CONVERSION OF SPENT MUSHROOM SAWDUST SUBSTRATE TO SIMPLE SUGARS FOR BIOETHANOL PRODUCTION

SOO CHING SIEW

DISSERTATION PRESENTED FOR THE FULFILMENT OF THE REQUIREMENTS OF THE MASTER DEGREE OF SCIENCE

DEPARTMENT OF CHEMISTRY FACULTY OF SCIENCE UNIVERSITY OF MALAYA KUALA LUMPUR 2011

ABSRACT

Spent Mushroom Sawdust Substrate (SMSS) was appraised for its potential as a lignocellulosic waste source for conversion of to bioethanol. Aqueous perchloric acid is used to hydrolyze the lignocellulosic waste feedstock to simple sugars which are then fermented to ethanol. Aqueous perchloric acid was chosen as the medium for conversion of SMSS to sugars as it can hydrolyze the recalcitrant cellulosic biomass to give a significant amount of glucose without the need for strong heating or the application of pressure. The products of the breakdown of SMSS by perchloric acid were analysed by HPLC, glucometer and by Fehling's method. HPLC results showed the presence of glucose and xylose. The sugars obtained were then fermented by the yeast, Saccharomyces cerevisiae, to yield ethanol. The products obtained from the fermentation were analysed by GC and results show the presence of ethanol and methanol. Some performance parameters for the production of bioethanol such as concentration of perchloric acid and the time of hydrolysis of SMSS were reported. The judicious use of the concentration of perchloric acid was important in order to control the reaction so that it leads to a minumum concentration of inhibitors and the maximum concentration of glucose. A conversion yield of of SMSS up to 12.3% was obtained. This translates to 1L of bioethanol produced for every 22.4 kg of the dried substrate.

ABSTRAK

Substrat habuk gergaji cendawan (SMSS) dikaji sebagai sumber untuk penukaran sisa lignoselulosa menjadi etanol. Asid perklorik digunakan untuk menghidrolisis selulosa biojisim untuk menghasilkan gula ringkas yang kemudian ditapai menjadi etanol. Asid perklorik dipilih sebagai media untuk penukaran SMSS ke glukosa kerana ia memberikan glukosa tanpa pemanasan yang kuat atau tekanan yang tinggi. Produk-produk terhasil daripada hyrolisis dan fermentasi dapat dianalisasi oleh HPLC, meter glukosa dan kaedah Fehling. Keputusan HPLC menunjukkan kehadiran glukosa dan xilosa. Glukosa yang diperolehi kemudian ditapai oleh yis, *Saccharomyces cerevisiae*, untuk menghasilkan etanol. Produk-produk terhasil daripada penapaian dianalisasi oleh GC. Keputusan GC menunjukkan kehadiran etanol dan metanol.

Beberapa parameter seperti kepekatan asid perklorik dan masa hidrolisis SMSS untuk penghasilan bioetanol dilaporkan. Kepekatan asid perklorik adalah penting untuk mengawal reaksi untuk menghasilkan inhibitor yang minimum dan glukosa yang maksimum.

Peratus penukaran setinggi 12.3% dapat diperolehi. Ini bererti, 22.4kg substrat kering dapat menghasilkan 1L etanol.

UNIVERSITY OF MALAYA

ORIGINAL LITERARY WORK DECLARATION

Name of Candidate	:	Soo Ching Siew	(IC No. : 850912-01-5776)
Matric No.	:	SGR 090014	
Name of Degree	:	Master Degree of Sc	ience
Title of Research	:	Conversion of Spent to Simple Sugars for	Mushroom Sawdust Substrate r Bioethanol Production
Field of Study	:	Biofuel	

I do solemnly and sincerely declare that:

- (1) I am the sole author of this work;
- (2) This work is original;
- (3) Use of any work in which copyright exists was done by the way of fair dealing and for permitted purposes and any excerpt or extract from, or reference to or reproduction of any copyright work has been disclosed expressly and sufficiently and the title of this work and its authorship have been acknowledged in this work;
- (4) I do not have any actual knowledge nor do I ought reasonably to know that the making of this work constitutes an infringement of any copyright work;
- (5) I hereby assign all and every rights in the copyright to this work to University of Malaya ("UM"), who henceforth shall be owner of the copyright in this work and that any reproduction or use in any form or by any means whatsoever is prohibited without the written consent of UM having been first had and obtained;
- (6) I am fully aware that if in the course of making this work I have infringed any copyright whether intentionally or otherwise, I may be subjected to legal action or any other action as may be determined by UM.

