4.1 Demographics Information

560 questionnaire forms were distributed via the medium email to 14 case-study GLCs that had agreed to participate in this study. Each GLC was given 40 questionnaire forms to be distributed among the employee groups ranging from executive to manager. 319 or 57% of the questionnaire forms were filled and returned to the researcher using the same medium where 316 were usable after screened. The unusable forms were not answered properly by respondents resulting in missing value.

Data representing the demographic profile, mean, and standard deviation of the respondents was illustrated in Table 2 and 3 respectively. For the variable sector, information was gathered from four sectors with 200 respondents represented the social sector, 88 respondents from the infrastructure sector, 19 respondents from the economy sector and 9 respondents from the technology sector with a mean of 1.48 and standard deviation of .737. Respondents ranged in age from 26 to above 51, with a mean of 4.54 and standard deviation of 1.353. Total counts of respondents classified in gender group were 169 males and 147 females with a mean of 1.47 and standard deviation of .500. For the variable ethnic, respondents were made up of 283 Malays, 11 Indian, 19 Chinese and 3 others with a mean of 1.18 and standard deviation of .573. Most of the respondents worked in GLCs for more than two years giving a mean of 3.66 and standard deviation of 1.231. The majority of the respondents were degree and MBA graduates, giving a mean of 6.42 and standard deviation of .572 with mostly holding positions of managers and senior managers with a mean of 3.33 and standard deviation of .925. For the variable employment status, 283 of the total respondents worked in GLCs held permanent position and only 33 were on contractual basis with a mean of 1.10 and standard deviation of .306.

DEMOGRAPHIC VARIABLES N = 316	CATEGORIES	FREQUENCY	PERCENT %
SECTOR	1 Social	200	63
	2 Infrastructure	88	28
	3 Economy	19	6
	4 Technology	9	3
AGE	2 26-30	36	11
	3 31-35	30	10
	4 36-40	73	23
	5 41-45	98	31
	6 46-50	63	20
	7 above 51	16	5
GENDER	1 Males	169	54
	2 Females	147	46
ETHNIC	1 Malay	283	90
	2 Indian	11	4
	3 Chinese	19	6
	4 Others	3	1
TENURE	1 below 1 year	12	4
	2 2-5 years	63	20
	3 6-10 years	51	16
	4 11-15 years	86	27
	5 16 years above	104	33
EDUCATION LEVEL	5 Diploma	3	1
	6 Degree	187	59
	7 MBA	116	37
	8 PhD	10	3
EMPLOYMENT GROUP	1 Executive	7	2
	2 Assistant Manager	55	17
	3 Manager	106	34
	4 Senior Manager	124	39
	5 General Manager	24	8
EMPLOYMENT STATUS	1 Permanent	283	90
	2 Contract	33	10
INCOME	2 RM2001-RM4000	27	9
-	3 RM4001-RM6000	53	17
	4 RM6001-RM8000	45	14
	5 RM8001-RM10000	54	17
	6 RM10001 above	137	43

Table 2:Frequency:Demographic Profile of Respondents

4.2 Descriptive Statistics

Information for each of the variable was summarized in the output presented in Table 3 below. Table 3 provided information on the distribution of scores on continuous variables, mean, standard deviation, skewness and kurtosis.

N 216	Minimum	Maximum	Mean	Std. Deviation	Skew	ness	Kurt	osis
N = 310	Statistic	Statistic	Statistic	Statistic	Statistic	Stu. Error	Statistic	Stu. Error
Gender	1	2	1.47	.500	.140	.137	-1.993	.273
Age	2	7	4.54	1.353	340	.137	568	.273
Marital	1	3	1.85	.404	-1.099	.137	1.626	.273
Ethnic	1	4	1.18	.573	3.147	.137	9.018	.273
Education	5	8	6.42	.572	.672	.137	206	.273
Level								
Employment	1	2	1.10	.306	2.599	.137	4.787	.273
Status								
Employment	1	5	3.33	.925	280	.137	419	.273
Group								
Income	2	6	4.70	1.390	599	.137	-1.052	.273
Years Of	1	5	3.66	1.231	459	.137	-1.029	.273
Experience								
Sector	1	4	1.48	.737	1.590	.137	2.225	.273
Total Reasons	41	74	58.89	7.318	335	.137	084	.273
Total	17	50	38.91	7.031	857	.137	.365	.273
Characteristics								
Total	38	92	68.74	10.376	240	.137	.206	.273
Approach								
Total Results	20	46	36.57	5.662	919	.137	.901	.273
Total HRM	17	35	28.53	3.764	233	.137	.723	.273
Total	30	55	40.69	5.460	.322	.137	.671	.273
Sophistication								
Level								

Table 3:Descriptive Statistics of Variables

			Std.	
N = 31	6	Mean	Deviation	Variance
Reaso	ns in Talent Decisions			
Re1	To manage talent more effectively	4.30	.705	.497
Re2	To achieve growth & competitive advantage	4.28	.603	.363
Re3	Improve biz results & bottom line	4.09	.723	.523
Re4	Anticipation of retirement of current key managers	4.30	.644	.414
Re5	To address retirement age and aging workforce	3.65	.922	.851
Re6	To address high cost or turnover	3.30	.903	.815
Re7	To align talent with work performance & promotion	4.06	.766	.586
Re8	To enhance motivation & work engagement	4.24	.667	.445
Re9	Biz growth requires better TM	4.28	.720	.519
Re10	Need for diversity management	3.99	.717	.514
Re11	Changes in management infrastructure	3.20	.990	.979
Re12	Changes in competency & skill in future leaders	4.09	.673	.453
Re13	Need to retain internal talent	4.09	.638	.407
Re14	Competition for talent due to tight labour market	3.78	.617	.381
Re15	M&A & diversification	3.23	.936	.877
Appro	aches in Talent Decisions			
Ap1	Driven by CEO	4.16	.641	.411
Ap2	Responsibility of top executives	4.13	.691	.478
Ap3	Involves line managers	3.93	.755	.570
Ap4	Relies on HR	3.73	.856	.732
Ap5	Relies on computer tracking system	3.01	1.036	1.073
Арб	Incorporated into corporate strategy	3.55	.855	.731
Ap7	Link to organizational outcome & performance	3.48	1.070	1.146
Ap8	Respond to changing biz strategy	3.70	.760	.578
Ap9	Included in all biz development	3.50	.701	.492
Ap10	Shared ownership across all levels in org	3.45	.880	.775
Ap11	Reward managers for staff development	3.08	.884	.782
Ap12	Use objective assessment on skill & competency	3.49	1.085	1.178
Ap13	Consider employee's career path	3.42	1.012	1.025
Ap14	Prepare leaders for succession plan	3.90	.703	.494
Ap15	Fill existing & future jobs	3.94	.678	.459
Ap16	Heir inherit	3.56	.726	.527
Ap17	Talent pool	3.84	.641	.411
Ap18	Proactive method	3.74	.688	.474
Ap19	Reactive method	3.15	.958	.918

 Table 4:
 Descriptive Statistics: Comparison of Means, Standard Deviation and Variance

