EXCLUSIVE PHOTOPRODUCTION OF $\psi(2S)$ IN ELECTRON-PROTON COLLISION AT HERA

ZULIDZA BINTI ZULKAPLY

FACULTY OF SCIENCE UNIVERSITY OF MALAYA KUALA LUMPUR

2012

EXCLUSIVE PHOTOPRODUCTION OF $\psi(2S)$ IN ELECTRON-PROTON COLLISION AT HERA

ZULIDZA BINTI ZULKAPLY

DISSERTATION SUBMITTED IN FULFILMENT OF THE REQUIREMENT FOR THE DEGREE OF MASTER OF SCIENCE

DEPARTMENT OF PHYSICS FACULTY OF SCIENCE UNIVERSITY OF MALAYA KUALA LUMPUR

2012

ABSTRACT

The exclusive photoproduction of $\psi(2S)$ mesons, $\gamma p = \psi' p$, has been studied in electron-proton collisions with the ZEUS detector at HERA, in the kinematic range of 30<W<170 GeV, where W is the photon-proton centre-ofmass energy. The $\psi(2S)$ was reconstructed in the $J/\psi\pi^+\pi^-$ decay channel where J/ψ was detected using the muon decay channel. The events data were taken from year 2003 to 2007 with the integrated luminosity of 354.18pb⁻¹. The negative four-momentum squared of exchange photon, Q² were taken to be less than 1 GeV as the scattered electron remained undetected down the beampipe.

ABSTRAK

Pengeluaran dari photon bagi zarah meson $\psi(2S)$ secara ekslusif, $\gamma p \quad \psi' p$ telah dikaji dalam pelanggaran electron-proton menggunakan detector ZEUS di HERA, dalam julat kinematik 30<W<170 GeV, dimana W adalah pusatjisim tenaga bagi photon-proton. Zarah $\psi(2S)$ dibina dalam saluran reputan $J/\psi\pi^+\pi^-$ yang mana J/ψ pula dikesan menggunakan saluran reputan muon. Data peristiwa diambil dari tahun 2003 sehingga 2007 dengan sinaran integrasi 354.18pb⁻¹. Empat-momentum kuasa dua negatif bagi pertukaran photon, Q² dianggap kurang dari 1 GeV memandangkan electron tersesar tidak dapat dikesan di dalam salur pancaran.

ACKNOWLEDGEMENT

First and foremost, thanks to Allah. I dedicate this thesis to my mother, Puan Saerah Bt Mohd Salleh, for her help, love and patience. Next, to my supervisor, Prof. Dr. Wan Ahmad Tajuddin Wan Abdullah, for all his guidance and patience. Not forgettable I dedicate this work to my former co-supervisor, Allahyarham Prof. Madya Dr. Burhanuddin Kamaluddin, ZEUS Collaboration members, UM Physics Department, ZEUSMal colleagues, all my family members, friends and everything inspired me. Last but not least, to Charlie. Thank you all.

TABLE OF CONTENTS

Abstract	ii
Abstrak	iii
Acknowledgement	iv
Table of Contents	v
List of Figures	ix
List of Tables	xiv
List of Symbols and Abbreviations	XV

Chapter 1: Introduction

1.1 Photoproduction in Diffractive Scattering	1
1.2 The Standard Model	3
1.3 Thesis Overview	7

Chapter 2: Electron-Proton Collision

2.1 Electron-proton collision at HERA	
2.2 Kinematics of electron-proton (<i>ep</i>) scattering	10
2.3 Diffraction	11
2.3.1 Regge Phenomenology	13
2.3.2 Vector Dominance Model (VDM)	16
2.4 Photon-proton collisions	18
2.5 Relation between ep and $\gamma^* p$ scattering	20
2.6 Exclusive Vector Meson Photoproduction	22
2.7 Acceptance and <i>yp</i> Cross Section	23
2.7.1 Acceptance Calculation on Monte Carlo (MC)	23
2.7.2 yp Cross-Section Calculation	24