Candidate's Signature Subscribed and solemnly declared before,

Witness's Signature

Witness's Signature

Name: Prof. Dr. Zainudin Arifin

Name: Dr. Teoh Teow Chong

ACKNOWLEDGEMENTS

I would like to forward my greatest appreciation to my supervisors, Prof. Dr. Zainudin bin Arifin and Dr Teoh Teow Chong for their guidance, ideas, patience, and support.

I would also like to thank Dr Thorsten Heidelberg for giving me a lot of valuable advice on improving the experimental methods, and Dr Kamal Aziz Ketuly for sharing his expertise in HPLC with our research team.

I would also like to thank Ms Cheng Poh Guat from Ganofarm Sdn. Bhd. for sponsoring spent mushroom sawdust substrate for this investigation and my co-workers in Lab-C216, Dayang Siti Shamsiah Bt Awang Bujang and Ainnul Hamidah Syahadah Bt Azizan for helping me in analyzing the sugar samples and the ethanol samples.

I am very grateful to Department of Chemistry, University of Malaya, for providing me the facilities in the laboratory and in the campus. My gratitude also goes to the University of Malaya Research Grants, (RG019/ 09BIO) and (PS336/2009C) for sponsoring this project.

Finally, I would like to extend my appreciation to my parents, Soo Kam Soon and Lim Siew Mui for their continuous encouragement and support in pursuing my postgraduate study in University of Malaya.

CONTENTS

Page

ABSTRACT	ii
ABSTRAK	iii
DECLARATION	iv
ACKNOWLEDGEMENT	v
CONTENTS	vi
LIST OF FIGURES	Х
LIST OF TABLES	xi
LIST OF EQUATIONS	xii
SYMBOLS AND ABBREVIATIONS	xiv

CHAPTER ONE: INTRODUCTION

1.1	Background of the Study	1
1.2	Production of Bioethanol from Lignocellulosic Biomass	4
1.3	Problem Statement and Significance of the Study	13
1.4	Objectives of the Study	15

CHAPTER TWO: LITERATURE REVIEW

2.1	Pretreatment of Ligr	ocellulosic Biomass	16
	2.1.1 Pretreatment	by Phosphoric Acid- Acetone	17
	2.1.2 Pretreatment	by Dilute Sulfuric Acid	18

	2.1.3 Pretreatment by Alkali-Peracetic Acid	19
	2.1.4 Pretreatment by Dilute Alkali	20
	2.1.5 Pretreatment by Microwave-Alkali	21
2.2	Hydrolysis of Lignocellulosic Biomass	22
	2.2.1 Hydrolysis by Dilute Sulfuric Acid	23
	2.2.2 Hydrolysis by Concentrated Sulfuric Acid	25
	2.2.3 Hydrolysis by a Mixture of Enzymes	25
	2.2.4 Hydrolysis by Water	26
2.3	Fermentation of Hydrolysate for Producion of Bioethanol	27
2.4	Recovery of Ethanol by Distillation	29

CHAPTER THREE: EXPERIMENTAL

3.1	Materials and Chemicals 3		30
3.2	Analy Raw S	sis of Water Content and Thermogravimetric Analysis on Spent Mushroom Sawdust Substrate and Green Sawdust	31
3.3	Pretre Sawd	eatment of Spent Mushroom Sawdust Substrate and Green ust by Potassium Hydroxide	33
3.4	Optm	ization of Hydrolysis Parameters	34
	3.4.1	Hydrolysis of Spent Mushroom Sawdust Substrate at Different Concentrations of Perchloric Acid	34
	3.4.2	Hydrolysis of Spent Mushroom Sawdust Substrate at Different Hydrolysis Times	35
3.5	Hydro	olysis at Optimum Conditions	35
	3.5.1	Hydrolysis of Spent Mushroom Sawdust Substrate, Delignified Spent Mushroom Sawdust Substrate and Cellulose by Perchloric Acid	35