			Std.	
N = 31	6	Mean	Deviation	Variance
Roles	of Human Resource Management In Talent Architect	ure		
Hr1	Recruitment & selection	4.20	.599	.359
Hr2	Learning & development	4.32	.468	.219
Hr3	Career development	4.09	.753	.567
Hr4	Performance appraisal	3.94	.749	.561
Hr5	Reward, incentive & compensation	3.93	.852	.725
Hr6	Succession management	4.12	.711	.506
Hr7	Coaching & mentoring	3.93	.769	.592
Chara	cteristics of Talent Architecture			
Ch1	Clearly clarified & communicated	3.91	.826	.682
Ch2	Established competency model	3.37	.998	.996
Ch3	Requirements are clearly defined	3.44	1.118	1.251
Ch4	Open & transparent	3.44	.780	.609
Ch5	Performance defined & measured objectively	3.45	.843	.711
Ch6	Individual dev plan has been established	3.87	.625	.390
Ch7	Evaluation tool to measure effectiveness of TM	3.70	.732	.536
Ch8	Documentation tool has been established	3.56	.756	.571
Ch9	Continuous assessment tool has been established	3.60	.721	.521
Ch10	Effective reward, compensation & promotion system	3.27	1.121	1.258
Ch11	Contains a timeframe	3.31	.815	.664
Level	of Sophistication of Talent Architecture			
So1	Time is devoted to tm by CEO & Sr Managers	3.86	.810	.656
So2	Top executives' involvement in TM process	3.92	.832	.693
So3	TM rules & procedures are formalized	3.80	.794	.630
So4	TM committee members are credible & competent	3.94	.671	.450
So5	Database on employees & job positions are	3 94	645	416
	established	5.74	.045	.+10
So6	Department & staff are responsible on TM planning	3 83	752	565
	& execution	5.05	.152	.505
So7	HODs are evaluated & compensated for developing	3 18	1 075	1 156
	talents	5.10	11070	1.100
So8	Promotion is based on personal relationship &	3.18	.977	.955
	networks			
So9	Promotion is based on performance	3.81	.559	.313
So10	Promotion is based on ability	3.70	.706	.498
So11	Auditing & following up is established for review	3.53	.696	.485
	process		-	-

			Std.	
N = 31	6	Mean	Deviation	Variance
Talent	t Results of Talent Intervention			
Op1	Close link between TS & talent retention	3.27	.954	.910
Op2	TS critical driver for org performance & competitive advantage	3.63	.890	.792
Op3	TS key factor to achieve strategic goals	3.26	1.038	1.077
Op4	TS shapes biz structure, value proposition & customer satisfaction	3.27	.901	.812
Op5	High attrition cost affects biz performance	3.29	.696	.485
Op6	Connection between developing talent & biz result	3.76	.708	.501
Op7	Attracting, dev & retaining talent a strategic issue	3.83	.843	.711
Op8	Talent is competitive asset	4.22	.864	.746
Op9	Talent is scarce & hard to find	3.93	.996	.992
Op10	Talent stretch performance goals & align vision & mission	4.10	.805	.647

Table 4: Descriptive Statistics for Comparison of Means, Standard Deviation and Variance output showed that all means were within the range of three to four. It was therefore concluded that there were no significant differences in terms of means and variances among all the variables compared.

4.3 Normality Tests

Kolmog	orov-Smit	rnova	Shapiro-Wilk				
Statistic	df	Sig.	Statistic	df	Sig.		
.110	316	.000	.966	316	.000		
.101	316	.000	.961	316	.000		
.227	316	.000	.901	316	.000		
.195	316	.000	.892	316	.000		
.168	316	.000	.930	316	.000		
.112	316	.000	.930	316	.000		
	Kolmog Statistic .110 .101 .227 .195 .168 .112	Kolmoyov-Smir Statistic df .110 316 .101 316 .227 316 .195 316 .168 316 .112 316	Kolmosuv-Smiva Statistic df Sig. .110 316 .000 .101 316 .000 .102 316 .000 .195 316 .000 .168 316 .000 .112 316 .000	Kolmosystem Statistic Statistic	Kolmosyv-Smivy Shafistic df Sig. Statistic df Statistic df Sig. Statistic df df .110 316 .000 .966 316 .101 316 .000 .961 316 .102 316 .000 .901 316 .195 316 .000 .892 316 .168 316 .000 .930 316 .112 316 .000 .930 316		

Table 5:Tests of Normality

a. Lilliefors Significance Correction

The output above in Table 5 revealed the results of the Kolmogorov-Smirnov statistic that assessed the normality of the distribution of the scores.

The actual shape of the distribution for each group can be seen in Appendix 4 Normality Test. Scores appeared to be reasonably normally distributed. This was supported by an inspection of the normality probability plots labeled Normal Q-Q Plot. In this plot, the observed value for each score was plotted against the expected value from the normal distribution. A reasonably straight line suggested a normal distribution.

4.4 Reliability Tests

One of the most commonly used indicators of internal consistency was Cronbachøs alpha coefficient that reflected how well the items in the set were positively correlated to one another. Ideally the Cronbachøs alpha coefficient of scale should be above .7 (Pallant, 2011: 97).

4.4.1 Cronbach's Alpha Test

Table 6 Reliability Statistics for Cronbach's Alpha showed the summary of the result.

Table 6:	Reliability Statis	stics: Cronl	bach's Alpha
	-1		

Scales	Cronbach's Alpha	Cronbach's Alpha Based on Standardized Items	No of Items
Total Reasons	.899	.908	15
Total Approach	.926	.930	19
Total HRM	.876	.886	7
Total Characteristics	.918	.918	11
Total Level of Sophistication	.848	.861	11
Total Talent Results	.845	.854	10

The results in Table 6 showed Cornbachøs alpha coefficient values for Reliability Statistics for Total Approach scored the highest (0.926). Results for other scales had Cronbachøs alpha coefficient values above .8, suggesting very good internal consistency reliability for the scales with this sample. The closer the reliability coefficient was to 1.0 the better. The result demonstrated that the internal consistency reliability of items for all the scales in the organization could be considered reliable. Values above .7 were considered acceptable however values above .8 were preferable (Pallant, 2011: 100).

4.4.2 Inter-Item Correlation Matrix

	Re1	Re2	Re3	Re4	Re5	Re6	Re7	Re8	Re9	Re10	Re11	Re12	Re13	Re14	Re15
Re1	1.000														
Re2	.672	1.000													
Re3	.423	.629	1.000												
Re4	.584	.573	.381	1.000											
Re5	.183	.329	.174	.382	1.000										
Re6	.405	.546	.568	.296	.392	1.000									
Re7	.500	.601	.552	.412	.301	.523	1.000								
Re8	.580	.601	.529	.487	.021	.435	.721	1.000							
Re9	.579	.585	.570	.401	005	.538	.722	.776	1.000						
Re10	.330	.482	.613	.204	.030	.581	.585	.580	.618	1.000					
Re11	.223	.432	.504	.319	.216	.614	.432	.306	.398	.637	1.000				
Re12	.454	.386	.252	.439	.023	.349	.445	.660	.645	.350	.146	1.000			
Re13	.376	.460	.485	.389	.238	.376	.651	.447	.628	.341	.232	.381	1.000		
Re14	.297	.287	.149	.206	.183	.313	.627	.469	.494	.277	.160	.374	.527	1.000	
Re15	.130	.209	.116	.343	.293	.187	.303	.204	.177	.068	.255	.205	.172	.467	1.000

 Table 7:
 Inter-Item Correlation Matrix for Total Reasons

Table 7 showed the Inter-Item Correlation Matrix for the 15 items in the scale for total reasons used for analysis. All values except for item Re9: õGrowth in business requires better management of talentö were positive, indicating that the items were measuring the same underlying characteristics. The presence of negative value indicated that the item did not measure the same underlying characteristics or had not been correctly reverse-scored. Since coefficient was reliable, the Inter-Item Correlation Matrix for Total Reasons was displayed for reference.

-	Hr1	Hr2	Hr3	Hr4	Hr5	Hr6	Hr7
Hr1	1.000						
Hr2	.762	1.000					
Hr3	.581	.669	1.000				
Hr4	.305	.330	.488	1.000			
Hr5	.550	.335	.499	.675	1.000		
Hr6	.591	.722	.775	.479	.428	1.000	
Hr7	.465	.530	.706	.273	.259	.642	1.000

 Table 8:
 Inter-Item Correlation Matrix for Total Human Resource Management

Table 8 showed the Inter-Item Correlation Matrix for the seven items in the scale for total human resource management used for analysis. All values were positive, indicating that the items were measuring the same underlying characteristics. Since coefficient was reliable, the Inter-Item Correlation Matrix for Total Human Resource Management was displayed for reference.