Chapter 3: Experimental Setup

3.1 ZEUS Experiment	26
3.2 HERA Collider	26
3.3 ZEUS Detector	29
3.4 Muon Detection System	32
3.5 Central Tracking Detector (CTD)	35
3.6 Micro Vertex Detector (MVD)	37
3.7 Forward and Rear Tracking Detectors (FTD, RTD)	38
3.8 Uranium Calorimeter (CAL)	39
3.9 Monte Carlo Generator for Vector Meson	43

Chapter 4: Tracking Effiency

4.1 Tracking concepts in detector	
4.1.1 Forward or fixed-target geometry and parameters	45
4.1.2 Collider detector geometry and parameters	49
4.2 Parameter estimation	51
4.2.1 Least squares estimation	51
4.2.2 The Kalman Filter Technique	53
4.3 Typical tracking devices	57
4.3.1 Single-coordinate measurement	5
4.3.1.1 Silicon Strip detector	57
4.3.1.2 Drift chambers	59
4.3.2 Stereo angle	62
4.3.3 Three-Dimentional (3D) measurement	64
4.4 Performance Evaluation	65
4.4.1 The reference set	65
4.4.2 Track finding efficiency	67
4.4.3 Ghosts	68
4.4.4 Clones	68
4.4.5 Parameter resolution	69

Chapter 5: Data Analysis and Results

5.1 ORANGE (Overlying Routine Analysis of Ntuple Generation)	
5.2 Data Analysis Software	72
5.2.1 Physics Analysis Worstation (PAW)	72
5.2.2 ROOT	75
5.2.3 Zeus Event Visualization (ZEVIS)	77
5.3 Grand Reprocess (GR) Data	78
5.4 Monte Carlo (MC) Data	78
5.5 ψ' Photoproduction (PHP)	82
5.6 Results	85

Chapter 6: Conclusion and Discussion	88
Bibliography	91

LIST OF FIGURES

Figure 1.1: The picture shows the diagram of $\psi(2S)$ photoproduction in electron-proton collision where the scattered electron and proton escape undetected in the beampipe.

Figure 1.2: The diagram of the Standard Model (SM) of elementary particles

Figure 1.3: The Standard Model development in historical perspective. The idea of quarks as the constituents of matter and their subsequent experimental confirmation are shown.

Figure 2.1: Feynman diagram of *ep* scattering.

Figure 2.2: The classification of diffractive processes: (a) Elastic, (b) Single diffraction, (c) Double diffraction.

Figure 2.3: Total cross section measured in hadronic scattering as a function of centre-of-mass energy for (a) PP, $P\overline{P}$ and (b) π *p* scattering. The total cross-sections drop at energy *s* < 10 GeV and increase consistently for higher energy level with the form of σ *s*^{0.08}.

Figure 2.4: The total cross-section of photon-hadron scattering, σ_{tot} , as a function of different W² and Q².

Figure 2.5: The schematic presentation of energy flow in non-diffractive and diffractive event with large rapidity gap at HERA.

Figure 2.6: Schematic diagram of VM production.

Figure 3.1: The aerial view of HERA showing the ring location of the accelerators.

Figure 3.2: The picture shows the direction of electron and proton injection flows. The red arrow represents the electron and the blue arrows represent the proton.

Figure 3.3: The picture shows a 3-dimentional view of a ZEUS detector, its main components and the electron proton directions. The circled area indicates the interaction point of the electron proton collision.

Figure 3.4: The picture shows the coordinate system of the ZEUS detector.

Figure 3.5 : Cross section of the ZEUS detector in x – y plane

Figure 3.6: Cross section of the ZEUS detector in z – y plane

Figure 3.7 : 3D structure of BRMUON

Figure 3.8 : Cross section of FMUON

Figure 3.9: Layout of a CTD octant. The superlayers are numbered and the stereo angles of their sense wires are shown.

Figure 3.10: Cross sections of the MVD along the beam pipe (left) and in the x-y plane (right).

Figure 3.11: The Layout of the FTD drift chambers in (left) overall view and (right) view of the 3 layers inside of one of the chambers.

