
Chapter 2

Main Results

2.1 Introduction to Set Theory

Set theory is use to provide a solid foundation to all branches of mathematics. It

all started with a person, Georg Cantor. Initially, Cantor had developed number

theory for his main contribution to mathematical societies. Later on, he moved on

his work to trigonometric series. Little did he knew that his work on trigonometric

series is going to change the whole course of mathematics. Those paper on

trigonometric series contain Cantor’s first ideas on set theory. It was in the year

1874 that Cantor published an article in Crelle’s Journal which mark the birth

of set theory. So Cantor started his investigation on the theory of cardinal and

ordinal numbers, as well as the topology of the real line. When Cantor started his

investigation in 1874, he proved that the set of all real numbers is uncountable,

while the set of all real algebraic numbers is countable. In 1878, he gave the

first formulation of the celebrated continuum hypothesis but he was unable to
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prove it. Today, many mathematicians are happy with the Zermelo-Fraenkel Set

Theory with the Axiom of Choice abbreviated ZFC. The results of Gödel (1940)

and Cohen (1963) imply that the continuum hypothesis can neither be proved

nor be disproved by using the standard ZFC. It is worth mentioning that there

are different types of Axiomatic Set Theory, such as New Foundation Set theory,

Morse-Kelley Set Theory, and Neumann-Bernays-Gödel Set theory.

We now begin with the axioms of ZFC set theory.

Axioms of ZFC

A Axiom of Extensionality. If X and Y have the same elements, then X = Y .

B Axiom of Pairing. For any a and b, there exists a set {a, b} that contains

exactly a and b.

C Axiom Schema of Separation. If P is a property (with parameter p), then

for any X and p, there exists a set Y = {u ∈ X : P (u, p)} that contains all

those u ∈ X that have property P .

D Axiom of Union. For any X, there exists a set Y =
⋃
X, the union of all

the elements of X.

E Axiom of Power Set. For any X, there exists a set Y = P (X), the set of

all subsets of X.

F Axiom of Infinity. There exists an infinite set.

G Axiom Schema of Replacement. If a class F is a function, then for any X,

there exists a set Y = F (X) = {F (x) : x ∈ X}.
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H Axiom of Regularity. Every non-empty set has an ∈-minimal element.

I Axiom of Choice. Every family of non-empty sets has a choice function.

The formulas of set theory are built up from the atomic formulas such as

the membership relation x ∈ y and the equal relation x = y with the use of

connectives

ϕ ∧ ψ, ϕ ∨ ψ, ¬ϕ, ϕ→ ψ, ϕ↔ ψ,

which are called conjunction, disjunction, negation, implication and equivalence,

respectively, and the quantifiers are ∀x and ∃x. Note that we only consider the

connectives ¬ and ∧ as the only primitive connectives because other connectives

can be derived from the two connectives above. For example

(1)ϕ ∨ ψ for ¬(¬ϕ ∧ ¬ψ);

(2)ϕ→ ψ for ¬(ϕ ∧ ¬ψ);

(3)x 6= y for ¬x = y and;

(4)x /∈ y for ¬x ∈ y.

2.1.1 Ordinal Number

We shall begin with the concept of linear ordering, partial ordering and well-

ordering.

Linear and Partial Ordering

Definition 2.1.1. A binary relation < on a set P is a partial ordering of P if

for all p, q, r ∈ P ,

(i) p ≮ p for any p ∈ P ,
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(ii) if p < q and q < r, then p < r.

(P,<) is called a partially ordered set.

Definition 2.1.2. A partial ordering < of P is a linear ordering if moreover

(iii) p < q or p = q or q < p for all p, q ∈ P .

Note that if (P,<) and (Q,<) are partially ordered sets and f : P → Q is a

function, then f is called order preserving, if x < y implies f(x) < f(y). If P and

Q are linearly ordered, then an order preserving function is also called increasing.

A one-to-one and onto function (bijection) of P onto Q is an isomorphism of

P onto Q, if both f and f−1 are order preserving. We say (P,<) is isomorphic

to (Q,<). An isomorphism of P onto itself is called an automorphism of (P,<).

Definition 2.1.3. A linear ordering < of a set P is a well-ordering if every

non-empty subset of P has a least element.

