pure in G if an element a ∈ A is divisible by

n in G implies that it is divisible by n in A. Equivalently, A is pure in G if for

all integer n,

A ∩ nG = nA.

Note that nA is always a subset of A∩nG, but the reverse inclusion A∩nG ⊆

nA is not necessarily true. If it is, then A is a pure subgroup of G.

The notion of pure subgroup was introduced by Prüfer who called it “Ser-

vanzuntergruppe”. This was translated into English as “isolated subgroups” or
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“serving subgroups”. We shall however follow Braconnier’s translation, that is a

pure subgroup, which is now a common term.

Note that every direct summand of an abelian group G is pure (see [23, Exer-

cise 9.50 on p. 194]). However, a pure subgroup may not be a direct summand.

So a pure subgroup can be considered as a generalization of a subgroup which is

a direct summand.

A subgroup A is p-pure in G if

pkG ∩ A = pkA,

for all positive integers k. Note that if A is p-pure in G for every prime p, then

A is pure in G (see [7, p. 114]).

Basic Subgroup

A subgroup A is a p-basic subgroup of a p-group G, if

(1) A is a direct sum of cyclic p-groups,

(2) A is p-pure in G, and

(3) G/A is p-divisible.

A subgroup A is a basic subgroup of a torsion abelian group G, if

(1) A is a direct sum of cyclic p-groups,

(2) A is pure in G, and

(3) G/A is divisible.
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Note that every torsion abelian group has a basic subgroup (see [23, Theorem

9.32 on p.197]). This fact was first proved by Kulikov.

Now for a torsion-free abelian group G, a subgroup A of G is said to be a

basic subgroup if

(1) A is a direct sum of infinite cyclic groups,

(2) A is pure in G, and

(3) G/A is divisible.

Some examples of basic subgroups of a torsion-free abelian group can be

found in [5]. In fact, it was shown that all basic subgroups of the same group

have the same rank. Furthermore, Dugas and Irwin [5] showed that there exists a

torsion-free abelian group that has no basic subgroup. This property distinguishes

torsion-free abelian groups from torsion abelian groups, as a torsion abelian group

always has a basic subgroup.

1.3 Recent Development

When is a torsion-free abelian group free? In other words, when is a torsion-

free abelian group a direct sum of infinite cyclic subgroups? We know that a

torsion-free abelian group contains free abelian subgroups. However, a torsion-

free abelian group does not necessarily have a largest free abelian subgroup. For

example, the additive group Q has no largest free abelian subgroup. Any free
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abelian subgroup of Q has the form {nx : n ∈ Z} for some x, and by replacing x

with x/2 gives a strictly larger free abelian subgroup.

Specker [25] produced two criteria under which a torsion-free abelian group

is free (see Theorem 1.3.1 and Theorem 1.3.2).

Theorem 1.3.1. A countable torsion-free abelian group is free if it can be em-

bedded in a product of infinite cyclic groups.

This means that if there is a monomorphism from a countable torsion-free

abelian group into a product of infinite cyclic groups, then the torsion-free abelian

group is free. Recall that the product of countably infinitely many copies of Z is

called the Baer-Specker group, B. Let P be the subgroup of bounded sequences

of B. If B =
∏

i∈I Z, where I is an index set, then an element (ni)i∈I in B belongs

to P if and only if there is a positive integer K such that |ni| ≤ K for all i ∈ I.

Theorem 1.3.2. An abelian group of cardinality not exceeding ℵ1 is free if it can

be embedded in P .

The subgroup P is free by Nöbeling[20].

Reid [21] proved the following theorem.

Theorem 1.3.3. A torsion-free abelian group G can be written as the sum of

two free abelian subgroups if and only if G is free or G has infinite rank.

Note that if G is free, then it can be written as the sum of two free abelian

subgroups. However, if G is torsion-free of finite rank and not free, then it cannot

be written as a sum of two free abelian subgroups. This gives us more information
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on the structure of a torsion-free abelian group of infinite rank. In fact, a torsion-

free abelian group of infinite rank can be realised as “almost free” by saying that

it is the sum of two free abelian subgroups. Note that the term infinite rank can

be countably infinite or uncountably infinite but the term infinite rank cannot be

dropped.

Another criterion for freeness was given by Nöbeling [20].

Theorem 1.3.4. If an abelian group can be embedded in the subgroup of bounded

sequence P of the Baer-Specker group B, then G is free.

Note that Theorem 1.3.4 is a generalization of one direction of Theorem 1.3.2.