Figure 3.12: (left) a view of the tracking detectors, in the forward area the four tracking detectors planes are shown, which were replaced with two straw-tube tracker (STT) wheels, (right) the angular coverage of the STT compared to the CTD and forward MVD wheels.

Figure 3.13: Cross section of the ZEUS CAL in the y-z plane.

Figure 3.14: View of an FCAL module. The towers containing the EMC and HAC sections are shown.

Figure 4.1 : Typical geometry of a forward spectrometer

Figure 4.2: Typical setup of a cylindrical or collider detector.

Figure 4.3 : Lower half barrel of the Zeus micro-vertex detector

Figure 4.4: Schematic view of a drift chamber cell. The closed circle indicates wires, with sense wires in the middle and field wires on the outside. The long and thick arrow represents a trajectory of a particle while the small arrows denote primary ionization charges drifting towards the sense wire.

Figure 4.5: Event display from the ZEUS central tracking detector where the closeup view given in the square. The blue line is the trajectory and the red dot is the drift distance end points on both side of the corresponding wire.

Figure 4.6 : Top left : The real hit points with two stereo views on x plane (0°) and u plane (45°). Top right : Single view on x and u plane with two ghost points in blue. Bottom left : Ambiguity hits observed on x and u plane.

Figure 4.7 : TPC of the STAR experiment.

Figure 5.1: Example of initial page of control cards which show selection of several routines applicable in ORANGE.

Figure 5.2: PAW and its components

Figure 5.3: ROOT framework directories

Figure 5.4: Zevis display of trimuon event. One of the muons is identified in the outer barrel muon chambers and in BAC (both hits and pads), embedded into a jet. The second is seen in BAC only (pads only).The third is seen in the forward muon chambers (clean long track starting in the inner chambers) and in the forward BAC, embedded into a forward jet.

Figure 5.6: Figure shows the reconstructed mass of ψ' generated by PAW using the simulated ZEUS MC data for $\psi' \rightarrow J/\psi \pi^+ \pi^-$ decay channel.

Figure 5.7: Figure shows the reconstructed mass of ψ' generated by PAW using the ZEUS GR data for $\psi' \rightarrow \mu^+ \mu^- \pi^+ \pi^-$ decay channel in 2003-2007 events.

Figure 5.8: Cross section of ψ 'in e-p collision at HERA for ZEUS GR data in 2003-2007 events.

Figure 6.1: The cross section for ψ' at ZEUS highlighted in yellow, in comparison with H1 experiment and other vector mesons.

LIST OF TABLES

Table 1.0: Rough comparison between PAW and ROOT.

Table 2.0: Size of GR ntuple for v02 and v04.

Table 3.0: Properties of ψ' photoproduction with number of ψ' particles, N ψ (2S), acceptance, A, photon flux, Φ and the cross section, σ , in different W range.

LIST OF SYMBOLS AND ABBREVIATIONS

Ψ' / ψ (2S)	Psi particle
J/ψ	J/psi particle
μ	Muon particle
π	Pi particle
2D	2-Dimensional
3D	3-Dimensional
BMUON	Barrel Muon Detector
BNL	Brookhaven National Laboratory
BRMUON	Barrel Rear Muon Detector
CAL	Calorimeter
CC	Charged Current
CTD	Central Tracking Detector
DESY	Deutch Elektronen Synchotron
DIS	Deep Inelastic Scattering
FMUON	Forward Muon
FTD	Forward Tracking Detector
GMUON	Global Muon System
GR	Grand Reprocess
HERA	Hadron Electron Ring Accelerator
MC	Monte Carlo
MIP	Minimum ionizing particle
MVD	Micro Vertex Detector
NC	Neutral Current
ORANGE	Overlying Routine Analysis of Ntuple Generation
PAW	Physics Analysis Workstation
PHP	Photoproduction

QCD	Quantum Chromodynamics
QED	Quantum Electrodynamics
RMUON	Rear Muon Detector
RTD	Rear Tracking Detector
SLAC	Stanford Linear Accelerator Center
SM	Standard Model
VM / VMs	Vector Meson / Vector Mesons
ZEVIS	Zeus Event Displays