STUDY ON THE SUPRAMOLECULAR INTERACTION OF INCLUSION COMPLEX OF β-CYCLODEXTRIN WITH DITHIZONE AND DITHIZONE-ZINC AND ITS ANALYTICAL APPLICATION

SITI NURUR RAIHAN BINTI MOHD KAMAL

FACULTY OF SCIENCE UNIVERSITY OF MALAYA KUALA LUMPUR

2011

STUDY ON THE SUPRAMOLECULAR INTERACTION OF INCLUSION COMPLEX OF β-CYCLODEXTRIN WITH DITHIZONE AND DITHIZONE-ZINC AND ITS ANALYTICAL APPLICATION

SITI NURUR RAIHAN BINTI MOHD KAMAL

DISSERTATION SUBMITTED IN FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE

DEPARTMENT OF CHEMISTRY
FACULTY OF SCIENCE
UNIVERSITY OF MALAYA
KUALA LUMPUR

2011

UNIVERSITI MALAYA

ORIGINAL LITERARY WORK DECLARATION

Name of Candidate: SITI NURUR RAIHAN BINTI MOHD KAMAL

(I.C/Passport No: 860906-56-5244)

Registration/Matric No: SGR 090130

Name of Degree: MASTER OF SCIENCE (EXCEPT MATHEMATICS AND SCIENCE

PHILOSOPHY)

Title of Project Paper/Research Report/Dissertation/Thesis ("this Work"):

STUDY ON THE SUPRAMOLECULAR INTERACTION OF INCLUSION COMPLEX OF $\beta\text{-CYCLODEXTRIN}$ WITH DITHIZONE AND DITHIZONE-ZINC AND ITS ANALYTICAL APPLICATION

Field of Study: ANALYTICAL CHEMISTRY

I do solemnly and sincerely declare that:

- (1) I am the sole author/writer of this Work;
- (2) This Work is original;
- (3) Any use of any work in which copyright exists was done by way of fair dealing and for permitted purposes and any excerpt or extract from, or reference to or reproduction of any copyright work has been disclosed expressly and sufficiently and the title of the Work and its authorship have been acknowledged in this Work;
- (4) I do not have any actual knowledge nor do I ought reasonably to know that the making of this work constitutes an infringement of any copyright work;
- (5) I hereby assign all and every rights in the copyright to this Work to the University of Malaya ("UM"), who henceforth shall be owner of the copyright in this Work and that any reproduction or use in any form or by any means whatsoever is prohibited without the written consent of UM having been first had and obtained;
- (6) I am fully aware that if in the course of making this Work I have infringed any copyright whether intentionally or otherwise, I may be subject to legal action or any other action as may be determined by UM.

Candidate's Signature Date: 30 April 2012

Subscribed and solemnly declared before,

Witness's Signature Date: 30 April 2012

Name: Dr Sharifah Mohamad

Designation: Lecturer

ABSTRACT

The non-covalent interaction of beta-cyclodextrin (β-CD), dithizone (H₂Dz) and dithizone-zinc (H₂Dz-Zn) complex was studied in detail. Solid samples were studied using solid state ¹³C Cross Polarization and Magic Angle Spinning spectroscopy (13C CP/MAS NMR), Fourier Transform Infrared spectroscopy (FTIR), Thermal Gravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC), Powder X-Ray Diffraction (XRD) and Energy Dispersive X-ray (EDX) to investigate the formation of the inclusion complex. Spectrophotometric technique was also used to assess the formation of inclusion complex in liquid form. The characterization results supported the formation of inclusion complex. The results showed that β-CD formed a complex with H₂Dz in a ratio of 2:1 and with H₂Dz-Zn in a ratio of 1:1. A spectrophotometry method was developed based on the enhancement of the absorbance of dithizone-zinc complex produced through complex formation in the presence of β-CD. A linear relationship between absorbance and concentration of zinc was obtained in the range of 0.1 - 9.0 mg/L with correlation coefficient of 0.996. The detection limit obtained was 0.005 mg/L and the relative standard deviation (R.S.D) was 2.05%. The developed method was applied in real samples and the recoveries obtained were from 85 - 95%.