Table 9:

Inter-Item Correlation Matrix for Total Approach

	Ap1	Ap2	Ap3	Ap4	Ap5	Ap6	Ap7	Ap8	Ap9	Ap10	Ap11	Ap12	Ap13	Ap14	Ap15	Ap16	Ap17	Ap18	Ap19
Ap1	1.000																		
Ap2	.713	1.000																	
Ap3	.559	.704	1.000																
Ap4	.320	.453	.326	1.000															
Ap5	.241	.339	.314	.484	1.000														
Ap6	.499	.586	.420	.625	.580	1.000													
Ap7	.469	.531	.370	.511	.544	.787	1.000												
Ap8	.447	.577	.441	.466	.299	.662	.711	1.000											
Ap9	.357	.478	.560	.301	.109	.389	.406	.726	1.000										
Ap10	.473	.612	.594	.562	.178	.438	.314	.427	.517	1.000									
Ap11	.327	.539	.450	.451	.626	.671	.797	.558	.435	.328	1.000								
Ap12	.483	.501	.358	.559	.548	.676	.730	.502	.413	.357	.771	1.000							
Ap13	.477	.542	.452	.535	.561	.722	.795	.574	.487	.339	.731	.915	1.000						
Ap14	.515	.604	.669	.232	.259	.275	.409	.554	.692	.522	.534	.434	.454	1.000					
Ap15	.585	.635	.655	.337	.223	.257	.375	.499	.547	.521	.437	.418	.464	.739	1.000				
Ap16	.305	.346	.299	.219	.062	.070	138	027	075	.365	007	060	106	.226	.433	1.000			
Ap17	.321	.384	.444	.218	.314	.225	.257	.452	.505	.252	.396	.256	.193	.655	.445	.166	1.000		
Ap18	.337	.514	.528	.293	.178	.170	.245	.433	.589	.440	.409	.212	.199	.659	.597	.332	.735	1.000	
Ap19	.268	.182	.413	133	031	098	.018	010	.236	.066	.234	.163	.133	.400	.498	.349	.290	.381	1.000

Table 9 showed the Inter-Item Correlation Matrix for the 19 items in the scale for total approaches used for analysis. All positive values indicated that the items were measuring the same underlying characteristics. The presence of negative values for item Ap16: õHeir-inherit where certain employees -inheritø positionö and Ap19: õReactive method: reaction due to employee resignation or turnoverö indicated that the items did not measure the same underlying characteristics or had not been correctly reverse-scored. Since coefficient was reliable, the Inter-Item Correlation Matrix for Total Approach was displayed for reference.

	Ch1	Ch2	Ch3	Ch4	Ch5	Ch6	Ch7	Ch8	Ch9	Ch10	Ch11
Ch1	1.000										
Ch2	.393	1.000									
Ch3	.388	.857	1.000								
Ch4	.664	.595	.574	1.000							
Ch5	.228	.818	.900	.431	1.000						
Ch6	.459	.406	.317	.322	.288	1.000					
Ch7	.613	.328	.242	.483	.236	.658	1.000				
Ch8	.510	.659	.652	.499	.638	.716	.750	1.000			
Ch9	.507	.216	.194	.302	.207	.591	.796	.641	1.000		
Ch10	.395	.759	.874	.489	.806	.352	.285	.698	.373	1.000	
Ch11	.105	.648	.690	.438	.682	.345	.221	.493	.356	.684	1.000

 Table 10:
 Inter-Item Correlation Matrix for Total Characteristics

Table 10 showed the Inter-Item Correlation Matrix for the 11 items in the scale for total characteristics used for analysis. All values were positive, indicating that the items were measuring the same underlying characteristics. Since coefficient was reliable, the Inter-Item Correlation Matrix for Total Characteristics was displayed for reference.

	So1	So2	So3	So4	So5	So6	So7	So8	So9	So10	S011
So1	1.000										
So2	.799	1.000									
So3	.652	.626	1.000								
So4	.621	.742	.812	1.000							
So5	.556	.696	.784	.902	1.000						
So6	.675	.761	.726	.842	.890	1.000					
So7	.230	.239	.373	.508	.514	.508	1.000				
So8	.382	.165	.178	.007	.011	.063	300	1.000			
So9	.185	.092	.222	014	.032	.045	086	.417	1.000		
So10	.163	.188	.192	.303	.276	.305	.590	247	.247	1.000	
So11	.202	.130	.238	.320	.351	.419	.722	291	.130	.698	1.000

 Table 11:
 Inter-Item Correlation Matrix for Total Sophistication Level

Table 11 showed the Inter-Item Correlation Matrix for the 11 items in the scale for total sophistication level used for analysis. All positive values indicated that the items were measuring the same underlying characteristics. The presence of negative values for items So8: õSelection for promotion is based on personal relationship and network tiesö, So9: õPromotion is based on past performanceö, So10: õPromotion is based on abilityö, and So11: õAuditing and following up are pursued in the executive or human resource review processö indicated that the items did not measure the same underlying characteristics or had not been correctly reverse scored. Since coefficient was reliable, the Inter-Item Correlation Matrix for Total Sophistication Level was displayed for reference.

	Op1	Op2	Op3	Op4	Op5	Op6	Op7	Op8	Op9	Op10
Op1	1.000									
Op2	.731	1.000								
Op3	.438	.703	1.000							
Op4	.433	.704	.917	1.000						
Op5	.216	.509	.435	.490	1.000					
Op6	.351	.469	.307	.300	.431	1.000				
Op7	.491	.666	.515	.468	.401	.746	1.000			
Op8	.245	.302	.164	.058	.188	.759	.753	1.000		
Op9	077	022	259	206	140	.328	.243	.432	1.000	
Op10	.234	.254	016	058	.040	.705	.656	.722	.599	1.000

 Table 12:
 Inter-Item Correlation Matrix for Total Results

Table 12 showed the Inter-Item Correlation Matrix for the 10 items in the scale for total results used for analysis. All positive values indicated that the items were measuring the same underlying characteristics. The presence of negative values for item Op9: õTalented individuals are scarce and hard to findö and Op10: õTalented individuals are able to stretch the business strategy and vision aligned across all levels of the organizationö indicated that the items did not measure the same underlying characteristics or had not been correctly reverse scored. Since coefficient was reliable, the Inter-Item Correlation Matrix for Total Results was displayed for reference.

4.5 Correlation

Correlation analysis was used in this study to describe the strength and direction of the linear relationship between two variables. The Pearson Correlation Matrix on two set of statements indicated the direction (positive or negative), strength (Pearson correlation r), and significance (p < 0.05) of the bivariate relationship. A bivariate correlation analysis indicated the strength between the two variables measured on an interval scale. The correlation was derived by assessing the variations in one variable as another variable varies. The results might not provide the answer of which variable causes but it showed that the two variables were associated with each other.

Preliminary analyses were performed to ensure no violation on the assumption of normality, linearity and homoscedasticity. The output from Table 13 investigation using Pearson Product-moment Correlations between Measures indicated that there was a positive correlation ranging from small to large between the two variables with this sample: r = .638(total reasons), r = .474 (total approaches), r = .443 (total HRM), r = .124 (total characteristics), r = .511 (total level of sophistication), n = 316, p = .000 (p < .0005).

