
CHAPTER 3 

INCOHERENT SCATTERING CROSS SECTION 

 

3.1 Introduction 

Cross section in industrial radiography is defined as the measure of probability 

that a collision will occur between a beam of radiation and a particular particle. The 

cross section is usually measured in barns. However, the cross section is related to the 

attenuation coefficient such as the mass attenuation coefficient. 

The applications of X-ray cross section data are mostly used and appreciated in 

medical diagnosis and therapy [3]. In the medical field especially in cancer therapy [3], 

the cross section is used to predict the dose at a given location within the patient. An 

example is the determination of how much of the primary γ-ray beam will arrive at the 

desired coordinates inside the patient or how much energy or dose will be deposited at 

the tumour site.  

Hubbell [3] has listed the industrial applications of NDT. In the industrial sector, 

the knowledge on the mass attenuation coefficient helps in the design and operation of 

radiometric gauges to control rollers. The knowledge on mass energy absorption 

coefficient is also important in the radiation sterilization of medical supplies and also in 

irradiation curing of polymer plastics. 

The total cross section when γ-rays interact with material is the sum over 

contributions from the principal photon interactions with the absorber [26]. However, 

the energy of the incident gamma ray will determine which process will occur as shown 

by Table 2.3. 
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In this research, the focus is only on Compton scattering. In describing the 

incoherent scattering, the cross section must be calculated. To include the effect of the 

attenuation processes, the cross section is calculated when gamma ray with energy from 

0.1 keV until 100 MeV interacts with iron . Fe56

There are several numerical methods that are used in calculating the cross 

section. Hubbell [23] employed the Simpson rule to perform the integration. With this 

procedure, 1000 points were used in the integration and results were tabulated that are 

accurate to four decimal places. Another method is by using the trapezoidal method. 

The trapezoid method is possible since the equation is reasonably well behaved in the 

region ( )π−0 . Monte Carlo (MC) method is also used to evaluate the integral.  

 

3.2 Incoherent Scattering Cross Section 

In this research, we employ the Klein-Nishina formula for free electron 

Compton scattering [23] in which the Compton scattering cross section cσ for a certain 

material is a function of both the energy of the incident photon and the scattering angle. 

The Klein-Nishina formula is a differential cross section of photons scattered from an 

unbound electron in lowest order of quantum electrodynamics. It is based on the Dirac 

electron theory without radiative correction. This formula was derived by Oscar Klein 

and Yoshio Nishina in 1928 based on the consideration of relativistic and quantum 

mechanical effects for the scattering radiation. At low frequency, the differential cross 

section reduces to the Thomson scattering but the differential cross section is normally 

applied to higher frequency sources such as X-ray and gamma radiation. Equation (3.1) 

is the bare Klein-Nishina formula which describes the differential cross section per unit 

solid angle per atom for the incoherent scattered photons, 
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where  is the classical electron radius, 0r ε  the gamma energy in MeV divided by 0.511 

MeV, θ  the scattering angle and Ωd  the differential solid angle Ω  in steradians which 

is θθπ dsin2 . The expression (3.1) is only applicable for Compton scattering with free 

electrons. The cross section could be obtained analytically by integrating Equation (3.1) 

over all angles [17]. At 0=ε , the Klein-Nishina cross section cσ will reduce to the 

classical Thomson scattering. The probability of the incoherent scattering event into a 

solid angle at the scattering angle θ is, 
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where ( )λ  Å is the photon wavelength that is ( )eV5212398 ε. [3].  

When gamma radiation interacts with a material, the electrons in the material are 

no longer considered as free electrons. They are bound electrons and the interaction is 

usually called as incoherent scattering. Hubbell [23] calculated the total incoherent 

scattering cross section for atoms ranging from Z=1 to 100 by multiplying the Klein-

Nishina expression with tabulated values of the scattering functions, . The scattering 

function is introduced as a correction to the free electron cross section in which it takes 

into consideration the effects of the bound electrons on the cross section. It is the 

probability that the atomic K-shell electrons receive momentum from the incident 

photons [27]. Thus, the total incoherent scattering cross section for bound-electron 

Compton scattering per atom is given as  
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where the scattering functions ( )Z,xS  is a function of  and the atomic number x Z  for 

the absorbing material.  