ABSTRAK

Interaksi bukan kovalen antara kompleks beta-siklodekstrin (β-CD) dan ditizon (H₂Dz) serta ditizon-zink (H₂Dz-Zn) telah dikaji dalam dua bahagian. Sampel pepejal telah dikaji dengan menggunakan kaedah Spektroskopi Resonans Magnet Nukleus Keadaan Pepejal ¹³C (solid state ¹³C CP/MAS NMR), Spektroskopi Inframerah (FTIR), Analisis Termagravimetri(TGA), Kalorimetri Pengimbasan Pembezaan (DSC), Belauan sinar-X (XRD) dan Tenaga Sinar-X Serakan (EDX) untuk menyiasat pembentukan kompleks. Teknik spektrofotometri juga digunakan untuk menyiasat pembentukan kompleks dalam medium cecair. Keputusan pencirian menunjukkan bahawa telah berlaku pembentukan kompleks. Keputusan menunjukkan bahawa β-CD membentuk kompleks bersama H₂Dz di dalam nisbah 2:1 manakala bersama H₂Dz-Zn, ia membentuk kompleks di dalam nisbah 1:1. Disebabkan peningkatan serapan hasil daripada kompleks H₂Dz-Zn, maka kaedah spektrofotometri telah dibina untuk mengesan zink bersama kehadiran β-CD. Perhubungan linear di antara serapan dan kepekatan zink telah didapati di antara julat 0.1 - 9.0 mg/L dengan pekali korelasi 0.996. Had pengesanan yang ditemui adalah 0.005 mg/L dan sisihan piawai relatif ialah 2.05%. Kaedah yang dibina telah diaplikasikan kepada sampel sebenar dan kebolehdapatan yang didapati adalah di antara 85 - 95%.

ACKNOWLEDGEMENT

Alhamdulillah, with the blessing of Allah, I am able to complete my research and dissertation according to the time frame given. First of all, I would like to express my sincere gratitude to my supervisor, Dr. Sharifah Mohamad for her guidance, encouragement, supports, comments and suggestions throughout my research and upon preparing this dissertation.

I would also like to thank all my lab mates at Analytical Research Laboratory (K012), Department of Chemistry, Faculty of Science, University of Malaya for their supports and helps when I needed. Not to forget, my family members, especially both of my parents, Mohd Kamal Bin Abd. Rahman and Rasida Bt Osman who have been supporting me in my studies and also to all science officers in Department of Chemistry, Department of Physics and Combicat for their valuable help, guidance and kindness. Not to forget, to all my friends for their direct or indirect supports and encouragements throughout my studies.

TABLE OF CONTENTS

TITLE	PAGE
PREFACE	
Original Literary Work Declaration	ii
Abstract	iii
Abstrak	iv
Acknowledgement	v
Table of Content	vi
List of Figures	X
List of Tables	xiii
Abbreviations	xiv
List of Appendices	XV
CHAPTER 1 INTRODUCTION	
1.1: Introduction	1
1.2: Objectives	5
CHAPTER 2 LITERATURE REVIEW	
2.1: Cyclodextrins	
2.1.1: Properties of cyclodextrins	6
2.1.2: History of cyclodextrins	7
2.2: Inclusion Complex	
2.2.1: General overview of inclusion complex	9
2.2.2: Application of inclusion complex of β -CD in spectrophotometric	
determination	9
2.3: Dithizone	
2.3.1: Dithizone as a chelating reagent for metals in spectrophotometry	11

2.4: Zinc 2.4.1: General Overview of zinc 13 2.4.2: Determination of zinc by UV-spectrophotometry analysis 14 **CHAPTER 3 METHODOLOGY** 16 3.1: Reagents 16 3.2: Instruments 3.3: Synthesis and characterization of the inclusion complexes 3.3.1: Synthesis of inclusion complex of β-cyclodextrin-dithizone 17 $(\beta-CD-H_2Dz)$ 3.3.2: Synthesis of inclusion complex of β-cyclodextrin-dithizone-zinc $(\beta$ -CD-H₂Dz-Zn) 17 3.3.3: Characterization of inclusion complex of β-CD-H₂Dz and β -CD- H_2 Dz-Zn 17 3.4: Spectroscopy study of inclusion complex of β-CD-H₂Dz 3.4.1: Effect of pH 18 3.4.2: Phase Solubility Studies 18 3.4.3: Formation constant 18 3.5: Spectroscopy study of inclusion complex of β-CD-H₂Dz-Zn 3.5.1: Effect of pH 19 3.5.2: Formation constant 19 19 3.5.3: Stoichiometry study 3.6: Application of inclusion complex in determination of zinc by spectrophotometric technique

