IN VITRO ANTIBACTERIAL ACTIVITY OF MEDICINAL Lucilia cuprina LARVAE (DIPTERA: CALLIPHORIDAE) AGAINST SELECTED PATHOGENIC BACTERIA

TEH CHIEN HUEY

FACULTY OF SCIENCE UNIVERSITY OF MALAYA KUALA LUMPUR

2012

IN VITRO ANTIBACTERIAL ACTIVITY OF MEDICINAL Lucilia cuprina LARVAE (DIPTERA: CALLIPHORIDAE) AGAINST SELECTED PATHOGENIC BACTERIA

TEH CHIEN HUEY

DISSERTATION SUBMITTED IN FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE

INSTITUTE OF BIOLOGICAL SCIENCES FACULTY OF SCIENCE UNIVERSITY OF MALAYA KUALA LUMPUR

2012

UNIVERSITY OF MALAYA

ORIGINAL LITERARY WORK DECLARATION

Name of Candidate:	Teh Chien Huey	(I.C/Passport No.: 851022-14-5936)
Matric No.:	SGR080141	
Name of Degree:	Master of Science ((MSc.)

Title of Dissertation ("this Work"):

In Vitro Antibacterial Activity of Medicinal *Lucilia Cuprina* Larvae (Diptera: Calliphoridae) Against Selected Pathogenic Bacteria

Field of Study: Medical Entomology

I do solemnly and sincerely declare that:

- (1) I am the sole author/writer of this Work;
- (2) This Work is original;
- (3) Any use of any work in which copyright exists was done by way of fair dealing and for permitted purposes and any excerpt or extract from, or reference to or reproduction of any copyright work has been disclosed expressly and sufficiently and the title of the Work and its authorship have been acknowledged in this Work;
- (4) I do not have any actual knowledge nor do I ought reasonably to know that the making of this work constitutes an infringement of any copyright work;
- (5) I hereby assign all and every rights in the copyright to this Work to the University of Malaya ("UM"), who henceforth shall be owner of the copyright in this Work and that any reproduction or use in any form or by any means whatsoever is prohibited without the written consent of UM having been first had and obtain;
- (6) I am fully aware that if in the course of making this Work I have infringed any copyright whether intentionally or otherwise, I may be subject to legal action or any other action as may be determined by UM.

Candidate's Signature

Date:

Subscribed and solemnly declared before,

Witness's Signature Name: Prof Dato Dr Mohd Sofian Azirun Designation: Penyelia Date:

ABSTRACT

Maggot Debridement Therapy (MDT) is a type of biosurgery involving the intentional application of live, disinfected fly larvae into the chronic non-healing wounds of human or animal to debride the necrotic tissue and disinfect the infected wounds. Many studies have demonstrated the potent antibacterial activity of Lucilia sericata larval excretions/secretions against bacteria, however, the antibacterial activity of the local strain of blowfly, L. cuprina (Wiedeman) larval extract against bacteria has never been determined, although MDT using L. cuprina larvae was successfully conducted. In view of this, the objectives of this study are to develop a procedure for the production of sterile L. cuprina larval extract as well as to study the in vitro antibacterial activity of L. cuprina larval extract against seven selected potentially pathogenic wound bacteria: *Staphylococcus* Methicillin-resistant Staphylococcus aureus (MRSA), aureus, *Staphylococcus* epidermidis, Streptococcus pyogenes, Klebsiella pneumoniae, Pseudomonas aeruginosa and Escherichia coli. Larvae were sterilized using established procedures and sterile larval extract was produced successfully via subsequent methanol-homogenization of larvae, centrifugation of homogenate and vacuumconcentration of the resultant supernatant. The vacuum-concentrated product (larval extract) was kept at -70 °C and re-suspended in sterile distilled water prior to use. Turbidometric (TB), Colony-Forming Units (CFU), Agar Well-Diffusion and Minimum Inhibitory Concentration (MIC) assays were adopted to determine the in vitro antibacterial activity and properties (bactericidal and/or bacteriostatic) of larval extract against the seven selected bacteria. TB Assay has demonstrated significant growth inhibition of all bacteria tested (p<0.001). However, both CFU and well-diffusion assays have demonstrated the significant potent inhibitory effect of L. cuprina larval extract towards P. aeruginosa and these results were substantiated by the MIC assay that as little as 0.78 mg/ml of larval extract was able to inhibit at least 50% of the growth of *P. aeruginosa*. *L. cuprina* larval extract has proven to withstand long-term storage (13 months) and was thermally stable. In conclusion, the highly robust *L. cuprina* larval extract exhibited broad-spectrum antibacterial activity and was particularly potent against the Gram-negative bacteria.

