# **APPENDIX** A

|      |                          | Cost of | Project |         |                          |
|------|--------------------------|---------|---------|---------|--------------------------|
| No   | Project                  | (RM     | I M)    | Savings | Remarks                  |
| 110. | 110,000                  | Before  | After   | (%)     | Temarks                  |
|      |                          | VM      | VM      |         |                          |
|      | Development of Institut  |         |         |         | More effective design    |
| 1    | Aminuddin Baki,          | 237.5   | 161.1   | 32.2    |                          |
|      | Sarawak                  |         |         |         | and delivery.            |
|      | Pakej 3/1A: Jalan        |         |         |         | More effective design    |
|      | Simpang Pulai – Lojing   | 110.0   | 100 5   | 2.0     | (Better safety,          |
| 2    | – Gua Musang – Kuala     | 112.8   | 108.5   | 3.8     | environmental &          |
|      | Berang                   |         |         |         | maintenance features)    |
| 3    | Klinik Kasibatan Janis 3 | 68      | 65      | 5.1     | More effective design    |
| 3    | KIIIIK Kesinatan Jenis 5 | 0.8     | 0.5     | 5.1     | and planning.            |
|      | Education Faculty for    |         |         |         | Effective planning of    |
| 4    |                          | 35.0    | 7.0     | 80.0    | space and layout to      |
|      | UIM                      |         |         |         | owner's requirement.     |
|      | Library for USM          |         |         |         | Effective planning of    |
| 5    | Library for USIVI,       | 24.9    | 11.9    | 52.2    | space and layout to      |
|      | Penang                   |         |         |         | owner's requirements.    |
|      | Dami Didmon Islamia      |         |         |         | Effective planning of    |
| 6    |                          | 120.0   | 57.0    | 52.5    | layout and design to     |
|      | College, Perak           |         |         |         | owner's requirements.    |
|      |                          |         |         |         | Improve ROI of 14.7%     |
|      | High End Agenterat       |         |         |         | from 4.81% to 19.5%      |
| 7    | High End Apartment       | 42.9    | 38.5    | 10.2    | and gross profit of the  |
|      | riojeci                  |         |         |         | project from RM 2.2M     |
|      |                          |         |         |         | to RM 9.3M.              |
| 8    | Projek Jalan Raya        | 92.0    | 74.0    | 19.6    | Identified many areas in |

APPENDIX A

|   | Simpang Pulai – Lojing |     |     |      | the existing solutions     |
|---|------------------------|-----|-----|------|----------------------------|
|   | – Gua Musang – Kuala   |     |     |      | where values can be        |
|   | Berang (Pakej 8)       |     |     |      | improved without           |
|   |                        |     |     |      | sacrificing the functions. |
|   |                        |     |     |      | Scrutinise and optimise    |
| 9 | Utilities Mapping      | 2.5 | 1.7 | 30.4 | the proposed project       |
|   | Department             |     |     |      | cost through identifying   |
|   |                        |     |     |      | critical areas only.       |

Table A-1: Summary of Pilot Value Management Projects in Malaysia

# APPENDIX B

#### History of Value Management

The brainchild of Lawrence Miles, Value Management was first conceived as Value Analysis, a technique to overcome the scarcity of raw materials through specifying the materials needed according to its intended functions and criteria. During the World War II, the manufacturing industry in the USA placed high priority in the production of military supplies to the Allied Forces. Mr. Miles, an engineer with General Electric who was responsible with manufacturing comparatively low priority products constantly faced shortages of raw materials as materials were acquired for military grade production. It was necessary to seek substitutes to the materials and processes to ensure that the production of these low priority products at General Electric was not disrupted. Hence, he revolutionized the procurement processes by specifying the materials required according to its intended functions and criteria rather than by the necessity of having specific materials. He focused specifically on the intended functions that the materials are supposed to perform without sacrificing the required quality although cost reduction was not an important factor then (Che Mat, n.d.).

The hallmark of these efforts is function analysis, the fundamental analysis of materials, processes, parts and other resources that are essential for the assembly of the final product. This conceptual analysis has served as the foundation for the development of Value Engineering, an enhanced version of Value Analysis which emphasized structured problem solving based on function analysis. Value Engineering subsequently made its way into the construction industry in the 1960s through the US Navy and the Army Corps of Engineers and rapidly established itself as the trend to follow (Dell'Isora, Value Engineering in the Construction Industry, 1982). The benefits of Value Engineering to the construction industry were sufficiently significant that the US

General Services Administration (GSA) and the Department of Transportation provided the inclusion of Value Engineering incentives in its construction contracts back in 1972 (Ting & Cheah, 2004).

Value Engineering subsequently took a more rigorous transformation into the present Value Management. It took the form of function-based team approach to enhance the value of the project through analysis of the necessary functions of the product or system, identifying and remove unnecessary costs associated with the project and eventually achieve the intended performance at the lowest costs possible. The stance effectively migrate this concept from being confined to specific technical tool to a comprehensive company-wide management method. Though some academicians tend to distinguish these three concepts (Value Analysis, Value Engineering and Value Management) through rigorous definition, the leading organisation for Value Management, SAVE International, considers all these concepts as synonymous. The intention of this is to avoid further confusion about these terms as well as to consolidate the methodologies under a single standard. The application of Value Management were widely adopted that in 1993, the US Congress passed two bills to make Value Management a mandatory application in all government programmes, projects, systems and products. This comprised 80% of the total governmental budget for all the agencies (Fang & Rogerson, 1999).

Value Management was introduced in Malaysia in 1986 by Associate Professor Roy Barton from the Canberra University, Australia through the Quantity Surveying Department of Universiti Teknologi Malaysia (UTM). Associate Professor Roy Barton made another visit to Malaysia in 1990 and together with Sr. Dr. Mohd. Mazlan Che Mat, they attempted to propagate the concept of Value Management to various

government agencies as well as other private companies (Che Mat, n.d.). Despite the efforts, Value Management did not make marked inroads in Malaysia (Jaapar & Torrance, n.d.). Jaapar and Torrance (n.d.) observed that although there were some successful implementations of Value Management within the construction industry, Malaysians remained lukewarm about the concept of Value Management and the potential benefits that it bears. Sensing the importance and potential benefits of Value Management to the implementation of governmental projects and programmes, Value Management practices was made a mandatory measure for all government-based projects and programmes above RM50 million in 2010 (The Star, 2010).

# APPENDIX C

### The Concept of Value

It is imperative to understand what value stands for before delving into the notion of Value Management. Parker (1985) and Hamilton (2002) identified principal value types, namely:-

| a) | Price value (price)    | - | price that one pays for an item             |
|----|------------------------|---|---------------------------------------------|
| b) | Cost value (cost)      | - | the cost associated with the process of     |
|    |                        |   | conducting the function effectively         |
| c) | Esteem value (want)    | - | appraise the function associated with       |
|    |                        |   | pleasing someone                            |
| d) | Exchange value (worth) | - | measure of resources that one specific item |
|    |                        |   | can be traded                               |
| e) | Utility value (need)   | - | assessment of the functions that an item is |
|    |                        |   | required to perform to the standards        |

Value generally refers to the relationship between satisfying the differing needs of clients (function) and the necessary resources (cost) required in performing it (Abidin & Pasquire, 2007; Liu & Leung, 2002). Differing needs of clients can be broad, as one client will have different needs from another. To simplify the relationship, the relationship can be expressed as the figure below:-

$$Value = \frac{Function}{Cost}$$

### Figure C-1: The Common Value Equation

From the relationship above, value can be favourably enhanced by increasing the function of the item and / or by decreasing the cost of the item concerned. Alternately,

the value of an item is lowered if the function of the item is reduced and / or the cost for producing the item is increased (Alwerfalli & Schaaf, 2010; Hamilton, 2002).

Dell'Isora (1997) took a more bold approach to definition of value. He expounded that value is also directly related to quality apart from factors like function and cost. Therefore, value is interpreted as the most effective and efficient way to perform functions that will satisfy the specific needs and wants of users. The value equation proposed by Dell'Isora is:-

 $Value = \frac{Function + Quality}{Cost}$ 

Figure C-2: The Dell'Isora Value Equation

Hence, value approach is primarily concerned with substituting materials with distinctive attributes that would enhance the life-cycle of a product by taking advantages of the attributes. This approach evolved to include the performance of the materials and final products while at the same time reducing the costs required. It requires examining the function of the elements and final products to which they are supposed to serve. Therefore, there are two elements of functions which must be addressed, what something must do as well as how something must do it (Hamilton, 2002).

In the fraternity of engineering where public interest is of paramount importance, maximising value is the primary focus of project delivery. However, value has been perceived directly as lower costs or financial benefits rather the notion of value itself (Barima, 2010). More, Hamilton (2002) further mentioned that it is not uncommon that value is being treated as an alternative mean to measure financial feat. He instead proposed that the value should be placed central of the organisation and the strategies,

processes and resources be integrated and aligned towards achieving the value. Hamilton further reinforced that value is not rigid but revolving to the needs of parties involved. As such, it is only logical for the organisations to clearly identify the needs and develop values in deliverables according to these needs. The principles behind Value Management are to examining the needs and subsequently develop projects or programmes that will drive the probability of achieving the value.