	3.5.2	Analysis on the Constituents of the Hydrolysates		37
		3.5.2.1	Analysis of Glucose and Xylose by High Performance Liquid Chromatography	37
		3.5.2.2	Analysis of Glucose by Glucometer	39
		3.5.2.3	Analysis of Reducing Sugar by Fehling's Test	40
		3.5.2.4	Determination of Methanol Content in Hydrolysates by Gas Chromatography	42
3.6	Produ	ction of	Biothanol by Fermentation of Hydrolysates	42
	3.6.1	Fermen Sawdus Substra	tation of Hydrolysates of Spent Mushroom t Substrate, Delignified Spent Mushroom Sawdust te and Cellulose by <i>Saccharomyces cerevisiae</i>	43
	3.6.2	Determ	ination of Alcohol Content	43
		3.6.2.1	Analysis of Ethanol and Methanol by Gas Chromatography	44
		3.6.2.2	Analysis of Ethanol by Hand-held Refractometer	45
	3.6.3	Fermen	tation of Standard Xylose	45
	3.6.4	Ethanol	Yield against Various Time of Fermentation	46

CHAPTER FOUR: RESULTS AND DISCUSSION

4.1	Analy Raw S	vsis of Water Content and Thermogravimetric Analysis on Spent Mushroom Sawdust Substrate and Green Sawdust	47
4.2	Pretre Sawd	eatment of Spent Mushroom Sawdust Substrate and Green ust by Potassium Hydroxide	50
4.3	Optm	ization of Hydrolysis Parameters	53
	4.3.1	Hydrolysis of Spent Mushroom Sawdust Substrate at Different Concentrations of Perchloric Acid	53
	4.3.2	Hydrolysis of Spent Mushroom Sawdust Substrate with Different Hydrolysis Times	54

4.4	Hydrolysis at Optimum Conditions		55	
	4.4.1	Analysi	s on the Constituents of the Hydrolysates	55
		4.4.1.1	Analysis of Glucose and Xylose by High Performance Liquid Chromatography	55
		4.4.1.2	Anaysis of Glucose by Glucometer	56
		4.4.1.3	Analysis of Reducing Sugar by Fehling's Test	57
		4.4.1.4	Determination of Methanol Content in Hydrolysates by Gas Chromatography	58
4.5	Produ	iction of	Ethanol by Fermentation of Hydrolysates	66
	4.5.1	Determ	ination of Alcohol Content	66
		4.5.1.1	Analysis of Ethanol and Methanol by Gas Chromatography	67
		4.5.1.2	Analysis of Ethanol by Hand-held Refractometer	67
	4.5.2	Fermen	tation of Standard Xylose	68
	4.5.3	Ethanol	Yield against Various Time of Fermentation	69
4.6	Conc	lusion		72
REFERENCES 7			74	
APP	ENDIC	CES		83
LIST	r of c	ONFER	ENCES	94
LIST OF AWARD		94		

LIST OF FIGURES

Figures		Page
1.1	Partial structure of cellulose	5
1.2	Partial structure of starch	5
1.3	Partial structure of xylan	6
1.4	Partial structure of glucomannan	7
1.5	Partial structure of xyloglucan	8
1.6	Partial structure of lignin	9
1.7	Ester bond between lignin and cellulose	10
1.8	Effect of pretreatment on lignocellulosic biomass	11
1.9	Examples of monosaccharide produced by hydrolysis	12
2.1	Structures of toxic by-products in acid hydrolysis	23
3.1	Processes in Bioethanol Production	30
4.1	Decomposition of lignin, hemicellulose, cellulose, GS, SMSS and DSMSS	51
4.2	By-products produced in pretreatment	65
4.3	Hydrolysis of cellulose	68
4.4	Production of methanol from D-glucoturonic acid methyl ester group in hemicellulose	70