Scale		1	2	3	4	5	6
		Total Reasons	Total Approach	Total HRM	Total Characteristics	Total Sophistication Level	Total Results
Total Reasons	Pearson Correlation	1	.518**	.560**	.459**	.433**	.638**
	Sig. (2- tailed)		.000	.000	.000	.000	.000
	N		316	316	316	316	316
Total Approaches	Pearson Correlation		1	.381**	.444**	.729**	.474**
	Sig. (2- tailed)			.000	.000	.000	.000
	Ν			316	316	316	316
Total HRM	Pearson Correlation			1	.160**	.592**	.443**
	Sig. (2- tailed)				.004	.000	.000
	N				316	316	316
Total Characteristics	Pearson Correlation				1	.253**	.124*
	Sig. (2- tailed)					.000	.027
	N					316	316
Total Sophistication	Pearson Correlation					1	.511**
Level	Sig. (2- tailed)						.000
	N						316
Total Results	Pearson Correlation Sig. (2- tailed) N						1

Pearson Product-moment Correlations between Variables Table 13:

** Correlation is significant at the 0.01 level (2-tailed) * Correlation is significant at the 0.05 level (2-tailed)

4.6 Multiple Regression

Multiple regression was used in this study to explore the interrelationship among the variables, to address the hypotheses and research questions, and to predict talent results from talent solutions intervention. Multiple regression indicated how much of the variance in the dependent variable could be explained by the independent variables.

Standard multiple regression was used to assess the ability of five control measures (reasons, approaches, human resource management, characteristics and level of sophistication scales) to predict talent results scale. From the output in Table 14 below, the independent variables indicated a good relationship with the dependent variable that is above .3. In this case, except for total characteristics (.124), all the scales total reasons (.638), total approach (.474), total human resource management (.443), and total level of sophistication (.511) correlated substantially with total talent results. The bivariate correlation between each of the independent variables was not too high either that is less than .7. Therefore, all variables would be retained.

The tolerance value for each variable was not less than .10 therefore had not violated the multicollinearity assumption. This was supported by the VIF value for each variable which was well below the cut-off of 10.

R square value was .524. Expressed as a percentage the model explained 52.4 per cent of the variance in talent results which indicated quite a respectable result.

The largest beta coefficient was .631, for total reasons. This indicated that this variable made the strongest unique contribution to explaining the dependent variable, when the variance explained by all other variables was controlled for. The Beta value for total human resource management was the lowest (-.068 Sig. value .225) indicating that it made the lowest unique contribution to talent results.

Total reasons, characteristics and sophistication level variables Sig. Values were less than .05 indicating that the variables made a unique and statistically significant contribution to the prediction of the dependent variable, talent results. Total approaches and human resource management had Sig. value greater than .05 indicating that they did not make a significant unique contribution to the prediction of talent results.

	1	2	3	4	5	6
	Total Results	Total Reasons	Total Characteristics	Total Approach	Total HRM	Total Sophistication
Total Results	1.000					
Total Reasons	.638	1.000				
Total Characteristics	.124	.459	1.000			
Total Approach	.474	.518	.444	1.000		
Total HRM	.443	.560	.160	.381	1.000	
Total Sophistication Level	.511	.433	.253	.729	.592	1.000
Total Results						
Total Reasons	.000					
Total Characteristics	.013	.000				
Total Approach	.000	.000	.000			
Total HRM	.000	.000	.002	.000		
Total Sophistication Level	.000	.000	.000	.000	.000	
	Total Results Total Reasons Total Characteristics Total Approach Total HRM Total HRM Total Results Total Results Total Reasons Total Reasons Total Approach Total HRM Total HRM	1Total ResultsTotal ResultsTotal ReasonsTotal ReasonsTotal ReasonsTotal ReasonsTotal CharacteristicsTotal ApproachTotal HRMAtagTotal ResultsTotal ResultsCharacteristicsTotal ResultsRononTotal ResultsCoupointTotal ResultsRononRononRononRononTotal HRMSophisticationLevel	12Total ResultsTotal ReasonsTotal Results1.000Total Reasons.638Total Reasons.638Total Characteristics.124Approach.474Total HRM.443Sophistication Level.511Total Reasons.000Total Results.Total Results.Total Results.Total Results.Total Results.000Total Results.000Level.000	123Total ResultsTotal ReasonsTotal CharacteristicsTotal Results1.000Total Reasons.6381.000Total Reasons.6381.000Total Characteristics.124.4591.000Total Characteristics.474.518.444Approach.474.518.444Total HRM.443.560.160Total Sophistication.511.433.253LevelTotal ResultsTotal ResultsTotal ResultsTotal Results.000.000Characteristics.013.000Total ResultsTotal ResultsSophistication.000.000LevelTotalSophistication.000.000Level. <td>1234Total ResultsTotal ReasonsTotal CharacteristicsTotal ApproachTotal Results1.000Total Resons.6381.000Total Reasons.6381.000Total Characteristics.124.4591.000Total Approach.474.518.4441.000Total HRM.443.560.160.381Total Sophistication.511.433.253.729LevelTotal ResultsTotal ResultsTotal ResultsTotal ResultsTotal Results000.000.000.Total ResultsTotal ResultsTotal ResultsTotal Results000.000.000Approach.000.000.000.Total HRM.000.000.000.000Approach.000.000.000.000Total Sophistication.000.000.000Level.000.000.000.000</td> <td>12345Total ResultsTotal ReasonsTotal CharacteristicsTotal ApproachTotal HRMTotal Results1.000</td>	1234Total ResultsTotal ReasonsTotal CharacteristicsTotal ApproachTotal Results1.000Total Resons.6381.000Total Reasons.6381.000Total Characteristics.124.4591.000Total Approach.474.518.4441.000Total HRM.443.560.160.381Total Sophistication.511.433.253.729LevelTotal ResultsTotal ResultsTotal ResultsTotal ResultsTotal Results000.000.000.Total ResultsTotal ResultsTotal ResultsTotal Results000.000.000Approach.000.000.000.Total HRM.000.000.000.000Approach.000.000.000.000Total Sophistication.000.000.000Level.000.000.000.000	12345Total ResultsTotal ReasonsTotal CharacteristicsTotal ApproachTotal HRMTotal Results1.000

 Table 14(i):
 Standard Multiple Regression:
 Correlation

Table 14(ii): Standard Multiple Regression: Coefficient

Model	Standardized Coefficients			Correlations	Colline Statist	arity ics
	Beta	t	Sig.	Part	Tolerance	VIF
(Constant)		1.808	.072			
Total reasons	.631	11.384	.000	.446	.500	1.998
Total approach	.081	1.249	.213	.049	.361	2.767
Total HRM	068	-1.215	.225	048	.492	2.034
Total characteristics	263	-5.627	.000	221	.705	1.419
Total Sophistication level	.285	4.254	.000	.167	.341	2.931

Table 14(iii): Standard Multiple Regression: Model Summary

Model					
				Adjusted R	Std. Error of the
		R	R Square	Square	Estimate
	1	.724	.524	.516	3.939

a. Predictors: (Constant), Total Sophistication level, Total

Characteristics, Total reasons, Total HRM, Total approach

b. Dependent Variable: Total results

The findings in Table 14 supported the hypotheses H1, H2, H3, H4 and H5 that talent decisions and talent architecture had positive impacts on talent results.

4.7 Factor Analysis

The measurement items for the scales were subjected to principal components analysis (PCA) using SPSS version 18. Prior to performing PCA, the suitability of data for factor analysis assessed was set at cut-off value of .6 or above for Kaiser-Meyer-Olkin Measure of Sampling Adequacy (KMO) and Bartlettøs Test of Sophericity value was significant (Sig. value is .05 or smaller). From the output generated below, the data had been verified to be suitable for factor analysis where KMO value was .6 above and Bartlettøs .0.