## APPENDIX D

### **Development of Value Management**

Despite the fact that the differences between Value Analysis, Value Engineering and Value Management are not significant and even treated as the same entity by SAVE International, it would be essential in this study to seek out what each of the concept means and how it has evolved to the current Value Management.

### Value Analysis (VA)

The initiation concept of Value Management, Value Analysis is a specific, creative and organised approach to function analysis, embodying the use of techniques, skills and knowledge to focus on the specific functions of the process and eliminating unnecessary costs which do not contribute to the function of process (Liu, 2003).

### Value Engineering (VE)

Value Engineering is a more comprehensive and improvised technique where it embodies a systematic approach to seek out the best efficient balance between performance, cost and quality of a product or even a project. It can be differentiated that Value Engineering is a wider approach to maximise value as compared to Value Analysis considering that Value Engineering requires broader consideration of the entire project or process rather than specific function required in Value Analysis (Liu, 2003).

### Value Management (VM)

Value Management is a broad, proactive and inventive approach to deliver value to the requirements of the clients through capitalising on the functional values central to the clients. The Value Management method emphasizes on decisions appraisal based on

values promulgated by the clients from the conception stage to occupancy stage through an orderly and team-oriented approach (Kelly & Male, 1993; Thiry, 2002).

It is clearly distinctive from the above statement the fundamental concept has shifted from cost-based to value-based, giving project stakeholders a greater and central role in project development and delivery. It means that value for money can only be achieved when design alternatives generated must not only strike the balance of cost, performance and quality but also satisfy the objectives of the project.

### The Evolution of VM

While Value Engineering and Value Analysis are commonly viewed as synonymous to Value Management in the present set-up, both Value Engineering and Value Analysis are indeed subsets of Value Management in strict definition. Value Engineering and Value Analysis focus primarily on tactically convalescing values in specific stages of the project, commonly during the design and construction stages (Male, Kelly, Fernie, Gronqvist, & Bowles, 1998). Value Management effectively migrated from the traditional hard and static notion of Value Engineering and Value Analysis through strategic level focus on dynamic, three-hundred-sixty degrees problem solving approach intended to maximise values right from the inception stage to the delivery stage (Liu, 2003). The evolution of Value Management is depicted as the Figure D-1:

An Exploratory Study On The Implementation Of Value Management Among Engineering Professionals In The Klang Valley



Figure D-1: The Evolution of Value Management

Dawson (2001) in his presentation to the Hong Kong Institute of Value Management International Conference in 2000 highlighted five (5) major changes that distinguish the evolution from traditional forms of Value Engineering and Value Analysis to the contemporary form of Value Management.

Change 1 - The migration from "process-centred" to "people-centred". While the traditional concept of value revolves around unravelling the option with the lowest cost for performing a function, the contemporary concept emphasizes the needs to source a balance between quality, function and cost to satisfy the owner's needs. Therefore, it is only complete to attain value through the performance of a process or a system with the lowest cost and at the same time satisfying the needs and wants of the owner.

Change 2 - The migration from remedial to preventive. Value Analysis and Value Engineering specifically focus on the dealing with the current processes or designs. On the contrary, Value Management stressed on proactive approach right from

the conception stage to seek the best possible processes or designs using creative means. The model for VM has effectively shifted from remedial mode to preventive mode.

Change 3 - Broader appliance of VM. The application of Value Management is no longer confined to just addressing technical issues. Value Management is now a more robust and complete management technique extending beyond technical issues, which covers every aspect of the project implementation and project delivery.

Change 4 - From one workshop to several workshops. The practice of Value Management has moved from being a one-off activity devise to address a specific technical issue to a full-fledged managerial concept aimed at maximising values which are central to the clients. Therefore, the Value Management activities will inevitably extend beyond a single workshop and transform into a continuous process where optimum balance between cost, function and quality is sought after.

Change 5 - From technical participants to managerial participants. In congruent with the shift of Value Management practice from technical-centred to management-centred, the participants of Value Management have also broaden to include every members of the project delivery team. This is contributed by the fact that Value Management involved not only tactical issues but also strategic issues which are the prime factors for the success of a project.

Dawson (2001) further summarizes the comparison between Value Analysis, Value Engineering and Value Management to further improve the simplicity of distinguishing the three concepts. The summary is tabled as Table D-1.

| Items     | Value Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Value Engineering                                                  | Value Management                                                                |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------------------|
| Objective | Objective       To realise the desired       To realise the desired         functions with       functions with         minimum costs of       minimum costs to the         process involved.       project.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                    | To capitalise value of<br>the entire project as<br>expounded by the<br>clients. |
| Subjects  | Existing designs orExisting designs orprocesses.processes.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                    | Existing designs, processes.                                                    |
| Timing    | Timing Upon completion of construction the design stage. In the the presence of the presence o |                                                                    | From the conception<br>stage until the delivery<br>stage of the project.        |
| Nature    | Remedial action.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | A combination of<br>remedial, auditing and<br>preventive approach. | Proactive approach<br>intended at preventive<br>actions.                        |
| Levels    | Process level.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Process and element level.                                         | Each and every level<br>of the project<br>development and<br>delivery stage.    |

| Items                          | Value Analysis                                            | Value Engineering                                             | Value Management                                                                                                                |
|--------------------------------|-----------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| Value<br>Improving<br>Approach | Value is achieved by driving down costs.                  | Value is achieved by<br>improvisation of<br>designs           | Value is achieved by<br>integrating owner's<br>requirements into<br>design criteria.                                            |
| Techniques                     | Focus on functional analysis.                             | Implementation of<br>workshop and<br>functional analysis.     | Involvement of all<br>stakeholders within the<br>project, consensus<br>development and<br>multi-attribute rating<br>techniques. |
| Outputs                        | Remedial offers for cost reduction.                       | Remedial offers and<br>development of<br>alternative designs. | Project objectives,<br>specifications, delivery<br>methods and designs<br>based on owner's<br>requirements.                     |
| Participants                   | Only technical<br>personnel who are<br>directly involved. | Technical personnel<br>and clients'<br>representative.        | Each and every<br>relevant stakeholder in<br>the project.                                                                       |

Table D-1: The Evolution of Value Management

# APPENDIX E

#### Job Plan of Value Management

While there are numerous approaches to conducting Value Management like the standard 40-hour workshop, the VM audit, contractor's change proposal and other approaches which are customized to suit the needs of the projects, these studies generally follows the criteria and plan proposed by SAVE International (Liu & Leung, 2002; Luo, Shen, Fan, & Xue, 2010; Zhang, Mao, & AbouRizk, 2009). The systematic job plan being promoted SAVE International consists of three (3) stages namely, prestudy stage, value study stage and post study stage. The pre-study stage consists of one (1) phase, while the value study stage and post study stage consist of seven (7) phases and one (1) phase respectively (Perera, Hayles, & Kerlin, 2011; Gupta, 2009; Davis, 2004). The various phases are detailed as below.

#### Phase 1: Orientation and Diagnostic Phase (Pre-Study Stage)

The initial phase of Value Management, the orientation and diagnostic phase involves commissioning of the Value Management team in preparation for the Value Management study. Project owner along with respective stakeholders would conduct a kick-off meeting to form the Value Management team along the with appointment of the team leader. The Value Management team along with the owner and stakeholders will in turn defined the goals of the project according to the owner's needs and requirements. The boundaries of the project will also be established at this phase (Davis, 2004; Che Mat, n.d.).

#### Phase 2: Information Phase (Value Study Stage)

The project background, project scope, current concept, designs and its associated costs will be tabled by the designer at this phase. The design development

along with the project schedule will also be presented at this stage to ensure that sufficient time will be allocated for the Value Management study. Important data which is vital to the project like design criteria, operation and maintenance requirements, project constructability, project schedule, budget allocation will then be captured for future reference and analysis (Davis, 2004; Liu & Leung, 2002).

#### Phase 3: Function Phase (Value Study Stage)

The most fundamental and important phase of value study, the function phase utilises a combination of function-logic process to break down the project information into the most simplistic form for analysis. There are two prime objectives that must be fulfilled at this phase; to accentuate developed ideas that are incongruent with the project objectives and laying the platform for creativity phase in the subsequent phase. Project variables will be developed and scrutinised according the specific values that have been spelled out by the owner and stakeholders (Liu & Leung, 2002).

#### Phase 4: Creative Phase (Value Study Stage)

The creativity phase will employ brainstorming or other similar methods as a mean to generates ideas, processes, methods and designs which are seen as possible alternatives to the pre-defined functions. It must be highlighted that this phase is opened to any and all possible alternatives but comments and judgements will not be taken into consideration at this phase. This phase focus solely on the quantity of the alternatives generated with no emphasis being placed on quality. These alternatives commonly come in the form of substituting materials, revising tolerances, increase standardising instead of customising or altering the construction sequence (Alwerfalli & Schaaf, 2010; Perera, Hayles, & Kerlin, 2011)

#### Phase 5: Evaluation Phase (Value Study Stage)

The evaluation phase is a succeeding phase of creative phase. In this phase, all alternatives generated in the creative phase will be duly evaluated. First, these alternatives will be screened for viability of implementation in the project. These alternatives will be subsequently scanned for strategic fit with the project objectives and values expounded by the owner. Then, these alternatives will be tested for other minor criteria like economic viability, life-cycle cost, safety, reliability, environmental impact, social impact, aesthetics, maintainability and other factors which are deemed fit (Alwerfalli & Schaaf, 2010; Perera, Hayles, & Kerlin, 2011).