An abelian factor set is a function f : C×C → A such that for all x, y, z ∈ C

(i) f(y, z)− f(x+ y, z) + f(x, y + z)− f(x, y) = 0;

(ii) f(0, y) = 0 = f(x, 0);

(iii) f(x, y) = f(y, x)

A function g : C × C → A is said to be a coboundary if there is a function

α : C → A with α(0) = 0 for which g(x, y) = α(y)− α(x+ y) + α(x). Let

Ext(C,A) =
Z(C,A)

B(C,A)
, (1.1)

where Z(C,A) is the additive group of all abelian factor sets and B(C,A) is the

set of all coboundaries with B(C,A) ⊆ Z(C,A).

The following theorem can be found in [23, Theorem 7.15 on p. 147]
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Theorem 1.3.5. The set of equivalence classes of abelian extensions of A by C,

is a group isomorphic to Ext(C,A), where the zero element is the class of direct

products.

Griffith [9, Theorem 3.1] gave a criterion for freeness by using Ext.

Theorem 1.3.6. Let G be a torsion-free abelian group. Then Ext(G, T ) is torsion

for all torsion groups T if and only if G is free.

For divisibility and freeness, we have the following criteria (see [23, Corollary

10.12 on p. 219]).

Theorem 1.3.7. A group A is divisible if and only if Ext(C,A) = 0 for every

group C. Moreover, a group F is free abelian if and only if Ext(F,A) = 0 for

every group A.

Let K be an index set. A set S is an fσ-union of its subsets Sλ , λ ∈ K,

if each finite subset of S is contained in some Sλ. The following theorem was

proved by Pontryagin as stated by Hill [11].

Theorem 1.3.8. If a countable, torsion-free abelian group G is the fσ-union of

pure subgroups that are free, then G must be free.

Hill [11, Theorem 1] then generalized Pontryagin’s theorem.

Theorem 1.3.9. If a torsion-free abelian group G is the fσ-union of a countable

number of pure subgroups that are free abelian, then G must be free.
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Note that in the above generalization, the countable torsion-free abelian group

is replaced with just torsion-free abelian group. Another two useful theorems

proved by Hill in the same paper are

Theorem 1.3.10. [11, Theorem 2] If a torsion-free abelian group G is the union

of a countable chain of pure free subgroups, then G is free.

Theorem 1.3.11. [11, Theorem 3] Let m be a cardinal number that is the limit

of an ordinary, countable sequence of smaller cardinals. Suppose that the torsion-

free abelian group G has rank m. If each subgroup of G having rank less than m

is free, then G must be free.

An abelian group G is said to be m-free if each subgroup of G having car-

dinality less than m is free. Similarly, we say that G is an m-group, if G has

cardinality m and each subgroup of G having cardinality less than m is a direct

sum of cyclic groups.

Theorem 1.3.12. [15, Theorem 3] Let µ be a limit ordinal of cardinality not

exceeding ℵ1. Let

G0 ⊆ G1 ⊆ · · · ⊆ Gα ⊆ · · · , α < µ,

be an ascending chain of free subgroups of G, indexed by the ordinal µ. For limit

ordinals β, if the following conditions:

(i) Gβ =
⋃
α<β Gα;

(ii) G =
⋃
α<µGα;

(iii) |Gα| 6 ℵ1;
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are satisfied, then G is free provided that Gα+1/Gα is ℵ1-free for each α.

An ascending chain

G0 ⊆ G1 ⊆ · · · ⊆ Gα ⊆ · · · , α < µ,

of abelian groups, indexed by an ordinal µ, is said to be smooth if Gβ =
⋃
α<β Gα,

whenever β is a limit ordinal less than µ.

Theorem 1.3.13. [13, Theorem 2.1] Let

G0 ⊆ G1 ⊆ · · · ⊆ Gα ⊆ · · · , α < µ,

be a smooth chain of free subgroups, where µ has cardinality not exceeding ℵ1. If

Gα+1/Gα is ℵ1-free of cardinality at most ℵ1 for each α < µ , then G =
⋃
α<µGα

is necessarily free.

Theorem 1.3.13 is stronger than Theorem 1.3.12 in the sense that the condi-

tion (iii) of Theorem 1.3.12 is not needed, but it is replaced with the condition

|Gα+1/Gα| 6 ℵ1.

A group G is said to be admissible if

(i) G is not free;

(ii) G is the union of a smooth chain;

G0 ⊆ G1 ⊆ · · · ⊆ Gα ⊆ · · · , α < ω2,

of free subgroups Gα such that, for each α < ω2,

(a) |Gα| 6 ℵ1 and,
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(b) Gα+1/Gα is ℵ1-free.

This definition was given by Hill [13, Definition 2.2] and he showed that admissible

groups exist and they are ℵ2-free. The proof of the existence of admissible groups

can also be found in [15].