Theorem 2.1.4. [ZFC Well-Ordering Theorem] Every set can be well-ordered.

Note that the Axiom of Choice is needed to prove Theorem 2.1.4. In fact,

it can be shown that the Axiom of Choice, ZFC Well-Ordering Theorem, and

Zorn’s Lemma are equivalent.

Theorem 2.1.5. [Zorn’s Lemma] If (P,<) is a non-empty partially ordered set

such that every chain in P has an upper bound, then P has a maximal element.

Zorn’s Lemma is very important in algebra, as it is used to prove the existence

of certain maximal sets and functions. For instance, the following theorems are

proved by using Zorn’s Lemma.
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Theorem 2.1.6. Let B be a subgroup of an abelian group A. Let D be an

abelian group and f : B → D be a homomorphism. If D is divisible, then f can

be extended to a homomorphism f̃ : A→ D.

Theorem 2.1.7. Every non-zero commutative ring contains a maximal ideal.

Theorem 2.1.8. Every vector space contains a basis.

Theorem 2.1.9. Every field has an algebraic closure.

Definition 2.1.10. A set T is transitive if every element of T is a subset of T ,

that is, x ∈ T ⇒ x ⊂ T .

As a consequence,
⋃
T and

⋂
T are also transitive.

Definition 2.1.11. A set is an ordinal numbers if it is transitive and well-ordered

by ∈.

These are some properties of ordinal number

(i) ∅ is an ordinal.

(ii) If α is an ordinal and β ∈ α, then β is an ordinal.

(iii) If α, β are ordinals, α 6= β and α ⊆ β, then α ∈ β.

(iv) If α, β are ordinals, then either α ⊆ β, or β ⊆ α, or α = β.

Theorem 2.1.12. Every well-ordered set is isomorphic to a unique ordinal num-

ber.
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2.1.2 Cardinal Numbers

The concept of cardinality is central in the study of infinite sets. The idea of

cardinal number is due to Cantor 1878. Our discussion of the cardinal numbers

begins with the following fact. There are two types of cardinal, one is the cardinal

of a set that can be well-ordered, and the other is the cardinal of a set that cannot

be well-ordered. Two sets A and B are said to be equinumerous if there is a

bijection of A onto B.

Definition 2.1.13. The cardinal of x, or synonymously, the cardinality of x,

denoted by |x|, is

(a) the least ordinal equinumerous to x, if x can be well-ordered;

(b) the set of all sets y of least rank which are equinumerous to x, otherwise.

For definition of rank of set, please refer to [24, on p. 214]. The definitions

of cardinality are due to Von Neumann (part (a) of Definition 2.1.13) and Frege-

Russell-Scott (part (b) of Definition 2.1.13). Both definitions are defined without

the presence of Axiom of Choice. If we assume the presence of Axiom of Choice,

then all the cardinals are ordinals, since every set can be well-ordered. Thus, in

the presence of Axiom of Choice, the cardinality of x is always the least ordinal

equinumerous to x.

The following properties are well-known for finite cardinals.

Theorem 2.1.14. A set A is finite if and only if it is equinumerous to some

natural number.
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Theorem 2.1.15. Every subset of a finite set is finite, every union of finitely

many finite sets is finite and the power set of a finite set is finite.

Theorem 2.1.16. Every natural number is a finite cardinal.

Theorem 2.1.17. If n is finite cardinal and a is an infinite cardinal, then n < a.

Theorem 2.1.18. No finite set is equinumerous to a proper subset of itself. In

particular, no two different natural numbers are equinumerous.

Note that these properties were used by Peirce and Dedekind to define finite

sets. On the other hand, only an infinite set can be equinumerous to a proper

subset of itself.

Note that two sets X and Y have the same cardinality, i.e.,

|X| = |Y |,

if and only if there is a bijection of X onto Y .

If there exists a one-to-one function (injection) of X into Y , then we write

|X| ≤ |Y |.

Furthermore, we write |X| < |Y | to mean that |X| ≤ |Y | but |X| 6= |Y |. The

relation on ≤ is clearly transitive.

Theorem 2.1.19. [Cantor Theorem] For every set X, |X| < |P (X)|.