LIST OF TABLES

Tables		Page
4.1	Decomposition temperatures of GS, SMSS and DSMSS	47
4.2	Percentage of mass reduction of DSMSS by different concentrations of perchloric acid	53
4.3	Mass of glucose produced from 50g SMSS with different hydrolysis time	54
4.4	Percent yield of glucose and the mass of xylose obtained from DSMSS, SMSS and cellulose	56
4.5	Percentage of glucose in the hydrolysates of cellulose determined by HPLC and glucometer	57
4.6	Percentage of glucose determined by Fehling's test	58
4.7	Methanol content in the hydrolysates of DSMSS, SMSS and cellulose	59
4.8	Percent yield of ethanol from 100g of cellulose, SMSS and DSMSS	67
4.9	Percentage of ethanol in distillates determined by refractometer and GC	68
4.10	Effect of Saccharomyces cerevisiae on xylose solutions	69
4.11	Ethanol produced by hydrolysate against time	70

LIST OF EQUATIONS

EquationsPage2.1
$$3C_5H_{10}O_5 \longrightarrow 5C_2H_5OH + 5CO_2$$
272.2 $C_6H_{12}O_6 \longrightarrow 2C_2H_5OH + 2CO_2$ 273.1Water content, $\% = \frac{mass of wet SMSS - mass of dry SMSS}{mass of wet SMSS} \ge 100$ 333.2 $\%$ of dry mass, $= \frac{dry mass}{mass of wet sawdust substrate -*mass of water} \ge 100$ 343.3Percentage of mass reduction, $\% = \frac{mass of DSMSS - mass of residue}{mass of SMSS} \ge 100$ 343.4Mass of glucose, $g = \frac{\% of glu cose in hydrolysate \times volume of hydrolysate(cm^3)}{100}$ 363.5percent yield of glucose, $\% = \frac{mass of glu cose}{mass of cellulose} \ge \frac{100}{110} \times 100$ 36

xii

3.6 mass of xylose, g = 36

$$\frac{\% \text{ of xylose in hydrolysate } (w/v)}{100} \times \text{volume of hydrolysate}$$
3.7 $2Cu^{2+} + 4I^{-} \longrightarrow 2CuI + I_{2}$
3.8 $2Cu^{2+} + 4I^{-} \longrightarrow 2CuI + I_{2}$
40

3.9 mass of methanol/g =
$$\frac{percentage \ of \ methanol \ in \ distillate}{100} \times volume \ of \ hydrolysate$$
41

3.10 percent yield of ethanol,
$$\% = \frac{mass \ of \ ethanol \times 100 \times 100}{mass \ of \ cellulose \times 110 \times 0.51}$$
 44

4.1
$$(C_6H_{10}O_5)_n + nH_2O \longrightarrow nC_6H_{12}O_6$$
 60

4.2
$$KOH_{(aq)} + HClO_{4(aq)} \rightarrow KClO_{4(s)} + H_2O_{(l)}$$
 66

$$4.3 \qquad 2KClO_4 + H_2SO_4 \rightarrow K_2SO_4 + 2HClO_4 \qquad 66$$

$$4.4 \qquad KClO + HCl \rightarrow KCl + HClO_4 \qquad 67$$

SYMBOLS AND ABBREVIATIONS

%	percent
°C	degree celcius
<i>cm</i> ³	centimeter cube
dm	decimeter
DSMSS	delignified spent mushroom sawdust substrate
g	gram
GC	gas chromatography
GS	green sawdust
h	hour
I_2	iodine
HBA	hydroxybenzylaldehyde
HCl	hydrochloric acid
HMF	5-hydroxymethyl furfural
HPLC	high performance liquid chromatography
kg	kilogram
KI	potassium iodide
КОН	potassium hydroxide
L	liter
LHW	liquid hot water
М	moldm ⁻³
min	minute
mg	milligram

mm	millimeter
MSDS	material safety data sheet
NaOH	sodium hydrolxide
$Na_2S_2O_3$	sodium thiosulphate
PAA	peracetic acid
rpm	rounds per minute
SGA	siringaldehyde
SMSS	spent mushroom sawdust substrate
TGA	thermogravimetric analysis
v	volume
W	weight