There are different theoretical schemes available to calculate the incoherent 

scattering cross sections, such as incoherent scattering factor approximation, impulse 

approximation and S-matrix formalism [28]. Bergstrom [29] gave an overview of the 

theories used in Compton scattering calculations which describes how scattering 

deviates from scattering from free electrons, that is using solely Klein-Nishina 

expression to the effects of binding on Compton scattering. According to Bergstrom, 

Compton scattering from bound atomic electrons is also an elastic process which 

involve some changes in the energy of the internal state of the scatterer. The change of 

energy maybe due to the transitions process in atoms that occur either from one bound 

configuration to another i.e. an excitation or to a configuration where the atomic 

electrons have been promoted to the continuum when the atom experiencing ionisation 

process. 

Roy et al. [28] used ‘best’ predicted cross sections for both elastic and inelastic 

scatterings. Their method estimated the magnitude of the various corrections such as 

dynamics effects, non-local exchange, electron correlation and relativistic effects. The 

incoherent scattering factor is determined by using the relationship, where  

is known as the effective form factor calculated from the ‘best’ predicted cross sections 

for Rayleigh scattering. They have calculated the incoherent scattering cross sections 

for neon in the range 5-59 keV, carbon, aluminium, iron and copper in the energy range 

of 20-40 keV and momentum transfer range of 0.1 to about 5 Å

SFeff + effF

-1, by multiplying  the 

Klein-Nishina cross section with the S values determined from the relationship. Their 
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results were found to agree well with the synchrotron experiments except for carbon 

where their estimations of correlation effects may be insufficient.  

Verma et al. [6] measured the integral Compton scattering cross section at 279 

keV for elements 3526 ≤≤ Z . Their results were found to agree quite well with the 

theoretical values which indicate that the K-shell electrons in the elements behave as 

free electrons and the integral incoherent scattering function becomes unity. However, 

they also mentioned that the results suffer from the contradictions from the relativistic 

calculations for incoherent scattering of photons by K-shell electrons which predicts 

non zero value of cross section at zero scattering angle. Using the same energy, Murty 

et al. [27] also measured the incoherently scattered photons by K-shell electrons in 

tungsten and erbium. They found that the differential cross section ratio for angles of 

300 and 1250 does not reach unity. However, there exists disagreement between 

theoretical and experimental results because the non-relativistic approximation was 

employed in the calculation and for that reason there is a need for a rigorous theory 

which is applicable to all scattering angles. 

Kurucu [30] has made measurements for incoherent scattering cross section for 

59.5 keV photon energy for elements 5123 ≤≤ Z . In this study, the scattering angles 

ranged from 300 to 1400 with the detection using Ge(Li) detector. Investigation of 

electron binding effect to the incoherent scattering is essential since the influence of the 

electron binding effect is expected to be more significant in the lower range of energy. 

In his work, there is an agreement between the experimental results and theoretical 

values compiled by Hubbell [23] within the estimates of the experimental errors. 

Kurucu’s results confirm that at low momentum transfer the binding effects are 

predominant. Another experiment was conducted using energy of 59.5 keV [31]. The 
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scatterers were iron, zinc and niobium. From the experiments they found out that there 

was a qualitative agreement between the experimental results and the theoretical values 

within the experimental errors. However, there was an increase in the deviation for 

heavy elements which demonstrates the electron binding effects. Simsek et al. [32] has 

also measured the inelastic scattering of 59.5 keV photons for elements titanium, iron 

and nickel. It was found out that the experimentally measured cross sections and the 

theoretical values disagree when the scattering angle decreases. 

Umesh et al. [33] has measured the incoherent scattering cross section of various 

compounds that takes into consideration the attenuation cross section of its various 

atomic constituents and number of atoms of the element present as indicated by the 

chemical formula of the compound. The models used to calculate the incoherent 

scattering functions were Thomas-Fermi and Hartree-Fock. It was shown that the 

deviations between the bound electron cross sections and the free electron cross sections 

increase as Z increases at energy 279.2 and 514 keV. This shows that the electron 

binding effects increase when Z increases for a given energy. They also reported that at 

higher energies, binding effects show up only above 40=Z . 

The Compton scattering at 662 keV, which is from Cs-127 source was also 

investigated for various elements specifically copper, zinc, cadmium, tin, tungsten, 

platinum, lead and uranium [34] where there were deviations from the free electron 

behaviour for heavy elements and at scattering angles smaller than 150. 