I personally think that the most beautiful theorem in Set Theory is the

Cantor-Bernstein-Schröder theorem. This theorem was first stated by Cantor

and Schröder, but their proof was wrong. In 1898, Bernstein gave a correct proof
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of the theorem in his Ph.D. thesis. Nowadays the proof of the theorem is available

in many Set Theory textbooks. Nevertheless, I am inclined to include the proof

in my thesis.

Theorem 2.1.20. [Cantor-Bernstein-Schröder Theorem] If A and B are sets,

and the functions f : A → B and g : B → A are injections, then there exists a

bijection from A onto B.

Proof. First we define

S =
∞⋃
n=0

(g ◦ f)n(A \ g(B))

and

h(x) =


f(x), if x ∈ S;

g−1(x), if x /∈ S.

If g(B) = A, then g is an onto function (surjection). Since g is an injection,

g is a bijection and the theorem holds. So we may assume that g(B) ( A. Note

that f(A\g(B)) ⊂ B, g(f(A\g(B))) ⊂ A and in general (g ◦f)n(A\g(B)) ⊆ A.

Therefore

S = (g ◦ f)0(A \ g(B)) ∪ (g ◦ f)1(A \ g(B)) ∪ (g ◦ f)2(A \ g(B)) ∪ · · ·

= (A \ g(B)) ∪ (g ◦ f)(A \ g(B)) ∪ (g ◦ f)(g ◦ f)(A \ g(B)) ∪ · · ·

is a subset of A.

Now we need to show that h is well-defined on A.

If x ∈ S, then h(x) = f(x). If x /∈ S, then h(x) = g−1(x). We do not know

whether there is a u ∈ B with g(u) = x. If there is, then h(x) = u and h is
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well-defined. Note that x ∈ A \ S. Since A \ g(B) ⊆ S, A \ S ⊆ g(B). Therefore

if x /∈ S, then x = g(u) for some u ∈ B. Hence h(x) = g−1(x) = g−1(g(u)) = u

and h is well-defined.

Now it is left to show that h is a bijection from A onto B. We first prove that

it is injective, that is, h(x) = h(y) implies x = y. There are three cases to be

considered.

Case(1) x, y ∈ S.

Then h(x) = h(y) implies that f(x) = f(y). Since f is injective, x = y.

Case(2) x, y /∈ S.

Then h(x) = h(y) implies that g−1(x) = g−1(y). So g(g−1(x)) = g(g−1(y))

and x = y.

Case(3) x ∈ S, y /∈ S (or x /∈ S, y ∈ S).

Then h(x) = h(y) implies that f(x) = g−1(y). So y = g(f(x)) = (g ◦ f)(x).

Let x ∈ (g ◦ f)k(A \ g(B)) for some integer k ≥ 0. Then y = g(f(x)) ∈ (g ◦

f)k+1(A \ g(B)) ⊂ S, a contradiction. Hence Case(3) can never occur, and h is

injective.

Now we prove that h is surjective, that is for every y ∈ B, there is an element

x ∈ A with h(x) = y. Let y ∈ B. Note that either g(y) ∈ S or g(y) /∈ S. If

g(y) /∈ S, then set u = g(y). Since u /∈ S, h(u) = g−1(u) = y.

Suppose that g(y) ∈ S. Since

S =
∞⋃
n=0

(g ◦ f)n(A \ g(B))

there is a x ∈ A \ g(B) and some integer k ≥ 0 with g(y) = (g ◦ f)k(x). If k = 0,
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then g(y) ∈ A \ g(B), which is impossible for g(y) ∈ g(B). Thus k > 0. Now

(g ◦ f)k(x) = (g ◦ f)(g ◦ f)k−1(x) = (g ◦ f)(z) = g(f(z)) where z = (g ◦ f)k−1(x).

That is g(y) = (g ◦ f)(z) = g(f(z)). Since g is injective, f(z) = y. Then since

z ∈ S, so h(z) = f(z) = y and hence, h is surjective.

2.2 Main Results

2.2.1 Motivation for Main Result 1

Firstly, recall the following result by Reid [21].

Theorem 1.3.3. A torsion-free abelian group G can be written as the sum of

two free abelian subgroups if and only if G is free or G has infinite rank.

This means that a torsion-free abelian group of infinite rank can be realised as

“almost free”, by saying that, it is the sum of two free abelian subgroups. So, it

is natural to ask whether one of the two free subgroups can be pure. The answer

is affirmative. In fact, with stronger condition on the rank, both of the two free

subgroups can be pure (see [2]).