#### Phase 6: Development Phase (Value Study Stage)

Those viable alternatives that pass the evaluation phase will be developed into workable proposals. These proposals will detail out the description of the recommendation, capital cost and recurrence cost of the recommendation, advantages and disadvantages of the recommendation and other relevant date and supporting information which are critical to the decision making in the later phases (Liu & Leung, 2002; Davis, 2004).

#### Phase 7: Presentation Phase (Value Study Stage)

In this phase, a written report consist of the various proposals will be submitted to the decision makers and the decision makers will be brief about the recommendations of the Value Management team in an informal briefing. This is mainly to allow decision makers to have an in depth understanding of the findings and raise queries about the recommendations before deciding on the suitable recommendations to be implemented (Alwerfalli & Schaaf, 2010; Davis, 2004).

### Phase 8: Implementation Phase (Value Study Stage)

The last phase of the Value Study Stage, the implementation phase requires decision makers to decide of the status of the recommendations. The decision makers can opt to implement any or all of the recommendations being proposed. These recommendations accepted will need to be further developed and transpired to the respective parties involved in its implementation (Alwerfalli & Schaaf, 2010; Gupta, 2009).

### Phase 9: Post Value Management Study Activities Phase (Post-Study Stage)

The recommendations implemented will be subsequently captured in the records and the values realised will also be recorded. The progress of implementation will be tracked and monitored for subsequent review by the decision makers, Value Management team and the project implementation team (Alwerfalli & Schaaf, 2010).

# APPENDIX F



#### GRADUATE SCHOOL OF BUSINESS FACULTY OF BUSINESS & ACCOUNTANCY

### An Exploratory Study on the Implementation of Value Management among Engineering Professionals in the Klang Valley

### **Dear Respected Respondent,**

This survey is conducted as a requirement for the completion of dissertation for the Master of Business Administration, University of Malaya. The purpose of this research is to determine the **factors that motivate the adoption of Value Management (VM) among engineering professionals** in the **Klang Valley**. We would greatly appreciate your assistance in answering the questionnaire. It is only with your generous help that this study can be successful.

Please be assured that your response to each question in this questionnaire will be kept strictly confidential. The strict ethic guidelines of University of Malaya will ensure anonymity is maintained at all times. Individual participants will not be identified in the analysis as only aggregated results will be analyzed and presented.

#### **Brief Description of Value Management**

Value Management was made a mandatory exercise for all government projects worth RM50 million or more in 2009. It is a systematic approach directed at identifying the functions of a specific project aimed at achieving the vital functions at the lowest cost possible while at the same time maintaining the required objectives, performance, reliability and maintainability. Value Management includes establishing and verifying project objectives, optimising design solutions, resolving conflicts and improves communication as well as creating a range of viable options for executive consideration.

#### In making the ratings, please remember the following points

- **1.** There are 2 parts of question in this set of questionnaire. (5 pages including cover page)
  - Part A: Implementation of Value Management (52 Questions)
  - Part B: Demographic Profile of the Respondents (10 Questions)
- 2. Please answer each of the statements related to the questions by marking alongside the number that best describes your answer.
- **3.** Be sure to answer all items do not omit any.
- 4. Never tick more than one number or box for each scale.

If there are queries about this study, please contact me **Fong Chong Yit (CGA090006)**, MBA Candidate @ **012-2882321** or email me at <u>esprit 04@yahoo.com</u>. Supervised by: Dr. Chan Wai Meng (chanwm@um.edu.my) from Department of Business Policy and Strategy, Faculty of Business and Accountancy, University of Malaya.

## Part A: Implementation of Value Management (VM)

| Str<br>Dis | (1)(2)(3)(4)(5)ronglyDisagreeSomewhatNeutralSomesagreeDisagreeAgr |                                                                 | (5)<br>mewh<br>Agree                         | at                    | (6)<br>Agre | e   | (7<br>Stro<br>Agi | ')<br>ngly<br>ree |     |     |     |
|------------|-------------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------|-----------------------|-------------|-----|-------------------|-------------------|-----|-----|-----|
| No.        | Statem                                                            | nent                                                            |                                              |                       | (1)         | (2) | (3)               | (4)               | (5) | (6) | (7) |
| 1          | l have<br>Manag<br>Analys                                         | heard of "Valu<br>ement, Value<br>is or Value Co                | e Project, Valı<br>Analysis, Funo<br>ntrol". | ue<br>ctional         |             |     |                   |                   |     |     |     |
| 2          | l have<br>formal<br>magaz                                         | been exposed<br>education, trai<br>ines, friends a              | to VM either t<br>ning, daily wo<br>nd etc.  | through<br>rk, books, |             |     |                   |                   |     |     |     |
| 3          | I have<br>"Value                                                  | very clear und<br>Management"                                   | erstanding of                                | the term              |             |     |                   |                   |     |     |     |
| 4          | I have                                                            | applied VM in                                                   | work.                                        |                       |             |     |                   |                   |     |     |     |
| 5          | VM will<br>improv                                                 | l effectively red<br>e project delive                           | duce project co<br>ery.                      | ost and               |             |     |                   |                   |     |     |     |
| 6          | VM imp                                                            | plementation d                                                  | loes not incur                               | high costs.           |             |     |                   |                   |     |     |     |
| 7          | VM is a                                                           | an effective co                                                 | st control mea                               | sure.                 |             |     |                   |                   |     |     |     |
| 8          | VM cou<br>elimina                                                 | uld ensure hig<br>ition of unnece                               | her profit throu<br>ssary costs.             | ıgh                   |             |     |                   |                   |     |     |     |
| 9          | VM is a<br>innovat                                                | a cost reductio<br>tion and creati                              | n measure thr<br>ve alternative              | ough<br>designs.      |             |     |                   |                   |     |     |     |
| 10         | Implem<br>engine                                                  | nentation of VI<br>ering design s                               | /I will delay the<br>tages.                  | e                     |             |     |                   |                   |     |     |     |
| 11         | Implem<br>project                                                 | nentation of VI<br>implementatio                                | A will cause de<br>on and delivery           | elay in<br>⁄.         |             |     |                   |                   |     |     |     |
| 12         | Project<br>VM imp                                                 | t schedule doe<br>plementation.                                 | s not allocate                               | time for              |             |     |                   |                   |     |     |     |
| 13         | Project<br>unders                                                 | team member<br>tand VM.                                         | rs do not have                               | e time to             |             |     |                   |                   |     |     |     |
| 14         | Project<br>implem                                                 | t team member<br>nent VM.                                       | rs do not have                               | e time to             |             |     |                   |                   |     |     |     |
| 15         | Particip<br>the VM                                                | Participants' past experiences complement the VM implementation |                                              | plement               |             |     |                   |                   |     |     |     |
| 16         | Particip<br>VM pha                                                | pants' professi<br>ases.                                        | onalism enhar                                | nces the              |             |     |                   |                   |     |     |     |
| 17         | VM fac<br>enable                                                  | ilitators' exper<br>s successful V                              | ience and qua<br>M implementa                | ality<br>ation.       |             |     |                   |                   |     |     |     |
| 18         | Owner<br>manag                                                    | initiates VM to<br>ement and de                                 | be used in pr<br>velopment.                  | roject                |             |     |                   |                   |     |     |     |

| (1)      | (2)      | (3)      | (4)     | (5)      | (6)   | (7)      |
|----------|----------|----------|---------|----------|-------|----------|
| Strongly | Disagree | Somewhat | Neutral | Somewhat | Agree | Strongly |
| Disagree |          | Disagree |         | Agree    |       |          |

| No. | Statement                                                                                                                                    | (1) | (2) | (3) | (4) | (5) | (6) | (7) |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|
| 19  | There is perfect fit between owner's requirement and project delivery.                                                                       |     |     |     |     |     |     |     |
| 20  | Owner's requirements and objectives have<br>been clearly defined during the design<br>stages.                                                |     |     |     |     |     |     |     |
| 21  | Perfect fit between owner's requirement and<br>project delivery is essential for project<br>success.                                         |     |     |     |     |     |     |     |
| 22  | Owner's confidence in project team members is essential for project success.                                                                 |     |     |     |     |     |     |     |
| 23  | Teamwork between project team members is the key factor for project success.                                                                 |     |     |     |     |     |     |     |
| 24  | Participation of each and every member from<br>various departments is essential for VM<br>implementation success.                            |     |     |     |     |     |     |     |
| 25  | Participation and support from top<br>management drives successful VM<br>implementation.                                                     |     |     |     |     |     |     |     |
| 26  | Competent leader is vital for VM initiative.                                                                                                 |     |     |     |     |     |     |     |
| 27  | Communication between project team<br>members ensures VM implementation<br>success.                                                          |     |     |     |     |     |     |     |
| 28  | Communication between internal project<br>members and external stakeholders ensures<br>successful VM implementation and project<br>delivery. |     |     |     |     |     |     |     |
| 29  | Providing training to owner will enhance the application of VM.                                                                              |     |     |     |     |     |     |     |
| 30  | Providing training to project team members<br>will enhance the application of VM.                                                            |     |     |     |     |     |     |     |
| 31  | Continuous training will reinforces the quality<br>and implementation of VM.                                                                 |     |     |     |     |     |     |     |
| 32  | Parties involved in leading the VM initiatives<br>lack the knowledge of VM.                                                                  |     |     |     |     |     |     |     |
| 33  | There is a lack of VM experts in Malaysia to<br>ensure successful VM implementation.                                                         |     |     |     |     |     |     |     |
| 34  | Project team members have low<br>understanding and knowledge of VM<br>implementation.                                                        |     |     |     |     |     |     |     |
| 35  | There are limited resources on the project's<br>VM that project team members can request.                                                    |     |     |     |     |     |     |     |

