STUDY ON THE SUPRAMOLECULAR
INTERACTION OF INCLUSION COMPLEX OF
β-CYCLODEXTRIN WITH DITHIZONE AND
DITHIZONE-ZINC AND ITS ANALYTICAL
APPLICATION

SITI NURUR RAIHAN BINTI MOHD KAMAL

FACULTY OF SCIENCE
UNIVERSITY OF MALAYA
KUALA LUMPUR

2011
STUDY ON THE SUPRAMOLECULAR INTERACTION OF INCLUSION COMPLEX OF \(\beta \)-CYCLODEXTRIN WITH DITHIZONE AND DITHIZONE-ZINC AND ITS ANALYTICAL APPLICATION

SITI NURUR RAIHAN BINTI MOHD KAMAL

DISSERTATION SUBMITTED IN FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE

DEPARTMENT OF CHEMISTRY
FACULTY OF SCIENCE
UNIVERSITY OF MALAYA
KUALA LUMPUR

2011
UNIVERSITI MALAYA

ORIGINAL LITERARY WORK DECLARATION

Name of Candidate: SITI NURUR RAIHAN BINTI MOHD KAMAL
(I.C/Passport No: 860906-56-5244)

Registration/Matric No: SGR 090130

Name of Degree: MASTER OF SCIENCE (EXCEPT MATHEMATICS AND SCIENCE PHILOSOPHY)

STUDY ON THE SUPRAMOLECULAR INTERACTION OF INCLUSION COMPLEX OF \(\beta\)-CYCLODEXTRIN WITH DITHIZONE AND DITHIZONE-ZINC AND ITS ANALYTICAL APPLICATION

Field of Study: ANALYTICAL CHEMISTRY

I do solemnly and sincerely declare that:

(1) I am the sole author/writer of this Work;
(2) This Work is original;
(3) Any use of any work in which copyright exists was done by way of fair dealing and for permitted purposes and any excerpt or extract from, or reference to or reproduction of any copyright work has been disclosed expressly and sufficiently and the title of the Work and its authorship have been acknowledged in this Work;
(4) I do not have any actual knowledge nor do I ought reasonably to know that the making of this work constitutes an infringement of any copyright work;
(5) I hereby assign all and every rights in the copyright to this Work to the University of Malaya (“UM”), who henceforth shall be owner of the copyright in this Work and that any reproduction or use in any form or by any means whatsoever is prohibited without the written consent of UM having been first had and obtained;
(6) I am fully aware that if in the course of making this Work I have infringed any copyright whether intentionally or otherwise, I may be subject to legal action or any other action as may be determined by UM.

Candidate’s Signature Date: 30 April 2012

Subscribed and solemnly declared before,

Witness’s Signature Date: 30 April 2012

Name: Dr Sharifah Mohamad

Designation: Lecturer
ABSTRACT

The non-covalent interaction of beta-cyclodextrin (β-CD), dithizone (H₂Dz) and dithizone-zinc (H₂Dz-Zn) complex was studied in detail. Solid samples were studied using solid state 13C Cross Polarization and Magic Angle Spinning spectroscopy (13C CP/MAS NMR), Fourier Transform Infrared spectroscopy (FTIR), Thermal Gravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC), Powder X-Ray Diffraction (XRD) and Energy Dispersive X-ray (EDX) to investigate the formation of the inclusion complex. Spectrophotometric technique was also used to assess the formation of inclusion complex in liquid form. The characterization results supported the formation of inclusion complex. The results showed that β-CD formed a complex with H₂Dz in a ratio of 2:1 and with H₂Dz-Zn in a ratio of 1:1. A spectrophotometry method was developed based on the enhancement of the absorbance of dithizone-zinc complex produced through complex formation in the presence of β-CD. A linear relationship between absorbance and concentration of zinc was obtained in the range of 0.1 – 9.0 mg/L with correlation coefficient of 0.996. The detection limit obtained was 0.005 mg/L and the relative standard deviation (R.S.D) was 2.05%. The developed method was applied in real samples and the recoveries obtained were from 85 – 95%.
ABSTRAK