Theorem 1.3.27. For any torsion-free abelian group G of infinite rank κ, the

following two statements are equivalent.

(1) G is the sum of two free subgroups, at least one of which is pure in G.

(2) G has a pure free subgroup of rank κ.

Moreover, any subgroup as in (2) can serve as one of the subgroups as in (1).
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Theorem 1.3.28. For any torsion-free abelian group G of uncountable rank κ,

the following two statements are equivalent.

(1) G is the sum of two pure free subgroups.

(2) G has a pure free subgroup of rank κ.

Moreover, any subgroup as in (2) can serve as one of the subgroups in (1).

So we ask the following questions.

Question 2.2.1. Can the pure subgroup in (1) in Theorem 1.3.27 be replaced

with basic subgroup?

Question 2.2.2. With stronger condition on the rank, can the two pure sub-

groups in (1) in Theorem 1.3.28 be replaced with two basic subgroups?

The answers are affirmative (see Theorem 2.2.5 and Corollary 2.2.6).

2.2.2 Main Result 1

Lemma 2.2.3. Let G be a torsion-free abelian group of rank κ, and let E,B be

subgroups of G. Suppose G = E + B, E is free abelian of rank κ, and G/B is

divisible. Then the rank of E ∩B is κ.

Proof. Suppose E ∩ B is of rank µ < κ. Being a subgroup of E, E ∩ B is freely

generated by a set X of cardinality µ. Since E is free, fix a basis for it, and

express all elements of X in terms of this basis. Since µ < κ, fewer than κ basis

elements occur in these expressions. Let E1 be the subgroup of E generated by
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these basis elements and E2 the subgroup generated by the rest of the basis for

E. Then E = E1 ⊕ E2, E ∩B ⊆ E1, and E2 is free abelian of rank κ.

Now we show that (E1 + B) ∩ E2 = {0}. Let e1 + b = e2 ∈ (E1 + B) ∩ E2,

where e1 ∈ E1, b ∈ B, and e2 ∈ E2. Then b = e2 − e1 ∈ B ∩ E ⊆ E1. Therefore

e2 ∈ E1 ∩ E2 = {0}, and hence (E1 +B) ∩ E2 = {0}.

So G = (E1 +B)⊕E2. Since G/B is divisible, we deduce that G/(E1 +B) is

divisible. But then E2 is divisible, a contradiction, for E2 is free abelian and not

zero.

Hence the rank of E ∩B is κ.

Corollary 2.2.4. Let G be a torsion-free abelian group of rank κ, and E,B be

subgroups of G. Suppose G = E + B, E is free abelian, and G/B is divisible.

Then the rank of B is κ.

Proof. If the rank of E is not κ, we can expand E to a free abelian group E ′ of

rank κ. By Lemma 2.2.3, E ′ ∩B is of rank κ. So B must be of rank κ.

Theorem 2.2.5. For any torsion-free abelian group G of uncountable rank κ,

the following two statements are equivalent.

(a) G is the sum of a pure free subgroup and a basic subgroup.

(b) G has a pure free subgroup of rank κ.

Moreover, any subgroup as in (b) can serve as the pure free subgroup in (a).

Proof. Since a basic subgroup in a torsion-free abelian group is a pure free sub-

group, by Corollary 2.2.4, it is sufficient to show the implication from (b) to

(a).
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Since G has infinite rank κ and it is torsion-free, it has cardinality κ. So we

can enumerate it as G = {gα : α < κ}.

Let P be the set of all the primes. Consider the following set I = {α : α <

κ} × P . For each i = (α, p) ∈ I, we set gi = gα.

Note that the cardinality of I is κ. So there is a one-to-one correspondence ψ

from the set {α : α < κ} onto I. We may assume that ψ(0) = (0, 2).

Let E be a pure free subgroup of G of rank κ. We shall define fα recursively, so

that the subgroup B generated by the set {fα : α < κ} is a pure free subgroup,

E +B = G and G/B is divisible.

Let Y be a basis of E. We may assume g0 = 0. So we set f0 = e0 for some

e0 ∈ Y . Let q be a prime. Suppose mf0 ∈ qG. Since E is pure and e0 is an

element in Y , we deduce that q divides m. Furthermore f0 = gψ(0) + e0.