| (1)                  | (2)      | (3)                  | (4)     | (5)               | (6)   | (7)               |
|----------------------|----------|----------------------|---------|-------------------|-------|-------------------|
| Strongly<br>Disagree | Disagree | Somewhat<br>Disagree | Neutral | Somewhat<br>Agree | Agree | Strongly<br>Agree |

| No. | Statement                                                                                                                                  | (1) | (2) | (3) | (4) | (5) | (6) | (7) |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|
| 36  | The cost, quality and schedules should be<br>clearly defined in the project description.                                                   |     |     |     |     |     |     |     |
| 37  | Clear objectives provide project team<br>members with better focus on the project<br>requirements and delivery.                            |     |     |     |     |     |     |     |
| 38  | VM implementation is an obstacle to project<br>implementation and delivery.                                                                |     |     |     |     |     |     |     |
| 39  | VM is just another management fashion.                                                                                                     |     |     |     |     |     |     |     |
| 40  | VM should not be implemented in the<br>engineering sector.                                                                                 |     |     |     |     |     |     |     |
| 41  | The traditional form of project delivery is<br>better than VM.                                                                             |     |     |     |     |     |     |     |
| 42  | VM is time-wasting initiative in project<br>delivery.                                                                                      |     |     |     |     |     |     |     |
| 43  | VM implementation promotes creativity,<br>innovation and aggressiveness in project<br>delivery.                                            |     |     |     |     |     |     |     |
| 44  | VM implementation increases value in the<br>project implementation and delivery.                                                           |     |     |     |     |     |     |     |
| 45  | VM implementation ensures effective and<br>efficient engineering design.                                                                   |     |     |     |     |     |     |     |
| 46  | VM provides means of accurate cost<br>estimation.                                                                                          |     |     |     |     |     |     |     |
| 47  | VM implementation promotes quantitative<br>and qualitative development of project team<br>members.                                         |     |     |     |     |     |     |     |
| 48  | Proper functional analysis and other VM tools<br>like brainstorming, cost benefit analysis and<br>risk analysis promote VM implementation. |     |     |     |     |     |     |     |
| 49  | VM is an effective and easy to apply tool.                                                                                                 |     |     |     |     |     |     |     |
| 50  | VM methods generate better suggestions and<br>ideas for project delivery.                                                                  |     |     |     |     |     |     |     |
| 51  | Clear VM standards and guidelines promote<br>VM implementation.                                                                            |     |     |     |     |     |     |     |
| 52  | VM methods promote rational selection of<br>alternatives to a problem.                                                                     |     |     |     |     |     |     |     |

#### Part B: Demographic Profile of the Respondents

Please select **ONE** answer from each statement that best describes you.

| 1. Nationality:<br>Malaysian<br>Non-Malaysian                                                                                                                                                 | 2. Gender<br>Male<br>Female                                                                                                            | 3. Age group:         25 years and below         25 - 32 years         33 - 39 years         40 - 46 years         47 - 65 years         66 years and above                           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4. Ethnic background:<br>Malay<br>Chinese<br>Indian<br>Others                                                                                                                                 | 5. Monthly income (gross):                                                                                                             | <ul> <li>6. Highest education level achieved:</li> <li>First Degree (Bachelor)</li> <li>Professional Qualification</li> <li>Postgraduate Degree (e.g. Master or Doctorate)</li> </ul> |
| 7. Current job position:<br>Director<br>Senior Manager<br>Managers<br>Senior Executive<br>Junior Executive<br>Non Executive<br>Others.                                                        | 8. Current           Gove           Prop           Cont           Cons           Supp           Proje           Mate           Othe    | engineering sector:<br>ernment Sector<br>erty Developer<br>tractor<br>sultant<br>blier<br>ect Management<br>erial Testing<br>ers                                                      |
| 9. Current engineering fiel<br>Agricultural Engineering<br>Civil Engineering<br>Chemical Engineering<br>Electrical Engineering<br>Environment Engineering<br>Mechanical Engineering<br>Others | d:<br>ng<br>your cur<br>y = 2 →<br>2 - 5<br>2 - 5<br>10 - 10 -<br>10 - 10 -<br>10 - 15 - 11<br>10 - 15 - 11<br>10 - 15 - 11<br>10 - 15 | ny years that have you served<br>rrent company.<br>Year<br>Years<br>10 Years<br>15 years<br>Years<br>Years                                                                            |

# **APPENDIX G**

|       | Malaysian or Non-Malaysian |           |         |               |                       |  |  |  |  |  |
|-------|----------------------------|-----------|---------|---------------|-----------------------|--|--|--|--|--|
|       |                            | Frequency | Percent | Valid Percent | Cumulative<br>Percent |  |  |  |  |  |
| Valid | Malaysian                  | 105       | 100.0   | 100.0         | 100.0                 |  |  |  |  |  |

|       | Male or Female |           |         |               |                       |  |  |  |
|-------|----------------|-----------|---------|---------------|-----------------------|--|--|--|
|       | -              | Frequency | Percent | Valid Percent | Cumulative<br>Percent |  |  |  |
| Valid | Male           | 79        | 75.2    | 75.2          | 75.2                  |  |  |  |
|       | Female         | 26        | 24.8    | 24.8          | 100.0                 |  |  |  |
|       | Total          | 105       | 100.0   | 100.0         |                       |  |  |  |

|       | Age Group |           |         |               |                       |  |  |  |
|-------|-----------|-----------|---------|---------------|-----------------------|--|--|--|
|       |           | Frequency | Percent | Valid Percent | Cumulative<br>Percent |  |  |  |
| Valid | <25       | 15        | 14.3    | 14.3          | 14.3                  |  |  |  |
|       | 25-32     | 42        | 40.0    | 40.0          | 54.3                  |  |  |  |
|       | 33-39     | 23        | 21.9    | 21.9          | 76.2                  |  |  |  |
|       | 40-46     | 7         | 6.7     | 6.7           | 82.9                  |  |  |  |
|       | 47-65     | 17        | 16.2    | 16.2          | 99.0                  |  |  |  |
|       | >66       | 1         | 1.0     | 1.0           | 100.0                 |  |  |  |
|       | Total     | 105       | 100.0   | 100.0         |                       |  |  |  |

|       |         |           | Ethnicity |               |                       |
|-------|---------|-----------|-----------|---------------|-----------------------|
|       | -       | Frequency | Percent   | Valid Percent | Cumulative<br>Percent |
| Valid | Malay   | 32        | 30.5      | 30.5          | 30.5                  |
|       | Chinese | 67        | 63.8      | 63.8          | 94.3                  |
|       | Indian  | 5         | 4.8       | 4.8           | 99.0                  |
|       | Others  | 1         | 1.0       | 1.0           | 100.0                 |
|       | Total   | 105       | 100.0     | 100.0         |                       |

Monthly Income

|       |              | Frequency | Percent | Valid Percent | Cumulative<br>Percent |
|-------|--------------|-----------|---------|---------------|-----------------------|
| Valid | 2,000-4,000  | 35        | 33.3    | 33.3          | 33.3                  |
|       | 4,001-6,000  | 19        | 18.1    | 18.1          | 51.4                  |
|       | 6,001-8,000  | 17        | 16.2    | 16.2          | 67.6                  |
|       | 8,001-10,000 | 10        | 9.5     | 9.5           | 77.1                  |
|       | >10,000      | 24        | 22.9    | 22.9          | 100.0                 |
|       | Total        | 105       | 100.0   | 100.0         |                       |

An Exploratory Study On The Implementation Of Value Management Among Engineering Professionals In The Klang Valley

## Highest Educational Level

|       |                            |           |         |               | Cumulative |
|-------|----------------------------|-----------|---------|---------------|------------|
|       |                            | Frequency | Percent | Valid Percent | Percent    |
| Valid | First Degree (Bachelor)    | 77        | 73.3    | 73.3          | 73.3       |
|       | Professional Qualification | 9         | 8.6     | 8.6           | 81.9       |
|       | Postgraduate Degree        | 19        | 18.1    | 18.1          | 100.0      |
|       | Total                      | 105       | 100.0   | 100.0         |            |