When we calculate the cross section for iron material, the scattering functions 

are included due to bound electrons in the element of . The values of the scattering 

function for pure iron are adopted from Hubbell [23]. Hubbell calculated the scattering 

functions using theoretical models and approximations for instance, using Pauling and 

F56
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Sherman method, Thomas-Fermi Statistical method and Hartree-Fock Model [23]. The 

integration is done from 0 to π. Hence, the differential incoherent scattering cross 

section per atom for bound electrons is given as, 
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where Z is the atomic number for the absorbing material. 

  

3.3 Incoherent Scattering Cross Section for Iron and Carbon Steel 

Our numerical method is different from the previous calculation by Hubbell [23] 

whereby we have used the Gauss-Legendre method in the integration. The integration is 

done with 10 000 points by using Equation (3.4). Scattering function is interpolated 

from tables in Hubbell [23]. Weighting factor is also taken into consideration in this 

method. Mork [23] has combined the radiative and double-Compton correction to give 

meaningful corrections to the Klein-Nishina Compton scattering cross section. These 

corrections are applied in our calculations. Hence, the cross section with the correction 

is given as 

 ( ) ( )M
KNincohincoh corr σ∆σσ += 1                                       (3.5)                      

where  is the Mork correction factor. M
KNσ∆

In this work, three sets of calculations are illustrated. The calculations involve 1) 

the interaction of γ radiation with free electrons i.e. the incoherent Compton scattering, 

2) the interaction of γ radiation with the valence electrons and 3) the interaction of γ 

radiation with bound electrons. The photoelectric absorption cross section for steel can 

be obtained from the XCOM online code [14]. Using this code, the cross sections for 
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photoelectric effect in the energy spectrum of Iridium-192 are obtained from the 

XCOM. 

Figure 3.1 shows the incoherent scattering cross section that we obtain from the 

calculations for . It has a Gauss-type distribution graph. The cross section is 

expressed in terms of barns/atom. The interaction starts to increase at energy 1.5 keV 

and reach its maximum cross section at 50 keV which is barns. The difference 

between Hubbell [23] and the calculated cross sections at this particular energy is about 

0.5%. From the graph, the cross section starts to decrease at energy 60 keV.

Fe56

6312.

Figure 3.2 shows the difference between Hubbell and the calculated cross 

section shown in Figure 3.1 in the form of percentage (%). The range of difference is 

from 0% which is at energy 400 keV to 1.0% at energy 20 keV. The error starts 

increasing at energy 0.6 keV with percentage error 0.2%. The error keeps on increasing 

until it reached the energy 20 keV with percentage error 1%. At energy 300 keV, the 

error starts to drop until it reaches zero at energy 400 keV. The error starts to rise again 

at energy 500 keV. At energy 1.0×105 keV, the percentage error is 0.9%. The numerical 

errors originate from two sources; the integration and the interpolation routines. From 

the results, the differences between Hubbell and calculated cross section are not 

significant. This implies that the calculated values are in good agreement with the 

published results. 
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Figure 3.1 Incoherent scattering cross section as a function of photon energy for iron.  
   The Gaussian fit  is  determined  as  (( 70511128826988290 ...incoh +=σ  

 )) ( )( )( )270511186019422 ..xexp −−π . 
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Figure 3.2 Error (%) of cross section for iron between Hubbell [23] and Figure 
        3.1.oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo 
 

Figure 3.3 shows the cross section of every element in the carbon steel sample 

(see Chapter 4) that we used in our experiments. The elements namely iron, carbon,  

chromium, copper, manganese, molybdenum, nickel, phosphorus, sulphur, silicon, 

aluminium, calcium, tin and nitrogen. Tin shows the largest cross section while carbon 

has the smallest cross section compare to other elements in the material.  
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Figure 3.3 Cross section of all elements in the carbon steel sample (see Chapter 4). 

 

Tin has the mass number 119 and the atomic number is 50 while carbon has 

mass number 12 and the atomic number is 6. Since the size of tin (atomic radius is 140 

pm) is larger than the size of carbon (atomic radius is 70 pm) [17], the probability of the 

γ-tin interaction is high. Also, the number of electrons which acts as the scattering 

centres is higher in tin than in carbon.  
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Figure 3.4 Cross section for  with free and valence electrons. Fe56

 

Figure 3.4 shows the cross section for  for the interaction of photons with 

free electrons and valence electrons. The value of the cross section for free electrons at 

energy 100 eV is 0.66 barns. However, at the same energy, cross section for the valence 

electrons increases to twice the value of cross section of free electrons which is 1.33 

barns. There are total of 26 electrons in the atom of  and of these, two are the 

valence electrons on the outer shell. The remaining 24 electrons are tightly bound in the 

inner shells. When the material is irradiated with

Fe56

Fe56

γ  radiation, the photons will interact 

with the valence electrons. Hence, for this case, the bare Klein-Nishina formula must be 

counted twice due to the valence electrons in the iron. The cross section for free 
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electrons and valence electrons remains constant at 0.66 barns and 1.32 barns 

respectively in the energy range 100 eV until 2 keV.  