Let β < κ. Suppose we have defined fα for all α < β, such that given any

finite number of ordinals (say k), α1 < α2 < · · · < αk < β, and for any prime q,

if m1fα1 + · · · + mkfαk
∈ qG then q divides mi for i = 1, . . . , k. We shall define

fβ as follows:

Let Fβ be the subgroup generated by {fα : α < β}. Let q be a prime. Note

that (Fβ+qG)/qG is a subspace of G/qG (view G/qG as vector space over Z/qZ).

Furthermore, the set of cosets {fα + qG : α < β} can be chosen to be part of a

basis for G/qG. Note that the cardinality of (Fβ + qG)/qG is at most max(ℵ0, β)

(here ℵ0 denotes the cardinality of the set of natural numbers). Furthermore, the

cardinality of
⋃
q∈P ({q} × ((Fβ + qG)/qG)) is at most max(ℵ0, β) < κ (for κ is

uncountable).
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Let ψ(β) = (γ, p) ∈ I. Then gψ(β) = gγ. We shall distinguish two cases.

Case 1. Suppose gγ /∈ (Fβ + pG). We claim that we can find a eβ ∈ Y such

that gγ + peβ /∈
⋃
q∈P (Fβ + qG). Suppose the contrary. Then for each e ∈ Y

there is a prime qe such that gγ + pe ∈ (Fβ + qeG). So we may define a function

φ : Y →
⋃
q∈P ({q} × ((Fβ + qG)/qG)) by φ(e) = (qe, gγ + pe + qeG). Now

we show that φ is one-to-one. Suppose φ(e1) = φ(e2). Then qe1 = qe2 and

gγ +pe1 + qe1G = gγ +pe2 + qe2G. This implies that p(e1− e2) ∈ qe1G∩E = qe1E

(for E is pure in G). Since E is free and e1, e2 ∈ Y , we deduce that either e1 = e2

or qe1 = p. Suppose the latter holds. Then gγ ∈ (Fβ+pG), a contradiction. Hence

the former holds and φ is one-to-one. But then the cardinality of Y is less than or

equal to the cardinality of
⋃
q∈P ({q}× ((Fβ + qG)/qG)), a contradiction (for the

cardinality of Y is κ). Hence there is eβ ∈ Y such that gγ +peβ /∈
⋃
q∈P (Fβ +qG).

Set fβ = gγ + peβ.

Case 2. Suppose gγ ∈ (Fβ + pG). Using a similar argument as in Case 1, we can

find a eβ ∈ Y such that gγ + eβ /∈
⋃
q∈P (Fβ + qG). Set fβ = gγ + eβ.

In either case the following set {fα : α < β + 1} = {fα : α < β} ∪ {fβ} has

the property that given any finite number of ordinals (say k), α1 < α2 < · · · <

αk < β + 1, and for any prime q, if m1fα1 + · · ·+mkfαk
∈ qG then q divides mi

for i = 1, . . . , k.

Note that by construction the set {fα : α < κ} will have the property

mentioned in the previous paragraph. So one can deduce from the property that

the subgroup B generated by {fα : α < κ} is a pure free subgroup. It is left to

show that G/B is divisible, i.e., G = pnG + B for all p ∈ P and n ∈ N (here N
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denotes the set of natural numbers).

Suppose G/B is not divisible. Then there is a g ∈ G \ {0} such that g ∈

pn−1G+B but g /∈ pnG+B, for some p ∈ P , n ∈ N.

Let g = pn−1g′ + b for some g′ ∈ G and b ∈ B. Let g′ = gα for some α < κ.

Then g(α,p) = gα. Let ψ(β1) = (α, p). Note that gα /∈ (Fβ1 + pG) (for otherwise

g ∈ pnG+B). By construction fβ1 = gα+peβ1 for some eβ1 ∈ Y . So gα ∈ pG+B.

But then g ∈ pnG+B, a contradiction. Hence G/B must be divisible.

This completes the proof of Theorem 2.2.5.

Finally, Corollary 2.2.6 follows from Theorem 2.2.5 and Corollary 2.2.4.

Corollary 2.2.6. For any torsion-free abelian group G of uncountable rank κ,

the following two statements are equivalent.