Table 13. KNO and Dattiett's Ter	Table 15:	KMO an	d Bartlett's	Test
----------------------------------	-----------	--------	--------------	------

Scale		1	2	3	4	5	6
		Total Reason	Total Approach	Total HRM	Total Characteristics	Total Sophistication Level	Total Results
Kaiser-Meyer-Olkin Measure of Sampling Adequacy.		0.84	0.779	0.763	0.799	0.781	0.729
Bartlett's Test of Sphericity	Approx. Chi- Square	3154.774	5928.434	1479.61	3669.753	3072.236	2749.561
	df	105	171	21	55	55	45
	Sig.	0	0	0	0	0	0

Table 15 output in this factor analysis test indicated that the Kaiser-Meyer-Olkin (KMO) value for total reasons was .840, total approach .779, total human resource management .763, total characteristics .799, total sophistication level .781, and total results .729 exceeding the recommended value of .6 (Kaiser 1970, 1974). The Bartlett's Test of Sphericity (Bartlett 1954) test in this factor analysis test for all scales were significant (p = .000), supporting the factorability of the correlation matrix. Therefore factor analysis was appropriate.

Component	In	Initial Eigenvalues			Extraction Sums of Squared Loadings			
	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %		
1	6.860	45.732	45.732	6.860	45.732	45.732		
2	1.510	10.065	55.797	1.510	10.065	55.797		
3	1.487	9.912	65.708	1.487	9.912	65.708		
4	1.169	7.794	73.502	1.169	7.794	73.502		

 Table 16:
 PCA: Total Variance Explained for Total Reasons

PCA in Table 16 revealed the presence of four components out of 15 for Total Reasons with eigenvalues exceeding 1, explaining 45.7%, 10.1%, 9.9% and 7.8% of the variance respectively. These four components explained a total of 73.50 per cent of the variance.

Component				Extraction Sums of Squared			
	In	itial Eigenva	lues	Loadings			
	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %	
1	8.781	46.213	46.213	8.781	46.213	46.213	
2	2.813	14.808	61.021	2.813	14.808	61.021	
3	1.459	7.676	68.697	1.459	7.676	68.697	
4	1.216	6.398	75.095	1.216	6.398	75.095	
5	1.017	5.353	80.448	1.017	5.353	80.448	

 Table 17:
 PCA: Total Variance Explained for Total Approaches

PCA in Table 17 revealed the presence of five components out of 19 for Total Approaches recorded with eigenvalues exceeding 1, explaining 46.2%, 14.8%, 7.7%, 6.4% and 5.4% of the variance respectively. These five components explained a total of 80.45 per cent of the variance.

Comp	onent	In	itial Eigenva	lues	Extrac	Rotation Sums of Squared Loadings		
		Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %	Total
	Hr1	4.210	60.144	60.144	4.210	60.144	60.144	3.950
	Hr2	1.105	15.785	75.929	1.105	15.785	75.929	2.584

Table 18:PCA: Total Variance Explained for Total HRM

PCA in Table 18 revealed the presence of two components out of seven for Total Human Resource Management recorded with eigenvalues exceeding 1, explaining 60.1% and 15.8% of the variance respectively. These two components explained a total of 75.93 per cent of the variance.

Compon	ent	Ir	iitial Eigenv	alues	Extrac	Rotation Sums of Squared Loadingsa		
		Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %	Total
1		6.140	55.816	55.816	6.140	55.816	55.816	5.389
2	2	2.098	19.076	74.891	2.098	19.076	74.891	4.499

 Table 19:
 PCA: Total Variance Explained for Total Characteristics

PCA in Table 19 revealed the presence of two components out of 11 for Total Characteristics recorded with eigenvalues exceeding 1, explaining 55.8% and 19.1% of the variance respectively. These two components explained a total of 74.9 per cent of the variance.

Comp	onent	Initial Eigenvalues ent			Extrac	f Squared	Rotation Sums of Squared Loadingsa	
		Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %	Total
	1	5.317	48.335	48.335	5.317	48.335	48.335	5.059
	2	2.198	19.978	68.313	2.198	19.978	68.313	2.916
	3	1.376	12.507	80.820	1.376	12.507	80.820	1.629

Table 20:PCA: Total Variance Explained for Total Sophistication Level

PCA in Table 20 revealed the presence of three components out of 11 for Total Sophistication Level recorded with eigenvalues exceeding 1, explaining 48.3%, 20% and 12.5% of the variance respectively. These three components explained a total of 80.82 per cent of the variance.

Compon	ent							
								Rotation Sums of
					Extrac	tion Sums o	of Squared	Squared
		In	itial Eigenva	alues		Loading	8	Loadingsa
			% of	Cumulative		% of	Cumulative	
		Total	Variance	%	Total	Variance	%	Total
1		4.629	46.292	46.292	4.629	46.292	46.292	4.063
2		2.597	25.970	72.262	2.597	25.970	72.262	3.490

Table 21:PCA: Total Variance Explained for Total Results

PCA in Table 21 revealed the presence of two components out of 10 for Total Results recorded with eigenvalues exceeding 1, explaining 46.3% and 26% of the variance respectively. These two components explained a total of 72.26 per cent of the variance.

4.8 Independent Sample T-Test

An independent sample t-test was used in this study to compare the mean scores on continuous variable for two different groups of people to see if there was a significant difference in the mean total talent results scores for males and females.

The output in Table 22 gave the mean and standard deviation for each gender group, males and females.

GENDER		Ν	Mean	Std. Deviation	Std. Error Mean
Total Reasons	1 males	169	57.51	7.267	.559
	2 females	147	60.48	7.075	.584
Total Approaches	1 males	169	68.44	9.774	.752
	2 females	147	69.09	11.052	.912
Total HRM	1 males	169	27.79	3.468	.267
	2 females	147	29.38	3.919	.323
Total Characteristics	1 males	169	39.06	5.712	.439
	2 females	147	38.75	8.311	.685
Total Sophistication Level	1 males	169	40.25	4.977	.383
	2 females	147	41.20	5.943	.490
Total Talent Results	1 males	169	36.20	5.369	.413
	2 females	147	36.99	5.972	.493

 Table 22:
 Independent T-test for Group Statistics: Gender

		Lever Test Equali	ne's for ty of			4 40.04	for Farality	of Moone		
		variances t-test for Equality of Means					95	%		
						Sig. (2-	Mean	Std. Error	Confidence Interval of the Difference	
		F	Sig.	t	df	tailed)	Difference	Difference	Lower	Upper
Total Reasons	Equal variances assumed Equal variances not assumed	2.169	.142	-3.658 -3.665	314 310.021	.000	-2.961 -2.961	.810 .808	-4.554 -4.551	-1.368 -1.371
Total	Equal	.837	.361	550	314	.583	645	1.172	-2.950	1.660
Approaches	variances assumed Equal variances not assumed			546	293.986	.586	645	1.182	-2.970	1.681
Total HRM	Equal	1.191	.276	-3.836	314	.000	-1.594	.416	-2.412	776
	variances assumed Equal variances not assumed			-3.803	294.048	.000	-1.594	.419	-2.419	769
Total	Equal	23.398	.000	.391	314	.696	.311	.794	-1.251	1.873
Characteristics	variances assumed Equal variances not assumed			.382	253.448	.703	.311	.814	-1.293	1.914
Total	Equal	6.907	.009	-1.555	314	.121	956	.614	-2.164	.253
Sophistication Level	variances assumed Equal variances not assumed			-1.536	285.989	.126	956	.622	-2.180	.269
Total	Equal	1.054	.305	-1.251	314	.212	798	.638	-2.053	.457
Results	variances assumed Equal variances not assumed			-1.241	296.212	.215	798	.643	-2.063	.467

Table 23: Independent Samples Test: Leveneøs Test for Equality of Variance

In the Table 23 output, the first section of the Independent Samples Tests for Equality of Variance box gave the results of Leveneøs test for equality of variances. This tested whether the variance (variation) of scores for the two groups (males and females) was the same. The outcome of this test determined which of the t-values that SPSS provided should be the

correct one to be used. According to Leveneøs test, if the probability was greater than .05, there was no significant difference between the two groups.