#### **Current Job Position**

|       |                  | Frequency | Percent | Valid Percent | Cumulative<br>Percent |
|-------|------------------|-----------|---------|---------------|-----------------------|
| Valid | Director         | 11        | 10.5    | 10.5          | 10.5                  |
|       | Senior Manager   | 7         | 6.7     | 6.7           | 17.1                  |
|       | Manager          | 17        | 16.2    | 16.2          | 33.3                  |
|       | Senior Executive | 30        | 28.6    | 28.6          | 61.9                  |
|       | Junior Executive | 33        | 31.4    | 31.4          | 93.3                  |
|       | Non-Executive    | 7         | 6.7     | 6.7           | 100.0                 |
|       | Total            | 105       | 100.0   | 100.0         |                       |

|       |                    | Frequency | Percent | Valid Percent | Cumulative<br>Percent |
|-------|--------------------|-----------|---------|---------------|-----------------------|
| Valid | Government Sector  | 17        | 16.2    | 16.2          | 16.2                  |
|       | Property Developer | 4         | 3.8     | 3.8           | 20.0                  |
|       | Contractor         | 9         | 8.6     | 8.6           | 28.6                  |
|       | Consultant         | 52        | 49.5    | 49.5          | 78.1                  |
|       | Supplier           | 6         | 5.7     | 5.7           | 83.8                  |
|       | Project Management | 8         | 7.6     | 7.6           | 91.4                  |
|       | Others             | 9         | 8.6     | 8.6           | 100.0                 |
|       | Total              | 105       | 100.0   | 100.0         |                       |

#### Current Engineering Sector

|       | 0                       |           | or nig i loia |               |                       |
|-------|-------------------------|-----------|---------------|---------------|-----------------------|
|       |                         | Frequency | Percent       | Valid Percent | Cumulative<br>Percent |
| Valid | Civil Engineering       | 78        | 74.3          | 74.3          | 74.3                  |
|       | Chemical Engineering    | 3         | 2.9           | 2.9           | 77.1                  |
|       | Electrical Engineering  | 2         | 1.9           | 1.9           | 79.0                  |
|       | Environment Engineering | 4         | 3.8           | 3.8           | 82.9                  |
|       | Mechanical Engineering  | 8         | 7.6           | 7.6           | 90.5                  |
|       | Others                  | 10        | 9.5           | 9.5           | 100.0                 |
|       | Total                   | 105       | 100.0         | 100.0         |                       |

#### **Current Engineering Field**

#### Years of Service in Current Company

|       |       |           |         | 1 7           |                       |
|-------|-------|-----------|---------|---------------|-----------------------|
|       |       | Frequency | Percent | Valid Percent | Cumulative<br>Percent |
| Valid | <2    | 27        | 25.7    | 25.7          | 25.7                  |
|       | 2-5   | 34        | 32.4    | 32.4          | 58.1                  |
|       | 5-10  | 20        | 19.0    | 19.0          | 77.1                  |
|       | 10-15 | 12        | 11.4    | 11.4          | 88.6                  |
|       | >15   | 12        | 11.4    | 11.4          | 100.0                 |
|       | Total | 105       | 100.0   | 100.0         |                       |







Ethnicity

Malay Chinese Indian Others



Civil Engineering Chemical Engineering Electrical Engineering Environment Engineering Mechanical Engineering Others

Director Senior Manager Manager Senior Executive Junior Executive Non-Executive



Engineering Professionals In The Klang Valley

**Current Job Position** 

An Exploratory Study On The Implementation Of Value Management Among





# **APPENDIX H**

|                                                          | Descriptive                 | es          |           |            |
|----------------------------------------------------------|-----------------------------|-------------|-----------|------------|
|                                                          |                             |             | Statistic | Std. Error |
| I have heard of "Value                                   | Mean                        |             | 5.21      | .124       |
| Project, Value Management,                               | 95% Confidence Interval for | Lower Bound | 4.96      |            |
| Value Analysis, Functional<br>Analysis or Value Control" | Mean                        | Upper Bound | 5.46      |            |
| Analysis or Value Control".                              | 5% Trimmed Mean             |             | 5.30      |            |
|                                                          | Median                      |             | 5.00      |            |
|                                                          | Variance                    |             | 1.610     |            |
|                                                          | Std. Deviation              |             | 1.269     |            |
|                                                          | Skewness                    |             | -1.067    | .236       |
|                                                          | Kurtosis                    |             | 1.024     | .467       |
| I have been exposed to VM                                | Mean                        |             | 4.75      | .142       |
| either through formal                                    | 95% Confidence Interval for | Lower Bound | 4.47      |            |
| education, training, daily                               | Mean                        | Upper Bound | 5.03      |            |
| friends and etc.                                         | 5% Trimmed Mean             |             | 4.81      |            |
|                                                          | Median                      |             | 5.00      |            |
|                                                          | Variance                    |             | 2.130     |            |
|                                                          | Std. Deviation              |             | 1.460     |            |
|                                                          | Skewness                    |             | 806       | .236       |
|                                                          | Kurtosis                    |             | 474       | .467       |
| I have very clear                                        | Mean                        |             | 4.70      | .143       |
| understanding of the term                                | 95% Confidence Interval for | Lower Bound | 4.42      |            |
| value Management .                                       | Mean                        | Upper Bound | 4.99      |            |
|                                                          | 5% Trimmed Mean             |             | 4.77      |            |
|                                                          | Median                      |             | 5.00      |            |
|                                                          | Variance                    |             | 2.133     |            |
|                                                          | Std. Deviation              |             | 1.461     |            |
|                                                          | Skewness                    |             | 811       | .236       |
|                                                          | Kurtosis                    |             | 157       | .467       |
| I have applied VM in work.                               | Mean                        |             | 4.83      | .132       |
|                                                          | 95% Confidence Interval for | Lower Bound | 4.57      |            |
|                                                          | Mean                        | Upper Bound | 5.09      |            |
|                                                          | 5% Trimmed Mean             |             | 4.89      |            |
|                                                          | Median                      |             | 5.00      |            |
|                                                          | Variance                    |             | 1.816     |            |

|                               | Std. Deviation              |             | 1.348  |      |
|-------------------------------|-----------------------------|-------------|--------|------|
|                               | Skewness                    |             | 834    | .236 |
|                               | Kurtosis                    |             | 002    | .467 |
| VM will effectively reduce    | Mean                        |             | 5.50   | .092 |
| project cost and improve      | 95% Confidence Interval for | Lower Bound | 5.31   |      |
| project delivery.             | Mean                        | Upper Bound | 5.68   |      |
|                               | 5% Trimmed Mean             |             | 5.54   |      |
|                               | Median                      |             | 6.00   |      |
|                               | Variance                    |             | .887   |      |
|                               | Std. Deviation              |             | .942   |      |
|                               | Skewness                    |             | 866    | .236 |
|                               | Kurtosis                    |             | 1.290  | .467 |
| VM implementation does not    | Mean                        |             | 4.83   | .114 |
| incur high costs.             | 95% Confidence Interval for | Lower Bound | 4.60   |      |
|                               | Mean                        | Upper Bound | 5.06   |      |
|                               | 5% Trimmed Mean             |             | 4.90   |      |
|                               | Median                      |             | 5.00   |      |
|                               | Variance                    |             | 1.374  |      |
|                               | Std. Deviation              |             | 1.172  |      |
|                               | Skewness                    |             | 681    | .236 |
|                               | Kurtosis                    |             | 003    | .467 |
| VM is an effective cost       | Mean                        |             | 5.29   | .095 |
| control measure.              | 95% Confidence Interval for | Lower Bound | 5.10   |      |
|                               | Mean                        | Upper Bound | 5.47   |      |
|                               | 5% Trimmed Mean             |             | 5.35   |      |
|                               | Median                      |             | 5.00   |      |
|                               | Variance                    |             | .956   |      |
|                               | Std. Deviation              |             | .978   |      |
|                               | Skewness                    |             | -1.045 | .236 |
|                               | Kurtosis                    |             | 1.375  | .467 |
| VM could ensure higher profit | Mean                        |             | 5.50   | .104 |
| through elimination of        | 95% Confidence Interval for | Lower Bound | 5.29   |      |
| unnecessary costs.            | Mean                        | Upper Bound | 5.70   |      |
|                               | 5% Trimmed Mean             |             | 5.57   |      |
|                               | Median                      |             | 6.00   |      |