ABSTRAK

Terapi Ulat merupakan sejenis bio-terapi yang melibatkan aplikasi ulat lalat hidup dan steril dalam luka kronik manusia atau binatang untuk membersihkan tisu nekrotik dan menyah-infeksikan luka terinfeksi. Kajian-kajian lepas telah membuktikan keberkesanan aktiviti anti-bakteria yang ditunjukkan oleh ulat lalat Lucilia sericata. Walau bagaimanapun, aktiviti anti-bakteria bagi ulat strain tempatan, iaitu L. cuprina tidak pernah dikaji sedangkan terapi ulat yang menggunakan ulat L. cuprina telah dilaksanakan dengan berjayanya. Oleh itu, objektif kajian ini adalah untuk mewujudkan prosedur penghasilan ekstrak ulat L. cuprina serta mengaji secara in vitro aktiviti antibackteria ekstrak ulat L. cuprina terhadap tujuh jenis bacteria pathogenik yang kerap menginfeksi luka, iaitu Staphylococcus aureus, Methicillin-resistant Staphylococcus aureus (MRSA), Staphylococcus epidermidis, Streptococcus pyogenes, Klebsiella pneumoniae, Pseudomonas aeruginosa dan Escherichia coli. Ulat lalat dinyahinfeksikan dengan prosedur pembersihan tertentu dan kemudian di-homogenisasi dalam methanol, di-sentrifugasi dan akhirnya supernatant yang didapati dipekatkan melalui pengvakuman untuk menghasilkan ekstrak ulat yang steril. Produk akhir yang didapati (ekstrak ulat) disimpankan pada $-70 \,^{\circ}$ C dan dilarutkan dalam air suling steril sebelum digunakan. Asai turbidometrik (TB), unit pembentukan-koloni (CFU) dan Agar Well-Diffusion telah digunakan untuk menentukan secara in vitro aktiviti dan ciri (bakterisidal dan/atau bakteriostatik) anti-bakteria ekstrak ulat terhadap tujuh spesis bacteria yang terpilih. Asai TB telah menunjukkan bahawa ekstrak ulat merencatkan pertumbuhan semua bacteria yang dikaji secara signifikan (p<0.001). Bagaimanapun, asai CFU dan Agar Well-Diffusion menunjukkan bahawa kesan perencatan ekstrak ulat adalah lebih signifikan dan berkesan terhadap P. aeruginosa dan keputusan ini pula disokong oleh data dari asai Minimum Inhibitory Concentration yang membuktikan hanya sebanyak 0.78 mg/ml ekstrak ulat adalah mencukupi untuk merencatkan sekurang-kurangnya 50% pertumbuhan *P. aeruginosa*. Selain itu, ekstrak ulat *L. cuprina* telah dibukti dapat menahan masa penyimpanan yang panjang (13 bulan) dan amat stabil terhadap haba. Secara kesimpulannya, ekstrak ulat *L. cuprina* yang tahan lazak ini menunjukkan spektrum aktiviti anti-bakteria yang luas dan adalah secara khususnya berkesan terhadap bakteria Gram-negatif.

ACKNOWLEDGEMENT

First and foremost, I would like to take this opportunity to express my upmost gratitude to my supervisors, Professor Dato' Dr. Sofian Mohd Azirun and co-supervisor, Dr. Nazni Wasi Ahmad (Institute for Medical Research, IMR) for their continuous guidance, support, encouragement, patience and crucial contribution from the preliminary stage of the proposed project to the writing of this dissertation.

Besides, it is my pleasure to convey my earnest thanks again to Dr. Lee Han Lim and Dr Fairuz Amran from IMR for their valuable technical advice and experienced ears for my doubts throughout the implementation of this project, particularly in the development of methodology for this study. I am most thankful to them for the provision of well-equipped laboratories and insectarium for my research work. They have also been my inspiration as I hurdle the obstacles in the completion of this study.