Theorem 1.3.14. [13, Theorem 2.2] Let µ be a limit ordinal of cardinality not

exceeding ℵ1. If G is the union of a smooth chain:

G0 ⊆ G1 ⊆ · · · ⊆ Gα ⊆ · · · , α < µ,

of free groups, indexed by µ, such that Gα+1/Gα is admissible for each α < µ,

then G is free.

For each non-negative integer n, a class Fn of torsion-free abelian groups is

defined as follows: The class F0 consists of all countable torsion-free abelian

groups. Inductively, we define Fn to be the class of torsion-free abelian groups G

of cardinality not exceeding ℵn that can be represented as the union of a smooth

chain

G0 ⊆ G1 ⊆ · · · ⊆ Gα ⊆ · · · , α < µ,

of free abelian subgroups Gα where µ ≤ ωn such that Gα+1/Gα ∈ Fn−1. This

definition was given by Hill in [14] and he proved the following results.

Theorem 1.3.15. [14, Theorem 1] Let H be a subgroup of G. If G ∈ Fn, then

H ∈ Fn.

Theorem 1.3.16. [14, Main Theorem] For every positive integer n, if G ∈ Fn,

then G is ℵn-free.
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Theorem 1.3.17. [14, Lemma] Let G ∈ Fn for some positive integer n. Then G

can be represented as the union of a smooth chain

G0 ⊆ G1 ⊆ · · · ⊆ Gα ⊆ · · · , α < ωn,

of free abelian groups Gα such that |Gα| 6 ℵn−1 and Gβ/Gα ∈ Fn−1 if α < β <

ωn.

Here, we see that if G ∈ Fn, then G can be represented as the union of

a smooth chain. It is worth to mention that in Theorem 1.3.12 and Theorem

1.3.14, we just assume that G can be represented as the union of a smooth chain

without actually showing that G indeed can be represented as the union of a

smooth chain. Hill [14] called groups belonging to class Fn as in-free abelian

groups and he proved the following properties for every positive integer n:

(1) A subgroup of a in-free abelian group is in-free.

(2) An extension of a in-free abelian group by a in-free abelian group is in-

free.

(3) Any in-free abelian group is ℵn-free.

The proofs of these properties are complicated. In the same paper, Hill also

proved the following results.

Theorem 1.3.18. [14, Theorem 2] If G is the union of a smooth chain

G0 ⊆ G1 ⊆ · · · ⊆ Gα ⊆ · · · ,

of length not exceeding ℵn(n < ω) of free abelian groups Gα, then G is free

provided that Gα+1/Gα is in-free for each α .
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Theorem 1.3.19. [14, Theorem 3] For every positive integer n, there exist in-

free abelian groups that are not free.

Corollary 1.3.20. [14, Corollary 1] For every positive integer n, there exists an

abelian group of cardinality ℵn that is not free but ℵn-free.

The following problem was posed by Hill [12].

Problem 1.3.21. For which cardinals m is an m-group a direct sum of cyclic

groups?

Here, Problem 1.3.21 is stated for p-groups and not for torsion-free abelian

groups. Note that an equivalent problem for the torsion-free case is the following.

Problem 1.3.22. For which cardinals m is an m-free abelian group a free abelian

group?

It seems that the answer to Problem 1.3.22 is somehow negative by Corollary

1.3.20. However, Hill [12, Theorem 1] showed that if a p-group G is an ℵω-group,

then G is necessarily a direct sum of cyclic groups.

A function υ from an abelian group G into the set of real numbers R is said

to be a norm if

(i) υ maps G to the non-negative real numbers R;

(ii) υ(g + h) ≤ υ(g) + υ(h),∀g, h ∈ G;

(iii) υ(mg) = |m|υ(g), ∀m ∈ Z.
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The norm υ is said to be discrete if there is some ρ > 0 such that υ(g) > ρ

whenever g 6= 0. If in addition υ maps to some non-negative integers, then υ is

said to be an integer-valued norm.

Classification of abelian groups by using norm was started by Lawrence [18].

He proved the following two theorems.

Theorem 1.3.23. [18, Lemma 1] If G is an abelian group with a non-trivial

norm, then G is torsion-free.

Theorem 1.3.24. [18, Theorem 4] Let G be a countable abelian group with a

discrete norm. Then G is a free abelian group.

Steprāns [26, Theorem] proved the following theorem, which gives a more

complete answer about when an abelian group is free abelian.

Theorem 1.3.25. An abelian group G is free if and only if it is discretely normed.