|                              | _                           |             | 1 1    |      |
|------------------------------|-----------------------------|-------------|--------|------|
|                              | Variance                    |             | 1.137  |      |
|                              | Std. Deviation              |             | 1.066  |      |
|                              | Skewness                    |             | 909    | .236 |
|                              | Kurtosis                    |             | 1.217  | .467 |
| VM is a cost reduction       | Mean                        |             | 5.44   | .091 |
| measure through innovation   | 95% Confidence Interval for | Lower Bound | 5.26   |      |
| and creative alternative     | Mean                        | Upper Bound | 5.62   |      |
|                              | 5% Trimmed Mean             |             | 5.47   |      |
|                              | Median                      |             | 6.00   |      |
|                              | Variance                    |             | .864   |      |
|                              | Std. Deviation              |             | .929   |      |
|                              | Skewness                    |             | 841    | .236 |
|                              | Kurtosis                    |             | 1.217  | .467 |
| Implementation of VM will    | Mean                        |             | 4.27   | .157 |
| delay the engineering design | 95% Confidence Interval for | Lower Bound | 3.95   |      |
| stages.                      | Mean                        | Upper Bound | 4.58   |      |
|                              | 5% Trimmed Mean             |             | 4.29   |      |
|                              | Median                      |             | 5.00   |      |
|                              | Variance                    | 2.601       |        |      |
|                              | Std. Deviation              |             | 1.613  |      |
|                              | Skewness                    |             | 193    | .236 |
|                              | Kurtosis                    |             | -1.303 | .467 |
| Implementation of VM will    | Mean                        |             | 4.64   | .146 |
| cause delay in project       | 95% Confidence Interval for | Lower Bound | 4.35   |      |
| implementation and delivery. | Mean                        | Upper Bound | 4.93   |      |
|                              | 5% Trimmed Mean             |             | 4.66   |      |
|                              | Median                      |             | 5.00   |      |
|                              | Variance                    |             | 2.233  |      |
|                              | Std. Deviation              |             | 1.494  |      |
|                              | Skewness                    |             | 449    | .236 |
|                              | Kurtosis                    |             | -1.012 | .467 |
| Project schedule does not    | Mean                        |             | 4.16   | .161 |
| allocate time for VM         | 95% Confidence Interval for | Lower Bound | 3.84   |      |
| implementation.              | Mean                        | Upper Bound | 4.48   |      |
|                              | 5% Trimmed Mean             |             | 4.18   |      |

|                                                          | =                           |             |        |      |
|----------------------------------------------------------|-----------------------------|-------------|--------|------|
|                                                          | Median                      |             | 4.00   |      |
|                                                          | Variance                    |             | 2.714  |      |
|                                                          | Std. Deviation              |             | 1.647  |      |
|                                                          | Skewness                    |             | 146    | .236 |
|                                                          | Kurtosis                    |             | -1.153 | .467 |
| Project team members do not                              | t Mean                      |             | 4.23   | .154 |
| have time to understand VM.                              | 95% Confidence Interval for | Lower Bound | 3.92   |      |
|                                                          | Mean                        | Upper Bound | 4.53   |      |
|                                                          | 5% Trimmed Mean             |             | 4.22   |      |
|                                                          | Median                      |             | 4.00   |      |
|                                                          | Variance                    |             | 2.505  |      |
|                                                          | Std. Deviation              |             | 1.583  |      |
|                                                          | Skewness                    |             | 089    | .236 |
|                                                          | Kurtosis                    |             | -1.295 | .467 |
| Project team members do no<br>have time to implement VM. | t Mean                      |             | 4.21   | .156 |
|                                                          | 95% Confidence Interval for | Lower Bound | 3.90   |      |
|                                                          | Mean                        | Upper Bound | 4.52   |      |
|                                                          | 5% Trimmed Mean             |             | 4.23   |      |
|                                                          | Median                      |             | 5.00   |      |
|                                                          | Variance                    |             | 2.571  |      |
|                                                          | Std. Deviation              |             | 1.603  |      |
|                                                          | Skewness                    |             | 250    | .236 |
|                                                          | Kurtosis                    |             | -1.293 | .467 |
| Participants' past                                       | Mean                        |             | 5.18   | .125 |
| experiences complement the                               | 95% Confidence Interval for | Lower Bound | 4.93   |      |
| VM implementation                                        | Mean                        | Upper Bound | 5.43   |      |
|                                                          | 5% Trimmed Mean             |             | 5.26   |      |
|                                                          | Median                      |             | 6.00   |      |
|                                                          | Variance                    |             | 1.650  |      |
|                                                          | Std. Deviation              |             | 1.284  |      |
|                                                          | Skewness                    |             | -1.179 | .236 |
|                                                          | Kurtosis                    |             | .556   | .467 |
| Participants' professionalism                            | Mean                        |             | 5.47   | .132 |
| enhances the VM phases.                                  | 95% Confidence Interval for | Lower Bound | 5.20   |      |
|                                                          | Mean                        | Upper Bound | 5.73   |      |
|                                                          |                             |             |        |      |

|                                                        | -<br>5% Trimmed Mean        |             | 5.60   |      |
|--------------------------------------------------------|-----------------------------|-------------|--------|------|
|                                                        | Median                      |             | 6.00   |      |
|                                                        | Variance                    |             | 1.828  |      |
|                                                        | Std. Deviation              |             | 1.352  |      |
|                                                        | Skewness                    |             | -1.356 | .236 |
|                                                        | Kurtosis                    |             | 1.915  | .467 |
| VM facilitators' experience                            | Mean                        |             | 5.53   | .117 |
| and quality enables                                    | 95% Confidence Interval for | Lower Bound | 5.30   |      |
| successful VM                                          | Mean                        | Upper Bound | 5.77   |      |
|                                                        | 5% Trimmed Mean             |             | 5.63   |      |
|                                                        | Median                      |             | 6.00   |      |
|                                                        | Variance                    |             | 1.444  |      |
|                                                        | Std. Deviation              |             | 1.201  |      |
|                                                        | Skewness                    |             | -1.165 | .236 |
|                                                        | Kurtosis                    |             | 1.873  | .467 |
| Owner initiates VM to be<br>used in project management | Mean                        |             | 5.50   | .117 |
|                                                        | 95% Confidence Interval for | Lower Bound | 5.27   |      |
| and development.                                       | Mean                        | Upper Bound | 5.74   |      |
|                                                        | 5% Trimmed Mean             |             | 5.58   |      |
|                                                        | Median                      |             | 6.00   |      |
|                                                        | Variance                    |             | 1.445  |      |
|                                                        | Std. Deviation              |             | 1.202  |      |
|                                                        | Skewness                    |             | 994    | .236 |
|                                                        | Kurtosis                    |             | .464   | .467 |
| There is perfect fit between                           | Mean                        |             | 4.89   | .127 |
| owner's requirement and                                | 95% Confidence Interval for | Lower Bound | 4.63   |      |
| project delivery.                                      | Mean                        | Upper Bound | 5.14   |      |
|                                                        | 5% Trimmed Mean             |             | 4.95   |      |
|                                                        | Median                      |             | 5.00   |      |
|                                                        | Variance                    |             | 1.698  |      |
|                                                        | Std. Deviation              |             | 1.303  |      |
|                                                        | Skewness                    |             | 767    | .236 |
|                                                        | Kurtosis                    |             | 373    | .467 |
| Owner's requirements and                               | Mean                        |             | 5.22   | .117 |
| objectives have been clearly                           | 95% Confidence Interval for | Lower Bound | 4.99   |      |

| defined during the design    | Mean                        | Upper Bound | 5.45   |      |
|------------------------------|-----------------------------|-------------|--------|------|
| stages.                      | 5% Trimmed Mean             |             | 5.29   |      |
|                              | Median                      |             | 5.00   |      |
|                              | Variance                    |             | 1.442  |      |
|                              | Std. Deviation              |             | 1.201  |      |
|                              | Skewness                    |             | -1.079 | .236 |
|                              | Kurtosis                    |             | 1.157  | .467 |
| Perfect fit between owner's  | Mean                        |             | 5.72   | .089 |
| requirement and project      | 95% Confidence Interval for | Lower Bound | 5.55   |      |
| delivery is essential for    | Mean                        | Upper Bound | 5.90   |      |
| project success.             | 5% Trimmed Mean             |             | 5.78   |      |
|                              | Median                      |             | 6.00   |      |
|                              | Variance                    |             | .836   |      |
|                              | Std. Deviation              |             | .915   |      |
|                              | Skewness                    |             | 880    | .236 |
|                              | Kurtosis                    |             | .969   | .467 |
| Owner's confidence in projec | t Mean                      |             | 5.50   | .115 |
| team members is essential    | 95% Confidence Interval for | Lower Bound | 5.28   |      |
| for project success.         | Mean                        | Upper Bound | 5.73   |      |
|                              | 5% Trimmed Mean             |             | 5.57   |      |
|                              | Median                      |             | 6.00   |      |
|                              | Variance                    |             | 1.387  |      |
|                              | Std. Deviation              |             | 1.178  |      |
|                              | Skewness                    |             | 786    | .236 |
|                              | Kurtosis                    |             | .046   | .467 |
| Teamwork between project     | Mean                        |             | 6.02   | .095 |
| team members is the key      | 95% Confidence Interval for | Lower Bound | 5.83   |      |
| factor for project success.  | Mean                        | Upper Bound | 6.21   |      |
|                              | 5% Trimmed Mean             |             | 6.12   |      |
|                              | Median                      |             | 6.00   |      |
|                              | Variance                    |             | .942   |      |
|                              | Std. Deviation              |             | .971   |      |
|                              | Skewness                    |             | -1.261 | .236 |
|                              | Kurtosis                    |             | 1.857  | .467 |
| Participation of each and    | Mean                        |             | 5.84   | .081 |
|                              |                             |             |        |      |