(a) G is the sum of two basic subgroups.

(b) G has a basic subgroup of rank κ.

Moreover, any subgroup as in (b) can serve as a basic subgroup in (a).

2.2.3 Motivation for Main Results 2

Firstly, recall the following result by Benabdallah and Irwin [1].

Theorem 1.3.29. Let B be a basic subgroup of a p-group G without elements of

infinite height. Then all B-high subgroups of G are direct sums of cyclic groups

if and only if G is a direct sum of cyclic groups.
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Recall that “Disjoint” means that the intersection is {0} (or it has trivial

intersection), not ∅, as the latter is impossible for subgroups.

So, it is natural to ask whether there is an analogue of Theorem 1.3.29 for

torsion-free abelian groups. A partial affirmative answer is given by Blass and

Irwin [3].

Theorem 1.3.31. Let G be a torsion-free abelian group such that

(1) G has a basic subgroup of infinite rank, and

(2) for every basic subgroup B of G, all B-high subgroups of G are free.

Then G is free.

The answer is partial, in the sense that we require all B-high subgroups of G

to be free for every basic subgroup B of G in Theorem 1.3.31, but in Theorem

1.3.29, we only require all B-high subgroups of G to be free for one basic subgroup

B of G.

Recently, Blass and Shelah [4] constructed a non-free torsion-free abelian

group G with a basic subgroup B such that all subgroups of G disjoint from

B are free.

Theorem 1.3.35. There exists an ℵ1 separable torsion-free abelian group G of

size ℵ1, with a basic subgroup B of rank ℵ1 such that all subgroups of G disjoint

from B are free but G itself is not free abelian .

The following question is suggested by the proof of Theorem 1.3.31.
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Question 2.2.7. Let G be a torsion-free abelian group and H1 ⊇ H2 ⊇ H3 ⊇ · · · ,

be a descending chain of pure subgroups of G, such that for each i, every Hi-high

subgroup of G is free abelian. When is G free abelian?

We shall give some sufficient conditions in which G is free abelian (see Theo-

rem 2.2.11, Theorem 2.2.12 and Theorem 2.2.13).

2.2.4 Main Results 2

The main results in this section are Theorem 2.2.11, Theorem 2.2.12 and Theorem

2.2.13.

For each subgroup A of a torsion-free abelian group G, we define C(A) =

{g ∈ G : mg ∈ A for some integer m 6= 0}. Clearly, C(A) is the minimal

pure subgroup of G containing A. As always, we shall denote the set of natural

numbers by N = {1, 2, 3, . . . }, N0 = N ∪ {0} and the set of integers by Z.

Recall the following result by Hill [11].

Theorem 1.3.10. If the torsion-free abelian group G is the union of a countable

chain of pure free subgroups, then G is free.

Lemma 2.2.8. Let G be a torsion-free abelian group and H be a subgroup of G.

If A is a subgroup of G and A ∩H = {0}, then C(A) ∩H = {0}.

Proof. Let y ∈ C(A) ∩ H. Then my ∈ A ∩ H = {0} for some non-zero integer

m. Since G is torsion-free, we conclude that y = 0.

Lemma 2.2.9. Let G be a torsion-free abelian group and H a subgroup of G.

Every H-high subgroup of G is pure in G.
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Proof. Let B be an H-high subgroup of G. We shall show that C(B) = B. Since

B is an B-high subgroup, it follows by Lemma 2.2.8 that C(B)∩H = {0}. Thus

C(B) ⊆ B. The equality C(B) = B then follows as B ⊆ C(B).

Lemma 2.2.10. Let G be a torsion-free abelian group and {Hi}i∈N be a set of

subgroups of G. Further suppose

(a) H1 ⊇ H2 ⊇ H3 ⊇ · · · ,

(b) for all i ∈ N, Hi/Hi+1 is torsion-free (i.e. Hi+1 is pure in Hi),

(c) for each i ∈ N, all Hi-high subgroups of G are free, and

(d)
⋂
i∈NHi = {0}.

Then for each countable subset A of G, there exists an ascending chain of pure

free subgroups of G, M1 ⊆ M2 ⊆ M3 ⊆ · · · , and integers n1 < n2 < n3 < · · · ,

such that A ⊆
⋃
i∈NMi, and Mj ∩Hnj

= {0} for all j ≥ 1.