3.6.1: Effect of solvents

21

3.6.2: Standard procedure	21
3.6.3: Effect of amount of dithizone	21
3.6.4: Effect of amount of β -cyclodextrin	21
3.6.5: Effect of foreign ions	22
3.6.6: Dynamic range and sensitivity study	22
3.6.7: Limit of detection	22
3.6.8: Reproducibility	23
3.6.9: Application on real samples	23
CHAPTER 4 CHARACTERIZATION AND SPECTROSCOPY STU	JDY OF
INCLUSION COMPLEXES	
4.1: Characterization of inclusion complexes	
4.1.1: Fourier Transform Infrared (FTIR)	24
4.1.2: Solid State ¹³ C CP/MAS NMR Spectroscopy	27
4.1.3: Thermal Gravimetric Analysis (TGA)	28
4.1.4: Differential Scanning Calorimetric (DSC)	31
4.1.5: Powder X-Ray Diffraction (XRD)	33
4.1.6: Energy Dispersive X-ray (EDX)	35
4.2: Spectroscopy study of inclusion complex	
4.2.1: Spectroscopy study of inclusion complex of β -	CD-H ₂ Dz
4.2.1.1: Effect of pH	36
4.2.1.2: Phase Solubilities Studies	37
4.2.1.3: Formation constant	38
4.2.2: Spectroscopy study of inclusion complex of β -	CD-H ₂ Dz-Zn
4.2.2.1: Effect of pH	41
4.2.2.2: Formation constant	42
4.2.2.3: Job's method	44

4.3: Proposed structure for the inclusion complex	
4.3.1: Proposed structure for the inclusion complex of β-CD-H ₂ Dz	46
4.3.2: Proposed structure for the inclusion complex of β-CD-H ₂ Dz-Zn	46
CHAPTER 5 APPLICATION OF INCLUSION COMPLEX IN DETERMINATION	
OF ZINC USING SPECTROPHOTOMETRIC TECHNIQUE	
5.1: Effect of solvents	48
5.2: Absorption spectra	49
5.3: Effect of amount of dithizone	50
5.4: Effect of amount of β-cyclodextrin	51
5.5: Effect of foreign ions	52
5.6: Dynamic range and sensitivity study	55
5.7: Limit of detection	57
5.8: Reproducibility of the method	57
5.9: Application: Analysis of zinc in spiked water samples	58
CHAPTER 6 CONCLUSIONS	60
Appendix A	61
REFERENCES	62

LIST OF FIGURES

	Page
Figure 1.1: Host-guest type inclusion complex	2
Figure 1.2: Keto and enol form of dithizone	3
Figure 2.1: Structure of α , β and γ -cyclodextrin	6
Figure 2.2: Truncated structure of β-cyclodextrin	7
Figure 4.1: FTIR spectrum of (a) β -cyclodextrin; (b) dithizone; (c) inclusion	
complex of β-CD-H ₂ Dz; (d) inclusion complex of β-CD-H ₂ Dz-Zn	25
Figure 4.2: 13 C CP/MAS NMR spectra for (a) β -cyclodextrin; (b) inclusion	
complex of β-CD-H ₂ Dz; (c) inclusion complex of β-CD-H ₂ Dz-Zn	28
Figure 4.3: Thermal Gravimetric Analysis (TGA) for (a) β -cyclodextrin;	
(b) dithizone; (c) inclusion complex of β -CD-H ₂ Dz; (d) inclusion	
complex of β -CD- H_2 Dz-Zn	30
Figure 4.4: DSC for (a) β -cyclodextrin; (b) dithizone; (c) inclusion complex	
of β-CD-H ₂ Dz; (d) inclusion complex of β-CD-H ₂ Dz-Zn	32