|                                                            | _                           |             |        |      |
|------------------------------------------------------------|-----------------------------|-------------|--------|------|
| every member from various                                  | 95% Confidence Interval for | Lower Bound | 5.68   |      |
| departments is essential for<br>VM implementation success. | Mean                        | Upper Bound | 6.00   |      |
|                                                            | 5% Trimmed Mean             |             | 5.88   |      |
|                                                            | Median                      |             | 6.00   |      |
|                                                            | Variance                    |             | .695   |      |
|                                                            | Std. Deviation              |             | .833   |      |
|                                                            | Skewness                    |             | 499    | .236 |
|                                                            | Kurtosis                    |             | 123    | .467 |
| Participation and support                                  | Mean                        |             | 5.63   | .107 |
| from top management drives                                 | 95% Confidence Interval for | Lower Bound | 5.42   |      |
| successful VM                                              | Mean                        | Upper Bound | 5.84   |      |
| Implementation.                                            | 5% Trimmed Mean             |             | 5.70   |      |
|                                                            | Median                      |             | 6.00   |      |
|                                                            | Variance                    |             | 1.197  |      |
|                                                            | Std. Deviation              |             | 1.094  |      |
|                                                            | Skewness                    |             | 785    | .236 |
|                                                            | Kurtosis                    |             | .394   | .467 |
| Competent leader is vital for                              | Mean                        |             | 6.06   | .079 |
| VM initiative.                                             | 95% Confidence Interval for | Lower Bound | 5.90   |      |
|                                                            | Mean                        | Upper Bound | 6.21   |      |
|                                                            | 5% Trimmed Mean             |             | 6.12   |      |
|                                                            | Median                      |             | 6.00   |      |
|                                                            | Variance                    |             | .651   |      |
|                                                            | Std. Deviation              |             | .807   |      |
|                                                            | Skewness                    |             | 890    | .236 |
|                                                            | Kurtosis                    |             | 1.378  | .467 |
| Communication between                                      | Mean                        |             | 5.78   | .098 |
| project team members                                       | 95% Confidence Interval for | Lower Bound | 5.59   |      |
| ensures VM implementation success.                         | Mean                        | Upper Bound | 5.97   |      |
|                                                            | 5% Trimmed Mean             |             | 5.85   |      |
|                                                            | Median                      |             | 6.00   |      |
|                                                            | Variance                    |             | 1.000  |      |
|                                                            | Std. Deviation              |             | 1.000  |      |
|                                                            | Skewness                    |             | -1.134 | .236 |
|                                                            | Kurtosis                    |             | 1.698  | .467 |

| Communication between         | Mean                        |             | 5.69  | .086 |
|-------------------------------|-----------------------------|-------------|-------|------|
| internal project members and  | 95% Confidence Interval for | Lower Bound | 5.52  |      |
| external stakeholders         | Mean                        | Upper Bound | 5.86  |      |
| implementation and project    | 5% Trimmed Mean             |             | 5.72  |      |
| delivery.                     | Median                      |             | 6.00  |      |
|                               | Variance                    |             | .775  |      |
|                               | Std. Deviation              |             | .880  |      |
|                               | Skewness                    |             | 714   | .236 |
|                               | Kurtosis                    |             | .228  | .467 |
| Providing training to owner   | Mean                        |             | 5.48  | .077 |
| will enhance the application  | 95% Confidence Interval for | Lower Bound | 5.32  |      |
| of VM.                        | Mean                        | Upper Bound | 5.63  |      |
|                               | 5% Trimmed Mean             |             | 5.48  |      |
|                               | Median                      |             | 6.00  |      |
|                               | Variance                    |             | .617  |      |
|                               | Std. Deviation              |             | .786  |      |
|                               | Skewness                    |             | 344   | .236 |
|                               | Kurtosis                    |             | .220  | .467 |
| Providing training to project | Mean                        |             | 5.61  | .076 |
| team members will enhance     | 95% Confidence Interval for | Lower Bound | 5.46  |      |
| the application of VM.        | Mean                        | Upper Bound | 5.76  |      |
|                               | 5% Trimmed Mean             |             | 5.63  |      |
|                               | Median                      |             | 6.00  |      |
|                               | Variance                    |             | .606  |      |
|                               | Std. Deviation              |             | .778  |      |
|                               | Skewness                    |             | 561   | .236 |
|                               | Kurtosis                    |             | .600  | .467 |
| Continuous training will      | Mean                        |             | 5.48  | .100 |
| reinforces the quality and    | 95% Confidence Interval for | Lower Bound | 5.28  |      |
| Implementation of VM.         | Mean                        | Upper Bound | 5.68  |      |
|                               | 5% Trimmed Mean             |             | 5.54  |      |
|                               | Median                      |             | 6.00  |      |
|                               | Variance                    |             | 1.060 |      |
|                               | Std. Deviation              |             | 1.029 |      |
|                               | Skewness                    |             | 906   | .236 |
|                               |                             |             |       |      |

|                                      | –<br>Kurtosis               |             | .964   | .467 |
|--------------------------------------|-----------------------------|-------------|--------|------|
| Parties involved in leading          | Mean                        |             | 3.67   | .155 |
| the VM initiatives lack the          | 95% Confidence Interval for | Lower Bound | 3.36   |      |
| knowledge of VM.                     | Mean                        | Upper Bound | 3.97   |      |
|                                      | 5% Trimmed Mean             |             | 3.63   |      |
|                                      | Median                      |             | 3.00   |      |
|                                      | Variance                    |             | 2.513  |      |
|                                      | Std. Deviation              |             | 1.585  |      |
|                                      | Skewness                    |             | .404   | .236 |
|                                      | Kurtosis                    |             | 971    | .467 |
| There is a lack of VM experts        | Mean                        |             | 3.49   | .146 |
| in Malaysia to ensure                | 95% Confidence Interval for | Lower Bound | 3.20   |      |
| successful VM                        | Mean                        | Upper Bound | 3.77   |      |
|                                      | 5% Trimmed Mean             |             | 3.48   |      |
|                                      | Median                      |             | 3.00   |      |
|                                      | Variance                    |             | 2.233  |      |
|                                      | Std. Deviation              |             | 1.494  |      |
|                                      | Skewness                    |             | .389   | .236 |
|                                      | Kurtosis                    |             | 929    | .467 |
| Project team members have            | Mean                        |             | 3.50   | .148 |
| low understanding and                | 95% Confidence Interval for | Lower Bound | 3.21   |      |
| knowledge of VM                      | Mean                        | Upper Bound | 3.80   |      |
|                                      | 5% Trimmed Mean             |             | 3.47   |      |
|                                      | Median                      |             | 3.00   |      |
|                                      | Variance                    |             | 2.291  |      |
|                                      | Std. Deviation              |             | 1.514  |      |
|                                      | Skewness                    |             | .500   | .236 |
|                                      | Kurtosis                    |             | -1.075 | .467 |
| There are limited resources          | Mean                        |             | 3.67   | .155 |
| on the project's VM that             | 95% Confidence Interval for | Lower Bound | 3.36   |      |
| project team members can<br>request. | Mean                        | Upper Bound | 3.97   |      |
|                                      | 5% Trimmed Mean             |             | 3.62   |      |
|                                      | Median                      |             | 3.00   |      |
|                                      | Variance                    |             | 2.532  |      |
|                                      | Std. Deviation              |             | 1.591  |      |

|                                 | -                           |             |       |      |
|---------------------------------|-----------------------------|-------------|-------|------|
|                                 | Skewness                    |             | .434  | .236 |
|                                 | Kurtosis                    |             | 896   | .467 |
| The cost, quality and           | Mean                        |             | 5.78  | .093 |
| schedules should be clearly     | 95% Confidence Interval for | Lower Bound | 5.60  |      |
| defined in the project          | Mean                        | Upper Bound | 5.96  |      |
|                                 | 5% Trimmed Mean             |             | 5.83  |      |
|                                 | Median                      |             | 6.00  |      |
|                                 | Variance                    |             | .903  |      |
|                                 | Std. Deviation              |             | .951  |      |
|                                 | Skewness                    |             | 709   | .236 |
|                                 | Kurtosis                    |             | .272  | .467 |
| Clear objectives provide        | Mean                        |             | 6.06  | .066 |
| project team members with       | 95% Confidence Interval for | Lower Bound | 5.93  |      |
| better focus on the project     | Mean                        | Upper Bound | 6.19  |      |
| requirements and delivery.      | 5% Trimmed Mean             |             | 6.10  |      |
|                                 | Median                      |             | 6.00  |      |
|                                 | Variance                    |             | .458  |      |
|                                 | Std. Deviation              |             | .677  |      |
|                                 | Skewness                    |             | 638   | .236 |
|                                 | Kurtosis                    |             | 1.165 | .467 |
| VM is just another              | Mean                        |             | 4.97  | .150 |
| management fashion.             | 95% Confidence Interval for | Lower Bound | 4.67  |      |
|                                 | Mean                        | Upper Bound | 5.27  |      |
|                                 | 5% Trimmed Mean             |             | 5.03  |      |
|                                 | Median                      |             | 6.00  |      |
|                                 | Variance                    |             | 2.355 |      |
|                                 | Std. Deviation              |             | 1.535 |      |
|                                 | Skewness                    |             | 667   | .236 |
|                                 | Kurtosis                    |             | 576   | .467 |
| The traditional form of project | Mean                        |             | 5.21  | .127 |
| delivery is better than VM.     | 95% Confidence Interval for | Lower Bound | 4.96  |      |
|                                 | Mean                        | Upper Bound | 5.46  |      |
|                                 | 5% Trimmed Mean             |             | 5.25  |      |
|                                 | Median                      |             | 6.00  |      |
|                                 | Variance                    |             | 1.686 |      |