Proof. Let M0 be an H1-high subgroup of G. By (c) and Lemma 2.2.9, M0 is a

pure free abelian subgroup of G.

Since A is countable, we can enumerate A = {a1, a2, a3, . . . }. If a1 ∈ M0, we

set M1 = M0 and n1 = 1. Suppose a1 /∈ M0. Then 〈a1,M0〉 ∩ H1 6= {0} and

m1a1 + b0 = h1 for some b0 ∈M0, h1 ∈ H1 \ {0}, and non-zero integer m1.

Since
⋂
i∈NHi = {0}, there is an n1 with 〈h1〉 ∩ Hn1 = {0}. Furthermore

(M0⊕〈h1〉)∩Hn1 = {0} with 〈h1〉∪Hn1 ⊆ H1. By Zorn’s Lemma, there is an Hn1-

high subgroup of G, say M1 containing (M0⊕〈h1〉). By (c) and Lemma 2.2.9, M1

is a pure free abelian subgroup of G. Note that a1 ∈M1 for m1a1 = h1−b0 ∈M1.
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Now if a2 ∈ M1, set M2 = M1 and n2 = n1 + 1. Suppose a2 /∈ M1. Then

〈a2,M1〉 ∩ Hn1 6= {0}. So m2a2 + b1 = h2 for some b1 ∈ M1, h2 ∈ Hn1 \ {0}

and non-zero integer m2. Again from
⋂
i∈NHi = {0}, we deduce that there is

an n2 > n1 with 〈h2〉 ∩ Hn2 = {0}. Therefore (M1 ⊕ 〈h2〉) ∩ Hn2 = {0} with

〈h2〉 ∪Hn2 ⊆ Hn1 . Again by Zorn’s Lemma, (c) and Lemma 2.2.9, we conclude

that there is a pure free abelian subgroup M2 of G containing (M1 ⊕ 〈h2〉) (M2

is an Hn2-high subgroup). Note that a2 ∈M2.

Note that this process can be continued, that is we have a chain of pure free

abelian subgroups of G, M0 ⊆ M1 ⊆ M2 ⊆ M3 ⊆ · · · , and integers n1 < n2 <

n3 < · · · , such that ai ∈Mi andMi∩Hni
= {0} for all i ≥ 1. So A ⊆

⋃
i∈NMi.

Theorem 2.2.11. Let G be a torsion-free abelian group and {Hi}i∈N be a set of

subgroups of G. Suppose all the hypotheses of Lemma 2.2.10 are satisfied. Then

every countable subgroup of G is free.

Proof. Let A be a countable subgroup of G. Then by Lemma 2.2.10, there exists

an ascending chain of pure free subgroups of G, M1 ⊆M2 ⊆M3 ⊆ · · · , such that

A ⊆
⋃
i∈NMi. Now A =

⋃
i∈N(A∩Mi), and (A∩M1) ⊆ (A∩M2) ⊆ (A∩M3) ⊆ · · · ,

is an ascending chain of pure free subgroups of A. It then follows from Theorem

1.3.10 that A is free abelian.

Note that if Hn is countable for some n, we can show that G is free abelian.

Theorem 2.2.12. Let G be a torsion-free abelian group and {Hi}i∈N be a set of

subgroups of G. Suppose all the hypotheses of Lemma 2.2.10 are satisfied. Further

suppose H1 is countable. Then G is free abelian.
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Proof. By Lemma 2.2.10, there exists an ascending chain of pure free subgroups

of H1, M1 ⊆ M2 ⊆ M3 ⊆ · · · , and integers 2 ≤ n1 < n2 < n3 < · · · , such that

H1 =
⋃
i∈NMi, and Mj ∩Hnj

= {0} for all j ≥ 1.

Let B0 be an H1-high subgroup of G. By Lemma 2.2.9 and the fact that

all H1-high subgroups of G are free, we deduce that B0 is a pure free abelian

subgroup of G. For each j ≥ 1, (B0 ⊕Mj) ∩ Hnj
= {0} (for Mj is a subgroup

of H1). Let Bj = C(B0 ⊕Mj), by Zorn’s Lemma, there is an Hnj
-high subgroup

of G containing Bj. So, Bj is a pure free abelian subgroup of G. Furthermore,

B0 ⊆ B1 ⊆ B2 ⊆ . . . is an ascending chain of pure free subgroups.