Interaksi bukan kovalen antara kompleks beta-siklodekstrin (β-CD) dan ditizon (H₂Dz) serta ditizon-zink (H₂Dz-Zn) telah dikaji dalam dua bahagian. Sampel pepejal telah dikaji dengan menggunakan kaedah Spektroskopi Resonans Magnet Nukleus Keadaan Pepejal ^{13}C (solid state ^{13}C CP/MAS NMR), Spektroskopi Inframerah (FTIR), Analisis Termagrarimetri(TGA), Kalorimetri Pengimbasan Pembezaan (DSC), Belauan sinar-X (XRD) dan Tenaga Sinar-X Serakan (EDX) untuk menyiasat pembentukan kompleks. Teknik spektrofotometri juga digunakan untuk menyiasat pembentukan kompleks dalam medium cecair. Keputusan pencirian menunjukkan bahawa telah berlaku pembentukan kompleks. Keputusan menunjukkan bahawa β-CD membentuk kompleks bersama H₂Dz di dalam nisbah 2:1 manakala bersama H₂Dz-Zn, ia membentuk kompleks di dalam nisbah 1:1. Disebabkan peningkatan serapan hasil daripada kompleks H₂Dz-Zn, maka kaedah spektrofotometri telah dibina untuk mengesan zink bersama kehadiran β-CD. Perhubungan linear di antara serapan dan kepekatan zink telah didapati di antara julat 0.1 – 9.0 mg/L dengan pekali korelasi 0.996. Had pengesanan yang ditemui adalah 0.005 mg/L dan sisihan piawai relatif ialah 2.05%. Kaedah yang dibina telah diaplikasikan kepada sampel sebenar dan kebolehdapatan yang didapati adalah di antara 85 – 95%.
ACKNOWLEDGEMENT

Alhamdulillah, with the blessing of Allah, I am able to complete my research and dissertation according to the time frame given. First of all, I would like to express my sincere gratitude to my supervisor, Dr. Sharifah Mohamad for her guidance, encouragement, supports, comments and suggestions throughout my research and upon preparing this dissertation.

I would also like to thank all my lab mates at Analytical Research Laboratory (K012), Department of Chemistry, Faculty of Science, University of Malaya for their supports and helps when I needed. Not to forget, my family members, especially both of my parents, Mohd Kamal Bin Abd. Rahman and Rasida Bt Osman who have been supporting me in my studies and also to all science officers in Department of Chemistry, Department of Physics and Combicat for their valuable help, guidance and kindness. Not to forget, to all my friends for their direct or indirect supports and encouragements throughout my studies.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>PREFACE</td>
<td></td>
</tr>
<tr>
<td>Original Literary Work Declaration</td>
<td>ii</td>
</tr>
<tr>
<td>Abstract</td>
<td>iii</td>
</tr>
<tr>
<td>Abstrak</td>
<td>iv</td>
</tr>
<tr>
<td>Acknowledgement</td>
<td>v</td>
</tr>
<tr>
<td>Table of Content</td>
<td>vi</td>
</tr>
<tr>
<td>List of Figures</td>
<td>x</td>
</tr>
<tr>
<td>List of Tables</td>
<td>xiii</td>
</tr>
<tr>
<td>Abbreviations</td>
<td>xiv</td>
</tr>
<tr>
<td>List of Appendices</td>
<td>xv</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHAPTER 1 INTRODUCTION</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1: Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.2: Objectives</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHAPTER 2 LITERATURE REVIEW</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1: Cyclodextrins</td>
<td></td>
</tr>
<tr>
<td>2.1.1: Properties of cyclodextrins</td>
<td>6</td>
</tr>
<tr>
<td>2.1.2: History of cyclodextrins</td>
<td>7</td>
</tr>
<tr>
<td>2.2: Inclusion Complex</td>
<td></td>
</tr>
<tr>
<td>2.2.1: General overview of inclusion complex</td>
<td>9</td>
</tr>
<tr>
<td>2.2.2: Application of inclusion complex of β-CD in spectrophotometric determination</td>
<td>9</td>
</tr>
<tr>
<td>2.3: Dithizone</td>
<td></td>
</tr>
<tr>
<td>2.3.1: Dithizone as a chelating reagent for metals in spectrophotometry</td>
<td>11</td>
</tr>
</tbody>
</table>
2.4: Zinc

- **2.4.1: General Overview of zinc**
- **2.4.2: Determination of zinc by UV-spectrophotometry analysis**

CHAPTER 3 METHODOLOGY

- **3.1: Reagents**
- **3.2: Instruments**
- **3.3: Synthesis and characterization of the inclusion complexes**
 - **3.3.1: Synthesis of inclusion complex of β-cyclodextrin-dithizone (β-CD-H₂Dz)**
 - **3.3.2: Synthesis of inclusion complex of β-cyclodextrin-dithizone-zinc (β-CD-H₂Dz-Zn)**
 - **3.3.3: Characterization of inclusion complex of β-CD-H₂Dz and β-CD-H₂Dz-Zn**
- **3.4: Spectroscopy study of inclusion complex of β-CD-H₂Dz**
 - **3.4.1: Effect of pH**
 - **3.4.2: Phase Solubility Studies**
 - **3.4.3: Formation constant**
- **3.5: Spectroscopy study of inclusion complex of β-CD-H₂Dz-Zn**
 - **3.5.1: Effect of pH**
 - **3.5.2: Formation constant**
 - **3.5.3: Stoichiometry study**
- **3.6: Application of inclusion complex in determination of zinc by spectrophotometric technique**
 - **3.6.1: Effect of solvents**
3.6.2: Standard procedure
3.6.3: Effect of amount of dithizone
3.6.4: Effect of amount of β-cyclodextrin
3.6.5: Effect of foreign ions
3.6.6: Dynamic range and sensitivity study
3.6.7: Limit of detection
3.6.8: Reproducibility
3.6.9: Application on real samples