|                               | Std. Deviation              |             | 1.299 |      |
|-------------------------------|-----------------------------|-------------|-------|------|
|                               | Skewness                    |             | 426   | .236 |
|                               | Kurtosis                    |             | 734   | .467 |
| VM is time-wasting initiative | Mean                        |             | 5.33  | .124 |
| in project delivery.          | 95% Confidence Interval for | Lower Bound | 5.09  |      |
|                               | Mean                        | Upper Bound | 5.58  |      |
|                               | 5% Trimmed Mean             |             | 5.40  |      |
|                               | Median                      |             | 6.00  |      |
|                               | Variance                    |             | 1.609 |      |
|                               | Std. Deviation              |             | 1.268 |      |
|                               | Skewness                    |             | 827   | .236 |
|                               | Kurtosis                    |             | .436  | .467 |
| VM implementation promotes    | Mean                        |             | 5.41  | .092 |
| creativity, innovation and    | 95% Confidence Interval for | Lower Bound | 5.23  |      |
| aggressiveness in project     | Mean                        | Upper Bound | 5.59  |      |
|                               | 5% Trimmed Mean             |             | 5.44  |      |
|                               | Median                      |             | 6.00  |      |
|                               | Variance                    |             | .898  |      |
|                               | Std. Deviation              |             | .948  |      |
|                               | Skewness                    |             | 840   | .236 |
|                               | Kurtosis                    |             | .873  | .467 |
| VM implementation increases   | Mean                        |             | 5.50  | .085 |
| value in the project          | 95% Confidence Interval for | Lower Bound | 5.34  |      |
| implementation and delivery.  | Mean                        | Upper Bound | 5.67  |      |
|                               | 5% Trimmed Mean             |             | 5.52  |      |
|                               | Median                      |             | 6.00  |      |
|                               | Variance                    |             | .752  |      |
|                               | Std. Deviation              |             | .867  |      |
|                               | Skewness                    |             | 556   | .236 |
|                               | Kurtosis                    |             | 187   | .467 |
| VM implementation ensures     | Mean                        |             | 5.43  | .085 |
| effective and efficient       | 95% Confidence Interval for | Lower Bound | 5.26  |      |
| engineening design.           | Mean                        | Upper Bound | 5.60  |      |
|                               | 5% Trimmed Mean             |             | 5.48  |      |
|                               | Median                      |             | 6.00  |      |

|                                                             | Variance                    |             | .766   |      |
|-------------------------------------------------------------|-----------------------------|-------------|--------|------|
|                                                             | Std. Deviation              |             | .875   |      |
|                                                             | Skewness                    |             | -1.136 | .236 |
|                                                             | Kurtosis                    |             | 1.851  | .467 |
| VM provides means of                                        | Mean                        |             | 5.27   | .108 |
| accurate cost estimation.                                   | 95% Confidence Interval for | Lower Bound | 5.05   |      |
|                                                             | Mean                        | Upper Bound | 5.48   |      |
|                                                             | 5% Trimmed Mean             |             | 5.33   |      |
|                                                             | Median                      |             | 5.00   |      |
|                                                             | Variance                    |             | 1.236  |      |
|                                                             | Std. Deviation              |             | 1.112  |      |
|                                                             | Skewness                    |             | 805    | .236 |
|                                                             | Kurtosis                    |             | 1.453  | .467 |
| VM implementation promotes                                  | Mean                        |             | 5.39   | .092 |
| quantitative and qualitative<br>development of project team | 95% Confidence Interval for | Lower Bound | 5.21   |      |
|                                                             | Mean                        | Upper Bound | 5.57   |      |
| members.                                                    | 5% Trimmed Mean             |             | 5.43   |      |
|                                                             | Median                      |             | 6.00   |      |
|                                                             | Variance                    |             | .894   |      |
|                                                             | Std. Deviation              |             | .946   |      |
|                                                             | Skewness                    |             | -1.069 | .236 |
|                                                             | Kurtosis                    |             | 1.925  | .467 |
| Proper functional analysis                                  | Mean                        |             | 5.53   | .089 |
| and other VM tools like                                     | 95% Confidence Interval for | Lower Bound | 5.36   |      |
| brainstorming, cost benefit<br>analysis and risk analysis   | Mean                        | Upper Bound | 5.71   |      |
| promote VM implementation.                                  | 5% Trimmed Mean             |             | 5.57   |      |
|                                                             | Median                      |             | 6.00   |      |
|                                                             | Variance                    |             | .828   |      |
|                                                             | Std. Deviation              |             | .910   |      |
|                                                             | Skewness                    |             | 959    | .236 |
|                                                             | Kurtosis                    |             | 1.513  | .467 |
| VM is an effective and easy                                 | Mean                        |             | 4.85   | .108 |
| to apply tool.                                              | 95% Confidence Interval for | Lower Bound | 4.63   |      |
|                                                             | Mean                        | Upper Bound | 5.06   |      |
|                                                             | 5% Trimmed Mean             |             | 4.90   |      |

|                                              | _                           |             |       |      |
|----------------------------------------------|-----------------------------|-------------|-------|------|
|                                              | Median                      |             | 5.00  |      |
|                                              | Variance                    |             | 1.227 |      |
|                                              | Std. Deviation              |             | 1.108 |      |
|                                              | Skewness                    |             | 471   | .236 |
|                                              | Kurtosis                    |             | 324   | .467 |
| VM methods generate better                   | Mean                        |             | 5.32  | .089 |
| suggestions and ideas for                    | 95% Confidence Interval for | Lower Bound | 5.15  |      |
| project delivery.                            | Mean                        | Upper Bound | 5.50  |      |
|                                              | 5% Trimmed Mean             |             | 5.36  |      |
|                                              | Median                      |             | 5.00  |      |
|                                              | Variance                    |             | .836  |      |
|                                              | Std. Deviation              |             | .915  |      |
|                                              | Skewness                    |             | 847   | .236 |
|                                              | Kurtosis                    |             | 1.217 | .467 |
| Clear VM standards and guidelines promote VM | Mean                        |             | 5.71  | .092 |
|                                              | 95% Confidence Interval for | Lower Bound | 5.53  |      |
| implementation.                              | Mean                        | Upper Bound | 5.90  |      |
|                                              | 5% Trimmed Mean             |             | 5.76  |      |
|                                              | Median                      |             | 6.00  |      |
|                                              | Variance                    |             | .898  |      |
|                                              | Std. Deviation              |             | .948  |      |
|                                              | Skewness                    |             | 708   | .236 |
|                                              | Kurtosis                    |             | 1.118 | .467 |
| VM methods promote rational                  | Mean                        |             | 5.55  | .094 |
| selection of alternatives to a               | 95% Confidence Interval for | Lower Bound | 5.37  |      |
| problem.                                     | Mean                        | Upper Bound | 5.74  |      |
|                                              | 5% Trimmed Mean             |             | 5.59  |      |
|                                              | Median                      |             | 6.00  |      |
|                                              | Variance                    |             | .923  |      |
|                                              | Std. Deviation              |             | .961  |      |
|                                              | Skewness                    |             | 782   | .236 |
|                                              | Kurtosis                    |             | .965  | .467 |
| VM implementation is an                      | Mean                        |             | 4.71  | .156 |
| obstacle to project                          | 95% Confidence Interval for | Lower Bound | 4.40  |      |
| Implementation and delivery.                 | Mean                        | Upper Bound | 5.02  |      |
|                                              |                             |             |       |      |

|                     | 5% Trimmed Mean             |             | 4.74   |      |
|---------------------|-----------------------------|-------------|--------|------|
|                     | Median                      |             | 5.00   |      |
|                     | Variance                    |             | 2.571  |      |
|                     | Std. Deviation              |             | 1.604  |      |
|                     | Skewness                    |             | 519    | .236 |
|                     | Kurtosis                    |             | -1.032 | .467 |
| VM should not be    | Mean                        |             | 5.32   | .145 |
| implemented in the  | 95% Confidence Interval for | Lower Bound | 5.04   |      |
| engineering sector. | Mean                        | Upper Bound | 5.61   |      |
|                     | 5% Trimmed Mean             |             | 5.43   |      |
|                     | Median                      |             | 6.00   |      |
|                     | Variance                    |             | 2.221  |      |
|                     | Std. Deviation              |             | 1.490  |      |
|                     | Skewness                    |             | 965    | .236 |
|                     | Kurtosis                    |             | .211   | .467 |