 

Figure 3.5  Cross section for  with three different conditions; 1) free electrons, 2)  Fe56

two (2) valence electrons and 3) bound electrons.ooooooooooooooooooooooooooooo 
 

Figure 3.5 shows the comparison of the cross section of  from three 

different conditions; photons interacting with free electrons, interaction with only two 

valence electrons and bound electrons. It shows that the cross section of the photons 

interacting with free electrons using the bare Klein-Nishina formulation does not exhibit 

the behaviour of the total cross section as shown in Figure 3.1 especially at lower 

energies. Below 5 keV, the cross section of the 

Fe56

γ -free electrons and γ -valence 

electrons gradually become constant. At 2 keV both cross sections for free electrons and 
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valence electrons interactions become constant which are 0.66 barns and 1.32 barns 

respectively. However when considering the bound electron effects, the cross section of 

the γ -bound electrons increases by one order of magnitude with respect to the bare 

Klein-Nishina case. It has a similar Gauss-type profile as in Figure 3.1. We can easily 

observe that the cross section is heavily underestimated for the γ -free electrons and γ -

valence electrons interactions.  

We have clearly show that the use of the bare Klein-Nishina formula is not 

accurate enough for calculating Compton scattering in complex structures. The 

scattering function must be integrated in the bare Klein-Nishina formula to include the 

influence of bound electrons.  

 

3.4  Theoretical Attenuation Coefficient of Carbon Steel 

In obtaining the total linear attenuation coefficient, Equation (3.6) below is used, 

 ( ) ( ) iji
i
linear NEE σµ =  cm-1                                        (3.6) 

where the total cross section, iσ  is in barns and the number density of the scattering 

centre  in  at a particular photon energy . The total cross section consists of 

the contributions from photoelectric absorption and incoherent scattering processes. The 

coherent scattering process is not taken into consideration because the process does not 

involve any changes in the energy of the photon.  The number density of any element in 

a sample is calculated using the following equation: 

iN -3cm jE

 
density

massatomic
number Avogadro

×=iN   atoms/cm3.                           (3.7)
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The mass attenuation coefficient can be calculated using the following formula: 

 
( ) ( )

ρ
µ

µ
E

E linear
mass = .                                             (3.8)                      

The density of each element in the carbon steel sample is taken from reference [11]. 

According to [13], there are eight main energies in the decay spectrum of Iridium-192. 

We adopt seven most prominent decay lines from Table 2.2 as listed in Table 3.1 below. 

The mass attenuation coefficients are taken from XCOM but the linear attenuation 

coefficients are calculated using Equation (3.8). The linear attenuation coefficient is the 

product of mass attenuation coefficient and the (bulk) density of the sample. In this 

calculation we estimate the density of carbon steel sample as 8.08156 3cmg where the 

weight of the sample is 776.8 g  and the volume 96.12 . The theoretical linear 

attenuation coefficient of our carbon steel sample can be estimated by a weighted 

average of the attenuation coefficients in Table 3.1 over the Iridium-192 spectrum. 

Thus, the effective linear attenuation coefficient of the carbon steel sample is  

3cm

 .                                                (3.9)                      1cm231.0 −=linearµ

 
Table 3.1 Mass attenuation coefficient for the prominent energies in Iridium-192  

      spectrum adopted from Table 2.2. ooooooooooooooooooooo 
 

Energy, E  
(keV) gI (%)  ( )Emassµ ( )gcm2  ( )( )1−cmElinearµ  

295.96 0.287 0.10590 0.85583720 
308.46 0.300 0.10360 0.83724962 
316.51 0.828 0.10230 0.82674359 
468.07 0.478 0.08494 0.68644771 
588.58 0.045 0.07651 0.61832016 
604.41 0.082 0.07558 0.60708679 
612.47 0.053 0.07512 0.56918427 
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