Figure 4.5: Powder XRD for (a) β-cyclodextrin; (b) dithizone; (c) inclusion	
complex of β -CD-H ₂ Dz; (d) inclusion complex of β -CD-H ₂ Dz-Zn	34
Figure 4.6: Formation of inclusion complex of β-CD-H ₂ Dz at pH 3, 8 and 12	
at 426 nm	36
Figure 4.7: Phase solubility diagram of β -CD- H_2 Dz system in water	37
Figure 4.8: Absorption spectra for inclusion complex of β-CD-H ₂ Dz	38
Figure 4.9: Double reciprocal plot for inclusion complex of β-CD-H ₂ Dz for	
1/Abs vs 1/[CD]	39
Figure 4.10: Double reciprocal plot for inclusion complex of β-CD-H ₂ Dz for	
1/Abs vs 1/[CD] ²	40
Figure 4.11: Effect of pH for inclusion complex of β-CD-H ₂ Dz-Zn	41
Figure 4.12: Absorption spectra of inclusion complex of β-CD-H ₂ Dz-Zn with	
varied concentration of β -CD from 0 M to 0.0032 M	42
Figure 4.13: Double reciprocal plot for inclusion complex of β -CD-H ₂ Dz-Zn for	
1/Abs vs 1/[CD]	43
Figure 4.14: Double reciprocal plot for inclusion complex of β -CD-H ₂ Dz-Zn for	
1/Abs vs 1/[CD] ²	43

Figure 4.15: Job's plot for complex of H ₂ Dz-Zn	45
Figure 4.16: Job's plot for inclusion complex of β-CD-H ₂ Dz-Zn	45
Figure 4.17: Proposed structure for inclusion complex of β-CD-H ₂ Dz	46
Figure 4.18: Proposed structure for inclusion complex of β-CD-H ₂ Dz-Zn	47
Figure 5.1: Absorption spectra of β-cyclodextrin, dithizone, complex of H ₂ Dz-Zn	ι,
inclusion complexes of $\beta\text{-CD-H}_2Dz$ and $\beta\text{-CD-H}_2Dz\text{-Zn}$	50
Figure 5.2: Effect of the amount of dithizone (H ₂ Dz) at 522 nm, pH 8	51
Figure 5.3: Effect of amount of β -cyclodextrin (β -CD) at 522 nm, pH 8	52
Figure 5.4: Response curve of inclusion complex with β -CD towards different	
concentration of Zn	56
Figure 5.5: Calibration curve of inclusion complex of β -CD- H_2 Dz-Zn at	
522 nm, pH 8	56
Figure 5.6: Reproducibility study on inclusion complex of β-CD-H ₂ Dz-Zn	58

LIST OF TABLES

	Page
Table 3.1: Experimental conditions for determination of H ₂ Dz-Zn ratio	
(Job's method)	20
Table 3.2: Experimental conditions for determination of inclusion complex	
of β-CD-H ₂ Dz-Zn ratio (Job's method)	20
Table 4.1: Interpretation of FTIR spectrum of β -CD, dithizone, inclusion complex	X
of β -CD-H ₂ Dz and inclusion complex of β -CD-H ₂ Dz-Zn	26
Table 4.2: Elements presence in inclusion complex of β-CD-H ₂ Dz-Zn	36
Table 5.1: Effect of solvents on inclusion complex of β-CD-H ₂ Dz-Zn at 522 nm	48
Table 5.2: Effect of foreign ions	54
Table 5.3: Comparison of present method with other reported methods on	
spectrophotometric determination of zinc	58
Table 5.4: Recovery of zinc from real samples	59
Table A-1: Blank signal for β-CD-H ₂ Dz-Zn system at 522 nm	61

LIST OF SYMBOLS AND ABBREVIATIONS

 13 C CP/MAS NMR – 13C Cross Polarization and Magic Angle Spinning spectroscopy

Abs. - Absorbance

Conc. - Concentration

DMF – Dimethylformamide

DSC – Differential Scanning Colorimetric

EDX – Energy Dispersive X-ray

 H_2Dz – Dithizone

MW – Molecular Weight

TGA – Thermal Gravimetric Analysis

UV-Vis – Ultraviolet - Visible

XRD – X-ray Diffraction

Zn - Zinc

 β -CD – β -cyclodextrin

 β -CD-H₂Dz – β -cyclodextrin-dithizone

 β -CD-H₂Dz-Zn – β -cyclodextrin-dithizone-zinc

LIST OF APPENDICES

	Page
Appendix A	61