Now we shall show that G =
⋃
i∈N0

Bi. Assume, for a contradiction, that there

is an element g ∈ G \ (
⋃
i∈N0

Bi). Then 〈B0, g〉 ∩H1 6= {0} (for B0 is an H1-high

subgroup of G). This implies that a + mg = h1 for some a ∈ B0, h1 ∈ H1 \ {0}

and non-zero integer m. Since H1 =
⋃
i∈NMi, h1 ∈ Mr for some integer r. So

mg = h1 − a ∈ 〈B0,Mr〉 ⊆ Br, and g ∈ Br, a contradiction. Hence G =
⋃
i∈N0

Bi

and by Theorem 1.3.10, G is free abelian.

Now if we strengthen the condition (d) in Lemma 2.2.10, we can prove that

G is free abelian, even without the countability condition on H1.

Theorem 2.2.13. Let G be a torsion-free abelian group and {Hi}i∈N be a set of

subgroups of G. Let W1 be a maximal independent subset of H1. Suppose

(a) H1 ⊇ H2 ⊇ H3 ⊇ · · · ,

(b) for all i ∈ N, Hi/Hi+1 is torsion-free (i.e. Hi+1 is pure in Hi),

(c) for each i, all Hi-high subgroups of G are free, and
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(d) for each w ∈ W1, there is an integer n ≥ 2 such that for any finite subset

S ⊆ W1 \ {w},

mw +
∑
s∈S

mss ∈ Hn, (m,ms ∈ Z)

implies that m = 0.

Then G is free abelian.

Proof. For each w ∈ W1, we define u(w) to be the least positive integer such that

(d) holds, that is if mw +
∑

s∈Smss ∈ Hu(w) for a subset S ⊆ W1 \ {w}, then

m = 0. For each integer n ≥ 2, set Xn = {w ∈ W1 : u(w) = n}. Note that

⋃
n≥2Xn is a partition of W1.

For each integer i ≥ 2, set Bi = 〈
⋃

2≤n≤iXn〉. Then, by (a) and (d) we deduce

that Bi ∩Hi = {0}.

Let M1 be an H1-high subgroup of G. By (c) and Lemma 2.2.9, M1 is a pure

free abelian subgroup of G. Note that for each integer i ≥ 2, 〈M1, Bi〉∩Hi = {0}.

Set Mi = C(〈M1, Bi〉). By Lemma 2.2.8, Mi∩Hi = {0}. By Zorn’s Lemma, there

is an Hi-high subgroup of G containing Mi. By (c) and the fact that a subgroup

of a free abelian group is free, we conclude that Mi is a pure free abelian subgroup

of G. Furthermore M1 ⊆M2 ⊆M3 ⊆ · · · .

We shall show that G =
⋃
i∈NMi. Assume, for a contradiction, that there is

an element g ∈ G \ (
⋃
i∈NMi). Then 〈M1, g〉 ∩H1 6= {0} (for M1 is an H1-high

subgroup of G). This implies that a + mg = h1 for some a ∈ M1, h1 ∈ H1 and

non-zero integer m. Since W1 is a maximal independent subset of H1, there is

a non-zero integer m′ such that m′h1 ∈ 〈W1〉. So there is an integer r ≥ 2 such
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that m′h1 ∈ Br. But then m′mg = m′h1 −m′a ∈ 〈M1, Br〉, and thus g ∈ Mr, a

contradiction. Hence G =
⋃
i∈NMi and by Theorem 1.3.10, G is free abelian.

2.3 Conclusion

At this moment of time, Problem 1.3.36, that is

‘When is a torsion-free abelian group free abelian?’

still has no satisfactory answer. One of my future plans is to give a satisfactory

answer to Problem 1.3.36. To do this, I guess one needs to find an ‘efficient’

algorithm to decide on whether a torsion-free abelian group is free abelian.

On the other hand, an easier problem is to answer Question 2.2.7. Up to now,

I only manage to obtain sufficient conditions for G to be free abelian. The answer

is not satisfactory yet. So, I guess I will be busy working on these problems in

some years to come.

41




