HEAVY METALS DISTRIBUTION IN WATER, SEDIMENT AND AQUATIC SPECIES FROM MATANG MANGROVE FOREST RESERVE, PERAK, MALAYSIA.

RAHIMAH ABDULLAH

DEPARTMENT OF CHEMISTRY FACULTY OF SCIENCE UNIVERSITY OF MALAYA KUALA LUMPUR

HEAVY METALS DISTRIBUTION IN WATER, SEDIMENT AND AQUATIC SPECIES FROM MATANG MANGROVE FOREST RESERVE, PERAK, MALAYSIA.

RAHIMAH ABDULLAH

A DISSERTATION SUBMITTED TO THE FACULTY OF SCIENCE UNIVERSITY OF MALAYA IN FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE

> DEPARTMENT OF CHEMISTRY FACULTY OF SCIENCE UNIVERSITY OF MALAYA KUALA LUMPUR

ABSTRACT

The concentration of five heavy metals, namely copper (Cu), cadmium (Cd), zinc (Zn), lead (Pb) and chromium (Cr) were determined in water, sediment, fish, cockles and shrimp collected from eight selected sites in Larut River and Sangga Besar River which are located in the state of Perak. Water quality parameters such as pH, DO, temperature and salinity were monitored. The results were then compared to the recommended Marine Water Quality Standards for Malaysia (MWQS) and DOE Water Quality Criteria for Malaysia. The Atomic Absorption Spectrometry (AAS) and Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) techniques were used to determine concentrations of heavy metals in the samples. The Standard Reference Materials SRM 1646 Estuarine Sediment, SRM-BCR Fluka-estuarine water and SRM -DORM-3-Fish protein from the National Research Council Canada, were used to check the accuracy and precision. Data showed a good agreement witch the certified values for the elements with more than 80 % recovery. The results of the heavy metals in sediment were assessed against the Dutch Criteria for Assessment of Soil Pollutants. The values found in this study were significantly lower than the standard values. The tissue analysis in fish revealed that liver accumulated the highest levels of Heavy Metals. Analysis in cockles indicates that the accumulation of heavy metals are in the order of Zn>Cu>Cr>Pb>Cd. In prawns species of Penaeus merguiensis, the results showed that zinc has the highest concentrations followed by copper, chromium, lead and cadmium. The accumulation of copper and zinc in prawn's head of Penaeus merguiensis were found high compared to shell and muscle. However the concentration level of the elements reported in this study does not constitute a risk factor for human health and appear to be below the permissible limits issued by FAO.

ABSTRAK

Analisis kepekatan kandungan lima logam berat iaitu Kadmium, Kuprum, Zink, Plumbum dan Kromium telah dijalankan di dalam sampel air, tanah, ikan, kerang dan udang yang diperolehi daripada lapan kawasan di Sg Larut dan Sg Sangga Besar yang terletak di negeri Perak. Kualiti parameter air seperti pH, kandungan oksigen terlarut, suhu dan kemasinan telah diperiksa. Kemudian hasil kajian telah dibandingkan dengan piawaian kualiti air laut Malaysia yang dibenarkan. Teknik AAS dan ICP-MS telah digunakan untuk menentukan kandungan logam berat di dalam sampel. Bahan rujukan piawai SRM 1646 Estuarine sediment, SRM-BCR Fluka Estuarine water dan SRM-DORM 3 Fish protein daripada National Research Council Canada telah digunakan untuk mmastikan ketepatan dan kepersisan keputusan. Data menunjukkan perolehan semula lebih daripada 80%. Kandungan logam adalah lebih tinggi dalam sedimen di bahagian atas permukaan berbanding bahagian bawah permukaan. Keputusan yang diperolehi dibandingkan dengan Dutch Standard Criterion. Nilai yang diperolehi adalah sangat rendah dibandingkan dengan nilai yang ditetapkan. Kepekatan logam berat (Cu, Zn, Cd, Cr dan Pb) dalam tisu (kulit, hati, daging, insang) ikan dan udang (daging, kulit, kepala) serta kerang turut dijalankan. Organ hati menunjukkan kandungan logam berat yang tinggi dalam tisu ikan. Analisis dalam kerang mendapati pengumpulan logam berat adalah dalam turutan Zn>Cu>Cr>Pb>Cd. Dalam tisu udang spesis *Penaeus merguiensis* analisa menunjukkan zink mempunyai kandungan yang lebih tinggi diikuti Kuprum, Kromium, Plumbum dan Kadmium. Akumulasi Kuprum dan Zink dalam kepala udang spesis *Penaeus Merguiensis* adalah lebih tinggi berbanding dalam kulit dan isi udang. Namun kandungan adalah dibawah had yang ditetapkan oleh *FAO*.

ACKNOWLEDGEMENTS

For most I would like to thank both my supervisors Prof Dato' Dr Mohd Jamil Maah of Chemistry Department, Faculty of Science, University Malaya, and Prof Dr Wang Chee Woon from Biomolecular Medicine Department, Faculty of Medicine, University Malaya for their continuous support of my MSc. study. Their guidance helped me a lot in research and writing this thesis.