In this output, the Sig. value for Leveneøs test referring to equal variances assumed for total reasons was .142, total approaches .361, total human resource management .276, and total performance results .305 were larger than the cut-off of .05 meaning that the variances for the two groups (males and females) were the same. The data did not violate the assumption of equal variances. However, the Sig. value for Leveneøs test for total characteristics was .000 and total sophistication level .009 were smaller than the cut-off of .05, indicating that the variances for the two groups (males and females) were not the same.

Sig. (2-tailed) value for significant difference between the two groups output for total approaches .583 (equal variances assumed) and .586 (equal variances not assumed), total characteristics .696 (equal variances assumed) and .703 (equal variances not assumed), total sophistication level .121 (equal variances assumed) and .126 (equal variances not assumed), and total results .212 (equal variances assumed) and .215 (equal variances not assumed) were above .05.

It was concluded that there was not a statistically significant difference in the mean scores for males and females. The Mean Difference between the two groups was also shown in this table, along with the 95% Confidence Interval of the Difference showing the Lower value and the Upper value.

4.8.1 Calculating the Effect Size for Independent-sample T-test

The effect size statistics provided an indication of the magnitude of the differences between the two groups. Eta squared ranged from 0 to 1 represented the proportion of variance in the dependent variable was explained by the independent (group) variable.

Eta squared for total talent results in this study was calculated as below:

$$= \frac{t}{t + (N1 + N2 - 2)}$$
$$= \frac{-1.25}{-1.25 + (169 + 147 - 2)}$$
$$= -.005$$

For this score, the effect size of -.005 was very small. Expressed as a percentage, only -0.05 per cent of the variance in talent results was explained by gender.

In conclusion, an independent-sample t-test was conducted to compare the talent results scores for males and females. There was no significant difference in scores for males (M = 36.20, SD = 5.37) and females (M = 36.99, SD = 5.97; t (314) = -1.25, p = .22, two-tailed). The magnitude of the differences in the means (mean difference = -.8, 95% *CI*: -2.053 to .457) was very small (eta squared = -.005).

4.9 One way Analysis of Variance (ANOVA)

4.9.1 ANOVA

Analysis of variance (ANOVA) was used to compare the mean scores of age group range.

			95% Confidence Interval for Mean						
	N	Maan	Std.	Std.	Lower	Upper	Mata	M	
	N	Mean	Deviation	Error	Bound	Bound	Minimum	Maximum	
2 26-30	36	37.33	2.165	.361	36.60	38.07	30	39	
3 31-35	30	34.63	5.314	.970	32.65	36.62	20	39	
4 36-40	73	34.81	7.573	.886	33.04	36.58	21	43	
5 41-45	98	36.47	5.140	.519	35.44	37.50	28	46	
6 46-50	63	38.08	5.007	.631	36.82	39.34	30	44	
7 above 51	16	41.13	1.500	.375	40.33	41.92	40	43	
Total	316	36.57	5.662	.319	35.94	37.19	20	46	

Table 24:One way Analysis of Variance (ANOVA) Total Results

The output in Table 24 revealed the information about each age group in terms of the total number of respondents in each group, means, standard deviation, minimum and maximum.

4.9.2 Means Plots

This plot in the Table 24: One way Analysis of Variance (ANOVA) for Total Results gave an easy way to compare the means scores for the different groups. The results from this plot indicated the 31-35 Age Group, M = 34.63, SD = 5.314, recorded the lowest talent results scores, with the above 51 Age Group, M = 41.13, SD = 1.50 recording the highest. The actual difference in the mean scores between the groups was very small.

Table 25:	Test of Homoger	neity of V	Variances	Total	Results
1 4010 201	1000 of 1101110 get				

Levene Statistic	df1	df2	Sig.
14.690	5	310	.000

The homogeneity of variance in Table 25 showed the Leveneøs test for homogeneity of variances for talent results. The significance value (Sig.) for Leveneøs test was .000 indicating that the assumption of the homogeneity of variance had been violated.

Table 26:Robust Tests of Equality of Means Total Results

	Statistic ^a	df1	df2	Sig.
Welch	20.664	5	106.954	.000
Brown-Forsythe	7.322	5	216.602	.000

The two tests, Welch and Brown-Forsythe shown in Table 26 for Robust Tests of Equality of Means indicated the assumption of the homogeneity of variance had been violated.

Table 27ANOVA Between Groups Total Results

	Sum of		Mean		
	Squares	df	Square	F	Sig.
Between Groups	836.561	5	167.312	5.599	.000
Within Groups	9263.043	310	29.881		
Total	10099.604	315			

In the output above in Table 27, the Sig. value was less than .05 indicating there was a significant difference among the mean scores on the dependent variable for the five groups. However, it did not tell which group was different from which other group.

(I) age	(J) age	Moon			95% Con	fidence
		Difference	Std		Lower	Val
		(I-J)	Error	Sig.	Bound	Bound
2 26-30	3 31-35	2.700	1.351	.346	-1.18	6.58
	4 36-40	2.525	1.113	.210	67	5.72
	5 41-45	.864	1.065	.965	-2.19	3.92
	6 46-50	746	1.142	.987	-4.02	2.53
	7 above 51	-3.792	1.642	.194	-8.50	.92
3 31-35	2 26-30	-2.700	1.351	.346	-6.58	1.18
	4 36-40	175	1.185	1.000	-3.57	3.22
	5 41-45	-1.836	1.141	.593	-5.11	1.43
	6 46-50	-3.446	1.213	.054	-6.92	.03
	7 above 51	-6.492*	1.692	.002	-11.34	-1.64
4 36-40	2 26-30	-2.525	1.113	.210	-5.72	.67
	3 31-35	.175	1.185	1.000	-3.22	3.57
	5 41-45	-1.661	.845	.365	-4.08	.76
	6 46-50	-3.271*	.940	.008	-5.97	58
	7 above 51	-6.317*	1.509	.001	-10.64	-1.99
5 41-45	2 26-30	864	1.065	.965	-3.92	2.19
	3 31-35	1.836	1.141	.593	-1.43	5.11
	4 36-40	1.661	.845	.365	76	4.08
	6 46-50	-1.610	.883	.452	-4.14	.92
	7 above 51	-4.656*	1.474	.021	-8.88	43
6 46-50	2 26-30	.746	1.142	.987	-2.53	4.02
	3 31-35	3.446	1.213	.054	03	6.92
	4 36-40	3.271*	.940	.008	.58	5.97
	5 41-45	1.610	.883	.452	92	4.14
	7 above 51	-3.046	1.530	.350	-7.43	1.34
7 above 51	2 26-30	3.792	1.642	.194	92	8.50
	3 31-35	6.492*	1.692	.002	1.64	11.34
	4 36-40	6.317*	1.509	.001	1.99	10.64
	5 41-45	4.656*	1.474	.021	.43	8.88
	6 46-50	3.046	1.530	.350	-1.34	7.43

 Table 28:
 Multiple Comparisons Total Results Tukey HSD

* The mean difference is significant at the 0.5 level.

The statistical significance of the differences between each pair of groups was provided in Table 28 labeled Multiple Comparison which gave the results of the post-hoc tests. The post-

hoc tests in this table stated exactly where the differences among the groups occurred. In the column labeled Mean Difference, values listed with asterisk (*) meant that the two groups being compared were significantly different from one another at the p < .05 level. The exact significant value was given in the column labeled Sig.

In the results presented above, only Group 2 was not statistically significantly different from one another. The 31-35, 36-40, 41-45, 46-50 and above 51 age groups differed significantly in terms of talent results scores.

4.9.3 Calculating Effect Size

Eta squared = $\frac{\text{Sum of squares between groups}}{\text{Total sum of squares}}$

Eta squared = $\frac{836.561}{10099.604}$

Eta squared = 0.08

For this score, the effect size of .08 was of moderate effect. Expressed as a percentage, only 8 per cent of the variance in organizational results was explained by gender.