CHAPTER 4 CHARACTERIZATION AND SPECTROSCOPY STUDY OF INCLUSION COMPLEXES

4.1: Characterization of inclusion complexes
 4.1.1: Fourier Transform Infrared (FTIR)
 4.1.2: Solid State 13C CP/MAS NMR Spectroscopy
 4.1.3: Thermal Gravimetric Analysis (TGA)
 4.1.4: Differential Scanning Calorimetric (DSC)
 4.1.5: Powder X-Ray Diffraction (XRD)
 4.1.6: Energy Dispersive X-ray (EDX)

4.2: Spectroscopy study of inclusion complex
 4.2.1: Spectroscopy study of inclusion complex of β-CD-H$_2$Dz
 4.2.1.1: Effect of pH
 4.2.1.2: Phase Solubilities Studies
 4.2.1.3: Formation constant
 4.2.2: Spectroscopy study of inclusion complex of β-CD-H$_2$Dz-Zn
 4.2.2.1: Effect of pH
 4.2.2.2: Formation constant
 4.2.2.3: Job’s method
4.3: Proposed structure for the inclusion complex

4.3.1: Proposed structure for the inclusion complex of β-CD-H₂Dz 46

4.3.2: Proposed structure for the inclusion complex of β-CD-H₂Dz-Zn 46

CHAPTER 5 APPLICATION OF INCLUSION COMPLEX IN DETERMINATION OF ZINC USING SPECTROPHOTOMETRIC TECHNIQUE

5.1: Effect of solvents 48
5.2: Absorption spectra 49
5.3: Effect of amount of dithizone 50
5.4: Effect of amount of β-cyclodextrin 51
5.5: Effect of foreign ions 52
5.6: Dynamic range and sensitivity study 55
5.7: Limit of detection 57
5.8: Reproducibility of the method 57
5.9: Application: Analysis of zinc in spiked water samples 58

CHAPTER 6 CONCLUSIONS 60
Appendix A 61
REFERENCES 62
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1.1</td>
<td>Host-guest type inclusion complex</td>
<td>2</td>
</tr>
<tr>
<td>Figure 1.2</td>
<td>Keto and enol form of dithizone</td>
<td>3</td>
</tr>
<tr>
<td>Figure 2.1</td>
<td>Structure of α, β and γ-cyclodextrin</td>
<td>6</td>
</tr>
<tr>
<td>Figure 2.2</td>
<td>Truncated structure of β-cyclodextrin</td>
<td>7</td>
</tr>
<tr>
<td>Figure 4.1</td>
<td>FTIR spectrum of (a) β-cyclodextrin; (b) dithizone; (c) inclusion complex of β-CD-H₂Dz; (d) inclusion complex of β-CD-H₂Dz-Zn</td>
<td>25</td>
</tr>
<tr>
<td>Figure 4.2</td>
<td>13C CP/MAS NMR spectra for (a) β-cyclodextrin; (b) inclusion complex of β-CD-H₂Dz; (c) inclusion complex of β-CD-H₂Dz-Zn</td>
<td>28</td>
</tr>
<tr>
<td>Figure 4.3</td>
<td>Thermal Gravimetric Analysis (TGA) for (a) β-cyclodextrin; (b) dithizone; (c) inclusion complex of β-CD-H₂Dz; (d) inclusion complex of β-CD-H₂Dz-Zn</td>
<td>30</td>
</tr>
<tr>
<td>Figure 4.4</td>
<td>DSC for (a) β-cyclodextrin; (b) dithizone; (c) inclusion complex of β-CD-H₂Dz; (d) inclusion complex of β-CD-H₂Dz-Zn</td>
<td>32</td>
</tr>
</tbody>
</table>
Figure 4.5: Powder XRD for (a) β-cyclodextrin; (b) dithizone; (c) inclusion complex of β-CD-H$_2$Dz; (d) inclusion complex of β-CD-H$_2$Dz-Zn

Figure 4.6: Formation of inclusion complex of β-CD-H$_2$Dz at pH 3, 8 and 12 at 426 nm

Figure 4.7: Phase solubility diagram of β-CD-H$_2$Dz system in water

Figure 4.8: Absorption spectra for inclusion complex of β-CD-H$_2$Dz

Figure 4.9: Double reciprocal plot for inclusion complex of β-CD-H$_2$Dz for

\[
\frac{1}{\text{Abs}} \text{ vs } \frac{1}{[\text{CD}]}
\]