The above result is not practical as the theorem does not tell us how to

construct the required norm on an abelian group. It is interesting to note that

Steprāns used tools from set theory to prove his result, an indication that set

theory has begun to play an important role for this kind of problem.

Note that the structure of a finitely generated torsion-free abelian group is

well-understood, as the following theorem shows.

Theorem 1.3.26. [23, Theorem 9.25 on p. 192] Every finitely generated torsion-

free abelian group G is free abelian.

Recall that Reid [21] proved that if G is a torsion-free abelian group, then G

is the sum of two free subgroups if and only if G is free or G has infinite rank
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(see Theorem 1.3.3). Blass and Irwin [2, Theorem 1.1] later on proved a similar

result.

Theorem 1.3.27. For any torsion-free abelian group G of infinite rank κ, the

following two statements are equivalent.

(1) G is the sum of two free subgroups, at least one of which is pure in G.

(2) G has a pure free subgroup of rank κ.

Moreover, any subgroup as in (2) can serve as one of the subgroups as in (1).

With a stronger condition on the rank, they obtained the following theorem.

Theorem 1.3.28. [2, Theorem 1.2] For any torsion-free abelian group G of un-

countable rank κ, the following two statements are equivalent.

(1) G is the sum of two pure free subgroups.

(2) G has a pure free subgroup of rank κ.

Moreover, any subgroup as in (2) can serve as one of the subgroups in (1).

Let B be a subgroup of an abelian group G. A subgroup H of G is said

to be B-high if it is maximal among subgroups of G disjoint from B. Disjoint

here means that the intersection is {0} and not empty, which is impossible for

subgroups.

Benabdallah and Irwin [1, Theorem 1] proved the following theorem, which

gives a sufficient and necessary condition for when a p-group is a direct sum of

cyclic groups.
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Theorem 1.3.29. Let B be a basic subgroup of a p-group G without elements of

infinite height. Then all B-high subgroups of G are direct sum of cyclic groups if

and only if G is a direct sum of cyclic groups.

An abelian p-group G is said to be a Σ-group if every subgroup of G disjoint

from G′ is a direct sum of cyclic groups, where G′ is the subgroup of elements of

infinite height in G.

Theorem 1.3.30. [1, Theorem 2] Let G be an abelian p-group. Then G contains

a basic subgroup B such that all B-high subgroups of G are direct sums of cyclic

groups if and only if G is a Σ-group with a finite number of elements of infinite

height.

Later Blass and Irwin [3, Theorem 1.1] proved an analogue of Theorem 1.3.29

for torsion-free abelian groups.

Theorem 1.3.31. Let G be a torsion-free abelian group such that

(1) G has a basic subgroup of infinite rank, and

(2) for every basic subgroup B of G, all B-high subgroups of G are free.

Then G is free.

Note that since subgroups of free abelian groups are free, and since Zorn’s

lemma allows us to enlarge every subgroup disjoint from B to a B-high subgroup,

we can state condition (2) of Theorem 1.3.31 as every subgroup of G disjoint from

a basic subgroup B is free.

The following are some variations of Theorem 1.3.31.
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Theorem 1.3.32. [3, Corollary 3.1] Let G be an ℵ1-free group such that

(1) G has a basic subgroup, and

(2) for every basic subgroup B of G, all B-high subgroups of G are free.

Then G is free.

Theorem 1.3.33. [3, Corollary 3.3] Let G be a torsion-free abelian group of

uncountable rank κ such that

(1) G has a basic subgroup of the same rank κ, and

(2) for each basic subgroup B, all the B-high subgroups of G are isomorphic.

Then G is free.

Theorem 1.3.34. [3, Corollary 3.4] Let G be a torsion-free group with a pure

free subgroup of infinite rank. Assume that for every maximal pure independent

subset I ⊆ G, all 〈I〉-high subgroups of G are free. Then G is also free.

Condition (2) of Theorem 1.3.31 requires that all B-high subgroups of G are

free for every basic subgroup B, not just one. This is confirmed by a result of

Blass and Shelah [4, Theorem 1.3] recently.

Theorem 1.3.35. There exists an ℵ1 separable torsion-free abelian group G of

size ℵ1, with a basic subgroup B of rank ℵ1 such that all subgroups of G disjoint

from B are free but G itself is not free abelian.

We conclude this chapter by stating the following problem again.

Problem 1.3.36. When is a torsion-free abelian group free abelian?
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This has no satisfactory answer. Although Steprāns [26] gave an ‘almost’ sat-

isfactory answer (see Theorem 1.3.25), it is not practical. It would be interesting

to know whether or not an algorithm to decide on whether a torsion-free abelian

group is free abelian exists. If it does, then we would have a satisfactory answer

to Problem 1.3.36.
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