My thanks are also extended to all the staff of Chemistry Department and Dean's Office, University Malaya. Very special thank to Lab K10 teams and Analytical lab members. This study would not have been possible without their support and cooperation.

I would like to express my gratitude thank to my friends and lab mates, Dr Tan Kong Wai, Sarah Roslan, Haslinda, Sis Noreena and Sarah Aqilah for their encouragement, help and support.

I would like to express my sincere thanks and gratitude to my family (Bapa, Mak, Abang, Kakak, and Farah) for their patience, support, encouragement and love throughout the journey. Last but not least, special thanks to my husband Badrul Hisyam for the support from the first day till the end of this study.

TABLE OF CONTENTS

ABS	TRACT	ii
ABSTRAK		
ACKNOWLEDGEMENT		
TABLE OF CONTENTS LIST OF FIGURES		
LIST	Γ OF ABBREVIATIONS	xii
CHA	APTER 1: INTRODUCTION	
1.0	Mangrove	2
1.1	Matang Mangrove Forest Reserve	3
1.2	Importance of Mangrove to Prawns	5
1.3	Cockles Production in Matang Mangrove Forest	6
1.4	Heavy Metals	7
1.5	Metals speciation and Toxicity	9
	1.5.1 Copper (Cu)	9
	1.5.2 Zinc (Zn)	10
	1.5.3 Cadmium (Cd)	11
	1.5.4 Chromium (Cr)	12
	1.5.5 Lead (Pb)	14
1.6	Reasearch Objectives	15

CHAPTER 2: LITERATURE REVIEW

2.1	Heavy	metals in water	17
2.2	Heavy	metals in sediments	19
2.3	Heavy	metals in aquatic organisms	23
2.4	Distril	oution pattern of heavy metals in tissues and organs	25
2.5	Distrib	oution pattern of heavy metals in difference depth of sediment cores	27
CHAI	PTER 3	: MATERIALS AND METHODS	
3.0	Introd	uction	31
3.1	Study	area	31
3.2	Sampl	ing methodology	33
	3.2.1	Water collection	34
	3.2.2	Sediment collection	34
	3.2.3	Aquatic organisms collection	35
3.3	Chemi	icals and Reagent	37
3.4	Glasswares		37
3.5	Standard Reference Material		38
3.6	Preparation of calibration standard		38
3.7	Sampl	e Preparation	39
	3.7.1	Water samples	39
	3.7.2	Sediment samples	39
	3.7.3	Tissue samples	40
3.8	Appar	atus	41
	3.8.1	Atomic Absorption Spectrometry	41
	3.8.2	Inductive Coupled Plasma Mass Spectrometry	42
	3.8.3	Microwave Digestion System	44

CHAPTER 4: RESULTS AND DISCUSSION

4.0	Introd	uction	46
4.1	Physic	co-chemical Parameter Analysis	47
	4.1.1	рН	48
	4.1.2	Temperature	49
	4.1.3	Dissolved Oxygen (DO)	51
	4.1.4	Salinity	52
4.2	Analy	sis of Standard Reference Materials	53
4.3	Conce	entrations of Heavy Metals	56
	4.3.1	Heavy metals in water	57
	4.3.2	Heavy metals distribution in surface sediments	66
	4.3.3	Heavy metals distribution in typical sediment profiles	73
	4.3.4	Correlation coefficient analysis in sediment	81
	4.4	Metals concentrations in different aquatic species	82
		4.4.1 Heavy metals contents in various parts of prawns	84
		4.4.2 Heavy metals content in cockles (<i>Anadara granosa</i>)	87
		spesies	
		4.4.3 Heavy metals contents in various organs of fishes	90
		4.4.5 Correlation coefficient analysis in tissues of fish	95
CHAPTER 5: CONCLUSION		97	
REFI	ERENC	ES	99
LIST	IST OF PUBLICATIONS		
APPI	APPENDIX		

LIST OF FIGURES

Figure 1.1	Matang Forest Reserve at the river-mouth of Sepetang River	5
Figure 3.1	Sampling Location P1-P8 in Matang Mangrove	33
Figure 3.2	Estuarine organisms caught in the Matang Mangrove Forest	35
Figure 3.3	Skin tissue of fish (Scaptophagus argus)	41
Figure 3.4	Dissection of fish (Scaptophagus argus)	41
Figure 3.5	Atomic Absorption Spectrometry image	42
Figure 3.6	Agilent ICP-MS Model 7500ce	43
Figure 3.7	CEM-MarsX digestion system	44
Figure 4.1	pH value from Larut River	49
Figure 4.2	pH value from Sangga Besar River	49
Figure 4.3	Surface water temperature from Larut River	50
Figure 4.4	Surface water temperature from Sangga Besar River	50
Figure 4.5	Dissolved oxygen level in Larut River	51
Figure 4.6	Dissolved oxygen level in Sangga Besar River	52
Figure 4.7	Salinity level in Larut River	53
Figure 4.8	Salinity level in Sangga Besar River	53
Figure 4.9	Heavy metal concentrations in water from Larut river	58
Figure 4.10	Heavy metal concentrations in water from Sangga Besar	58
	river	
Figure 4.11	Concnetrations of Zn in water	61
Figure 4.12	Concentration of Cu in water	62
Figure 4.13	Concentration of Pb in water	63
Figure 4.14	Concentration of Cr in water	64