A one-way between-groups analysis of variance (ANOVA) was conducted to explore the impact of age on talent results. Participants were divided into seven groups according to their age (Group 1: 25 years or less; Group 2: 26 to 30 years; Group 3: 31 to 35 years; Group 4: 36

to 40 years; Group 5: 41 to 45 years; Group 6: 46 to 50 years; and Group 7 51 years and above).

To conclude, there was a statistically significant difference at the p < .05 level in the scores for the seven age groups: F(5, 310) = 5.6, p = .000. Despite reaching statistical significance, the actual difference in mean scores between the groups was moderate. The effect size, calculated using eta squared was .08. Post-hoc comparisons using the Tukey HSD test indicated that the mean score for Group 3 (M = 34.63, SD = 5.31) was significantly different from Group 7 (M = 41.13, SD = 1.50). Group 2 (M = 37.33, SD = 2.17), Group 4 (M =34.81, SD = 7.57), and Group 6 (M = 38.08, SD = 5.01) did not differ significantly from either Group 3 or Group 7.

4.10 Testing of Hypotheses

In this study, the question to be addressed was:

Is there a relationship between talent decisions, talent architecture and talent results in GLCs?

- Null Hypothesis H0: There is significant difference in the relationship between talent decisions, talent architecture and talent results in GLCs.
- Null Hypothesis H1: There is no significant difference in the relationship between talent decisions, talent architecture and talent results in GLCs.

Based on the analysis of the findings, it was concluded that there were no significant differences in terms of means and variances among all the variables compared.

Total reasons (.631) variable made the strongest unique and statistically significant contribution to explain and predict talent results with Sig. value .000 explaining H1, followed by total sophistication level (.285, Sig. value .000) explaining H5, total characteristics (-.263, Sig. value .000) explaining H4, total approaches (.081, Sig. value .213) explaining H2, and lastly, total human resource management (-.068, Sig. value .225) explaining H3.

The null hypothesis H0 was therefore rejected and the null hypothesis H1 was accepted.

4.11 Summary of Research Results

	Agree or Strongly Agree Respondents (%)	Mean
Driven by CEOs to manage talent more effectively	50	4.30
To achieve growth and competitive advantage	56	4.28
To improve business results and bottom-line	47	4.09
In anticipation of retirement of current key managers	52	4.30
To address retirement age and aging workforce	54	3.65
To address high cost of turnover	43	3.30
To align talent with work performance and promotion	55	4.06
To enhance motivation and work engagement	54	4.24
Business growth requires better talent management	48	4.28
Need for diversity management	55	3.99
Changes in management infrastructure	33	3.20
Changes in competency and skill in future leaders	61	4.09
Need to retain internal talent	61	4.09
Competition for talent due to tight labor market	71	3.78
M&A and diversification	43	3.23

Table 29:Section A: Reasons in Talent Decisions in Company H

The findings in Table 29 showed that 67% of the respondents favorably agreed with talent reasons. The majority of respondents viewed that reasons in management decision-making to implement talent solutions was due to competition for talent due to tight labor market (71%). This was followed by the need to retain internal talent and changes in competency and skill in future leaders to meet organizational needs (61%). Reasons in talent decisions were also influenced by the need to achieve organizational growth and competitive advantage (56%).

The percentage of respondents who agreed with these items ranged from 33% to 71%. The results indicated that the respondents favorably agreed that the reasons in talent decisions were aligned to business strategies. The results were presented graphically in Figure 3 where the percentages of responses to the items were reflected.

 Table 30:
 Section B: Approaches in Talent Decisions in Company H

	Agree or Strongly Agree Respondents (%)	Mean
Driven by CEO	64	4.16
Responsibility of top executives	58	4.13
Involves line managers	57	3.93
Relies on human resource	58	3.73
Relies on computer tracking system	31	3.01
Incorporated into corporate strategy	48	3.55
Link to organizational outcome and performance	38	3.48
Respond to changing business strategy	61	3.70
Included in all business development	47	3.50
Shared ownership across all levels in organization	47	3.45
Reward managers for staff development	37	3.08
Use objective assessment on skill and competency	38	3.49
Consider employee's career path	45	3.42
Prepare leaders for succession plan	68	3.90
Fill existing and future jobs	64	3.94
Heir inherit	65	3.56
Talent pool	73	3.84
Proactive method	67	3.74
Reactive method	41	3.15

The results in Table 30 indicated that organizations emphasized on talent development by establishing internal talent pool (73%) and developing talent for pivotal positions (68%). The

findings also indicated that organizations took the proactive method to attract talent to work in their organizations (67%). The respondents favorably agreed that talent solutions were driven largely by the CEOs (64%) in response to changing business strategy (61%).

The percentage of respondents who agreed with these items ranged from 31% to 73%. The results were presented graphically in Figure 4 where the percentages of responses to the items were reflected.

 Table 31:
 Section C: Roles of HRM in Talent Architecture in Company H

	Agree or Strongly Agree Respondents (%)	Mean
Recruitment and selection	65	4.20
Learning and development	68	4.32
Career development	60	4.09
Performance appraisal	64	3.94
Reward, incentive and compensation	66	3.93
Succession management	59	4.12
Coaching & mentoring	58	3.93

The findings in Table 31 showed that respondents favorably agreed that human resource activities were closely linked to talent results. The percentage of respondents who agreed with these items ranged from 58% to 68%. The results were presented graphically in Figure 5 where the percentages of responses to the items were reflected.

Figure 5: Graphical Presentation of the Frequency of the Mean Response for Section C

 Table 32:
 Section D: Characteristics of Talent Architecture in Company H

	Agree or Strongly Agree Respondents (%)	Mean
Clearly clarified and communicated	59	3.91
Established competency model	46	3.37
Requirements are clearly defined	51	3.44
Open and transparent	43	3.44
Performance defined and measured objectively	66	3.45
Individual development plan has been established	73	3.87
Evaluation tool to measure effectiveness established	67	3.70
Documentation tool has been established	52	3.56
Continuous assessment tool has been established	70	3.60
Effective reward, compensation and promotion system	59	3.27
Contains a timeframe	49	3.31

The findings in Table 32 showed the majority of respondents viewed critical characteristics of talents solutions were in place. 73% favorably agreed that individual development plan

aligned with organizational plan had been established, a continuous assessment tool to measure the effectiveness of talent solutions had been established (70%), evaluation tools existed (67%), and individual performance was defined and measured objectively (66%). The percentage of respondents who agreed with these items ranged from 43% to 73%. The results were presented graphically in Figure 6 where the percentages of responses to the items were reflected.

Figure 6: Graphical Presentation of the Frequency of the Mean Response for Section D

 Table 33:
 Section E: Level of Sophistication of Talent Architecture in Company H

	Agree or Strongly Agree Respondents (%)	Mean
Time is devoted to managing talent by CEO and senior managers	59	3.86
Top executives' involvement in talent management process	58	3.92
Talent management rules and procedures are formalized	53	3.80
Talent management committee members are credible and competent	65	3.94
Database on employees and job positions are established	72	3.94
Department and staff are responsible on planning & execution	64	3.83
HODs are evaluated and compensated for developing talents	37	3.18
Promotion is based on personal relationship and networks	39	3.18
Promotion is based on performance	67	3.81
Promotion is based on ability	52	3.70
Auditing and following up is established for review process	54	3.53

From the results in Table 33 above, 82% recorded more than 50% agreement with the items measured indicating the level of sophistication had been established to bring about talent results. The results were presented graphically in Figure 7 where the percentages of responses to the items were reflected.