Figure 4.10: Double reciprocal plot for inclusion complex of β-CD-H$_2$Dz for

\[
\frac{1}{\text{Abs}} \text{ vs } \frac{1}{[\text{CD}]^2}
\]

Figure 4.11: Effect of pH for inclusion complex of β-CD-H$_2$Dz-Zn

Figure 4.12: Absorption spectra of inclusion complex of β-CD-H$_2$Dz-Zn with varied concentration of β-CD from 0 M to 0.0032 M

Figure 4.13: Double reciprocal plot for inclusion complex of β-CD-H$_2$Dz-Zn for

\[
\frac{1}{\text{Abs}} \text{ vs } \frac{1}{[\text{CD}]}
\]

Figure 4.14: Double reciprocal plot for inclusion complex of β-CD-H$_2$Dz-Zn for

\[
\frac{1}{\text{Abs}} \text{ vs } \frac{1}{[\text{CD}]^2}
\]
Figure 4.15: Job’s plot for complex of H₂Dz-Zn

Figure 4.16: Job’s plot for inclusion complex of β-CD-H₂Dz-Zn

Figure 4.17: Proposed structure for inclusion complex of β-CD-H₂Dz

Figure 4.18: Proposed structure for inclusion complex of β-CD-H₂Dz-Zn

Figure 5.1: Absorption spectra of β-cyclodextrin, dithizone, complex of H₂Dz-Zn, inclusion complexes of β-CD-H₂Dz and β-CD-H₂Dz-Zn

Figure 5.2: Effect of the amount of dithizone (H₂Dz) at 522 nm, pH 8

Figure 5.3: Effect of amount of β-cyclodextrin (β-CD) at 522 nm, pH 8

Figure 5.4: Response curve of inclusion complex with β-CD towards different concentration of Zn

Figure 5.5: Calibration curve of inclusion complex of β-CD-H₂Dz-Zn at 522 nm, pH 8

Figure 5.6: Reproducibility study on inclusion complex of β-CD-H₂Dz-Zn
LIST OF TABLES

Table 3.1: Experimental conditions for determination of H₂Dz-Zn ratio (Job’s method)

Table 3.2: Experimental conditions for determination of inclusion complex of β-CD-H₂Dz-Zn ratio (Job’s method)

Table 4.1: Interpretation of FTIR spectrum of β-CD, dithizone, inclusion complex of β-CD-H₂Dz and inclusion complex of β-CD-H₂Dz-Zn

Table 4.2: Elements presence in inclusion complex of β-CD-H₂Dz-Zn

Table 5.1: Effect of solvents on inclusion complex of β-CD-H₂Dz-Zn at 522 nm

Table 5.2: Effect of foreign ions

Table 5.3: Comparison of present method with other reported methods on spectrophotometric determination of zinc

Table 5.4: Recovery of zinc from real samples

Table A-1: Blank signal for β-CD-H₂Dz-Zn system at 522 nm

Page
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>13C CP/MAS NMR</td>
<td>13C Cross Polarization and Magic Angle Spinning spectroscopy</td>
<td></td>
</tr>
<tr>
<td>Abs.</td>
<td>Absorbance</td>
<td></td>
</tr>
<tr>
<td>Conc.</td>
<td>Concentration</td>
<td></td>
</tr>
<tr>
<td>DMF</td>
<td>Dimethylformamide</td>
<td></td>
</tr>
<tr>
<td>DSC</td>
<td>Differential Scanning Colorimetric</td>
<td></td>
</tr>
<tr>
<td>EDX</td>
<td>Energy Dispersive X-ray</td>
<td></td>
</tr>
<tr>
<td>H$_2$Dz</td>
<td>Dithizone</td>
<td></td>
</tr>
<tr>
<td>MW</td>
<td>Molecular Weight</td>
<td></td>
</tr>
<tr>
<td>TGA</td>
<td>Thermal Gravimetric Analysis</td>
<td></td>
</tr>
<tr>
<td>UV-Vis</td>
<td>Ultraviolet - Visible</td>
<td></td>
</tr>
<tr>
<td>XRD</td>
<td>X-ray Diffraction</td>
<td></td>
</tr>
<tr>
<td>Zn</td>
<td>Zinc</td>
<td></td>
</tr>
<tr>
<td>β-CD</td>
<td>β-cyclodextrin</td>
<td></td>
</tr>
<tr>
<td>β-CD-H$_2$Dz</td>
<td>β-cyclodextrin-dithizone</td>
<td></td>
</tr>
<tr>
<td>β-CD-H$_2$Dz-Zn</td>
<td>β-cyclodextrin-dithizone-zinc</td>
<td></td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>Appendix A</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>61</td>
</tr>
</tbody>
</table>