Figure 4.15	Concentration of Cd in water	65
Figure 4.16	Heavy metal concentration in surface sediments from Larut	72
	river	
Figure 4.17	Heavy metal concentration in surface sediments from Sangga	72
	Besar river	
Figure 4.18	Heavy Metals profiles at P1	74
Figure 4.19	Heavy Metals profiles at P2	74
Figure 4.20	Heavy Metals profiles at P3	76
Figure 4.21	Heavy Metals profiles at P4	76
Figure 4.22	Heavy Metals profiles at P5	79
Figure 4.23	Heavy Metals profiles at P6	79
Figure 4.24	Heavy Metals profiles at P7	80
Figure 4.25	Heavy Metals profiles at P8	80
Figure 4.26	Content of heavy metals in aquatic organisms from Larut	83
	river	
Figure 4.27	Content of heavy metals in aquatic organisms from Sangga	83
	Besar river	
Figure 4.28	The content of heavy metals in the prawn harvested from	86
	Larut river	
Figure 4.29	The content of heavy metals in the prawn harvested from	86
	Sangga Besar River	
Figure 4.30	Heavy metals content in various organs of fish	94
	(Scaptophagus Argus)	

LIST OF TABLES

Table 3.1	Sampling locations in Matang Mangrove Forest	36
Table 3.2	Date of sampling carried out	37
Table 3.3	Flame atomic absorption spectrophotometer operating	42
	conditions	
Table 3.4	ICP-MS operating conditions	43
Table 4.1	Results of in-situ water parameters	47
Table 4.2	Observed and certified values of elemental concentrations in	55
	standard reference material NIST- Estuarine sediment	
Table 4.3	Observed and certified values of elemental concentrations in	55
	standard reference material NIST- tissue	
Table 4.4	Observed and certified values of elemental concentrations in	56
	standard reference material BCR-Fluka- estuarine water	
Table 4.5	Average concentrations of Heavy Metals in water $(\mu g/l)$	59
Table 4.6	Analysis of variance (ANOVA) of Cu, Zn, Cd, Cr and Pb	66
	concentrations in water in different sampling points	
Table 4.7	Heavy Metal concentrations in surface sediments (mg kg ⁻¹)	68
Table 4.8	Heavy metal concentrations mg kg ⁻¹ dry weight in surface	71
	sediments reported in this and other studies.	
Table 4.9	Concentrations of heavy metal in sediment profile from Larut	75
	River	
Table 4.10	Concentrations of Heavy Metals in sediment Profiles from	78
	Sangga Besar River	
Table 4.11	Pearson correlation coefficient matrix between heavy metals in	81

	sediment of Sepetang river at sites P1-P4	
Table 4.12	Pearson correlation coefficient matrix between heavy metals in	81
	sediment of Sangga Besar river at sites P5-P8	
Table 4.13	Average content of Heavy Metals in tissue of prawns and	83
	cockles (mg kg ⁻¹ d.w)	
Table 4.14	Mean concentrations and standard deviation in the muscle,	85
	shell and heads of prawn (mg kg ⁻¹ dw)	
Table 4.15	Mean heavy metal concentrations in cockles from Matang	89
	Mangrove comparison with literature data	
Table 4.16	Average content of heavy metals in fish (Scaptophagus Argus)	94
	obtained from Matang mangrove with comparison to the	
	Malaysian Food Act 1983 and Food Regulations 1985	
	Fourteen Schedule in mg/kg wet weight	
Table 4.17	Linear correlation coefficient for heavy metals in skin	95
Table 4.18	Linear correlation coefficient for heavy metals in muscle	96
Table 4.19	Linear correlation coefficient for heavy metals in gills	96
Table 4.20	Linear correlation coefficient for heavy metals in liver	96

LIST OF ABBREVIATIONS

MWQS Marine Water Quality Standards

SRM Standard Reference Material

FAO Food and Agriculture Organization

CRM Certified Reference Material

DOE Department of Environment

μg/g Microgram per gram

μg/l Microgram per litre

MMFR Matang Mangrove Forest Reserve

AAS Atomic Absorption Spectrometer

ICP-MS Inductive Coupled Plasma-Mass Spectrometer

DO Dissolved oxygen

mg/l Milligram per litre

Cu Copper

Zn Zinc

Cd Cadmium

Cr Chromium

Pb Lead

SQG Sediment Quality Guidelines

ANOVA Analysis of Variance

w.w Wet weight

d.w Dry weight

BCF Bioconcentration factor

LDPE Low density polyethylene