Figure 7: Graphical Presentation of the Frequency of the Mean Response for Section E

Table 34: Section F: Talent Results of Talent Solutions in Company H

	Agree or Strongly Agree Respondents (%)	Mean
Close link between talent solutions and organization performance	33	3.27
Talent solution is a critical driver for organization performance & competitive advantage	42	3.63
Talent solution is key factor to achieve strategic goals	38	3.26
Talent solution shapes biz structure, value proposition and customer satisfaction	46	3.27
High attrition cost affects business performance	45	3.29
Connection between developing talent and business result	72	3.76
Attracting, developing and retaining talent a strategic issue	59	3.83
Talent is competitive asset	44	4.22
Talent is scarce and hard to find	37	3.93
Talent stretch performance goals and align vision and mission	47	4.10

The findings in Table 34 showed that 72% of the respondents agreed that there was a close relationship between talent development and business results. Attracting, developing and retaining talent were a strategic issue to the organizations scored second (59%).

The findings also showed that the majority of the responses for other items resulted in less than 50% indicating that the respondents did not agree that talent solutions were the answer to talent retention and organizational performance. These findings corresponded with similar literature findings that sometime no matter what retention programs were in place, voluntary turnover would still arise.

The results were presented graphically in Figure 8 where the percentages of responses to the items were reflected.

Figure 8: Graphical Presentation of the Frequency of the Mean Response for Section F

4.12 Discussion of Research Results

This chapter discussed the findings of this study in relation to the research questions and hypotheses with reference to the findings of the literature review.

Section A examined reasons for implementing talent solutions. The findings showed management decision-making was crucial to successfully integrate talent strategy with business strategy to achieve the desired talent results, providing support for H1. The findings were similar with the findings by Colling & Mellahi (2009) that talent management should not simply to respond quickly to the implications of strategy to achieve organizational performance. To be strategic, talent management must shape the organizational strategy and form the basis for system-level, strategic perspective to design and implementation (Gerstrom & Jorgensen, 2009).

The findings indicated a strong need for alignment between management decision-making and talent strategy implying several internal and external environmental factors to achieve talent results. The need for alignment, internally across practices, as well as with the strategy, culture and external environment of the organization, had profound implications for successful talent solutions (Schehar et al, 2010).

Imbalances between business opportunities and the supply of qualified executives with the required competencies, skills and attributes resulted from demands of the knowledge economy, competition for human capital, shortage in managerial talent, the need to manage employeesø careers, employment mismatch, and the rising costs of employee turnover created fierce competition for talent. GLCs needed to create firm value foremost using targeted

personalized approach to retain talent in order to contribute towards organizational performance (Lau & Tong, 2008).

Section B investigated the approaches in talent decisions. Ultimately, CEOs were the owner and driver of talent solutions. The findings supported hypothesis H2 indicated that the corporate duty of CEOs, Boards and top management was to ensure that they had assured pipeline of qualified people to help them meet their business targets and maximized the internal talent pool as a unique source of competitive advantage (Makela et al, 2010). Each talent pipeline model must support every other phase and the whole pipeline must be tightly aligned with business goals and fully integrated into business operations (Baharin & Abdullah, 2011).

The reasons and approaches behind the decisions to implement talent solutions were determined by the needs of the organization and the way the constructs of talent and talent solutions were defined. GLCs would more likely constrain their talent pipeline to the internal labor if the organization so goal was to motivate and retain high achievers. The talent pipeline could include the external labor market if the goal was to ensure sufficient talent to meet future demands. A developmental plan should be created once talents were identified to ensure the talent obtained relevant competencies and skills needed to assume the pivotal position (Lau & Tong, 2008).

A clear understanding on what was meant by talented employees would facilitate the effort to address the challenges such as methods to measure, analyze and provide feedback to ascertain the return on investment (ROI) as well as improve the productivity of human capital investment (Bux & Tay, 2010). This would facilitate the right strategy to engage employees accordingly.

Section C assessed the roles of human resource management in executing talent strategy. Literature showed that most organizations today focused more on human resource management and treated human resource management as a key success factor to achieve talent results. Previous studies showed that human resource management played an important role in formulating and implementing organizational strategy.

Sumardi and Othman (2010) suggested that talent management was a subset of an organization human resource management system as it involved a number of processes developed by organizations to deal with the issue of developing managerial talent. According to Abdullah et al (2009), managing human resource was critical to the success of all organizations, large and small, regardless of industries and effective human resource programs and activities enabled organizations to achieve talent results.

This finding though weak, supported hypothesis H3, similar with previous studies that human resource played an important role as a strategic partner in formulating and executing talent strategy and should not be limited to supporting administrative tasks (Schehar et al, 2010). The findings of this study agreed with the findings by Bawa & Jantan (2005) that there was no consensus in human resource literature on which human resource management practices were considered appropriate to achieve talent results.

Talent solutions should be designed to ensure integration and alignment between human resource and the organization overall corporate strategy (Hor et al, 2010; Iles et al, 2010:

Hunter et al, 2012). Overall, evidence suggested that talent management was in its infancy compared to human resource management but it was an important component of human resource management (Collings & Mellahi, 2009). Similar findings on the roles of human resource management in achieving talent results were also reported by Farndale et al (2010), Buller & McEvoy (2012) and Hunter et al (2012).

Section D evaluated the characteristics of talent solutions. The findings indicated that talent solutions were about systematically utilizing human resource activities such as communication, competency model and performance appraisal to develop and retain individuals with high levels of competencies consistent with the strategic direction of organization. This finding supported hypothesis H4.

The implementation of talent solutions encompassed a change in business strategy which requires a reconsideration of all elements of the human resource system where evaluation tools were in place, continuous assessment of employeesø competencies and system effectiveness were conducted to ensure return of investment, and individual development plans were aligned with organizational plans.

The findings indicated that talent solutions should encompass all the work processes, systems and organizational strategies, implemented across all levels in the organization, and designed to enhance the productivity of the workplace and retention of superior workforce that match current and upcoming business requirements and goals which were similar with the findings by Lewis & Heckman (2006) and Khatri et al (2010).

Section E investigated the sophistication level of talent solutions. The findings indicated that respondents were in agreement that talent solutions were part of a larger enterprise that achieved the purpose of business (Schuler et al, 2011). The finding supported hypothesis H5 indicated that GLCs must be interactive and implement their talent solutions strategically within their work groups.

Talent solutions should have high sophistication level and critical characteristics such as senior management commitment, goals communicated to employees, transparency, leadership learning and development, talent activities and programs, succession pipeline planning, performance measurement metrics and assessment tools, and strong alignment to business goals and objectives.

Similar findings in literature reported that implementation of these unified strategies should be designed to enhance the productivity of the workplace through the development of improved processes for attracting, development, utilization and retention of skilled people that matched the current and upcoming business needs (Marino, 2006; Barron et al, 2011).

Section F evaluated talent results in terms of talent retention and organizational performance. There must be a close alignment between talent strategy and overall business objectives to achieve talent results. Talent results were achieved when talent decisions were closely aligned on its objectives. Literature showed that organizations with strong talent solutions had a culture of talent development running through their veins as an integral part of the organization¢s work ethos. Similar findings were reported by Schehar et al (2010), Tarique and Schuler (2009) and Kamil et al (2011) whereby talent strategy embodied any effort designed to ensure the continued effective performance of an organization or department by focusing on the development, replacement, and strategic application of key people over time.

The findings also indicated that talent solutions proactively anticipated and met talent demand necessary to successfully execute the business strategy as talent solutions encompassed the instrumentation of unifying strategies or processes in order to enhance the output of a workplace by deploying revolutionize systems and processes for attracting, development, retention, and utilization of required skills and abilities of workforce and their aptitude matched with the current and upcoming business needs.

From the literature review and findings of this study, it was observed that talent solutions usage varied from one organization to another, used in too many ways, focused on talent generically, and more of a means to highlight the strategic importance of human resource practices.

In conclusion, the overall findings showed that talent solution was a process that ensured leadership continuity in key positions, encourage individual advancement, and decisions to manage supply, demand and flow of talent through human capital development.