In addition, I am heartily thankful to Dr. Norazah Ahmad and her staff from the Bacteriology Unit, IMR for their kind cooperation in supplying the American Type Culture Collection (ATCC) bacterial samples to me, with consistent quality. Nevertheless, I would like to express my appreciation to the friendly and cheerful group of staff from the Medical Entomology Unit, IMR for the willingness and generosity in sharing their experience in the field of medical entomology with me.

I gratefully acknowledge the Director of IMR, Dr Shahnaz Murad for her support while I was conducting the research in IMR as well as the Director of the Institute for Public Health (IKU), Dr. Tahir Aris for approving and encouraging me to pursue my Master Degree despite my commitment to the institute. His enthusiasm in research has been my motivation to proceed till the completion of this dissertation. Furthermore, it is a pleasure to pay tribute to the Head of Disease Control Division (IKU), Dr. Fadzilah Kamaludin and the Head of Burden of Disease Unit (IKU), Dr. Noor Azah Daud for their exceptional consideration in allowing me to complete my laboratory work during working hours.

Above all and the most important, I convey my special thanks and acknowledgement to the Ministry of Health Malaysia and the Malaysian Technology Development Corporation (MTDC) for granting this research project. Without the financial support from the ministry, this dissertation would not have been completed or written.

Words fail me to express my deepest appreciation to my beloved grandparents, Mr. Teh Eng Peng and Mdm. Lee Ah Lek, my adoring and supportive parents, Mr. Teh Swee Kate and Mdm. Tan Swee Beng as well as my caring siblings, Teh Ming Woey and Teh Yit Sen for providing me a family of bliss in which I have grown up as well as completed my writing up. Thank you so much and I love you all!

TABLE OF CONTENTS

		Page Numbers
DECLARATION	1	i
ABSTRACT		ii
ABSTRAK		iv
ACKNOWLEDG	SEMENT	vi
CONTENTS		viii
LISTS OF FIGU	RES	xii
LISTS OF TABLES		XV
LISTS OF SYMBOLS AND ABBRVIATIONS		xvii
LIST OF APPEN	DICES	xx
CHAPTER I	INTRODUCTION	
1.1	Background	1
1.2	Research Question	3
1.3	General Objective	3
1.4	Specific Objectives	4
1.5	Hypotheses	4

CHAPTER II LITERATURE REVIEW

2.1	Magg	ot Therapy	5
	2.1.1	History of Maggot Therapy	6
	2.1.2	Maggot Therapy in Malaysia	7
	2.1.3	<i>Lucilia cuprina</i> Larvae - The Candidate for Maggot Therapy	8
	2.1.4	Synergistic Therapeutic Mechanisms of Maggot Therapy	12
2.2	Bacter	ria	14
	2.2.1	Symbiosis of Bacteria with Other Organisms	16
	2.2.2	Pathogenic Bacteria	17
2.3	Woun	ds	18
	2.3.1	Wound Types	19
	2.3.2	Wound Healing	19
	2.3.3	Wound Microflora	21
2.4	Antibi	otic-Resistant Bacteria	23

ix

CHAPTER III MATERIALS AND METHODS

3.1	Materi	als	
	3.1.1	Larvae	27
	3.1.2	Bacteria	29
	3.1.3	Chemicals	29
3.2	Metho	ds	
	3.2.1	Production of Larval Extract	29
	3.2.2	Preparation of the 0.5 McFarland Standard	30
	3.2.3	Preparation of Bacterial Suspension	33
	3.2.4	Turbidometric (TB) Assay	33
	3.2.5	Colony-Forming Unit (CFU) Assay	34
	3.2.6	Well-Diffusion Assay	34
	3.2.7	Minimum Inhibitory Concentration (MIC) Assay	35
	3.2.8	Robustness of Larval Extract	36
	3.2.9	Heat Stability of Larval Extract	36
	3.2.10	Freeze-Thaw Stability of Larval Extract	36
	3.2.11	Statistical Analysis	36

CHAPTER IV RESULTS AND DISCUSSION

4.1	Produ	ction of Sterile Larval Extract for Antibacterial Assays	38
4.2	Antiba	acterial Assays	
	4.2.1	Turbidometric Assay	42
	4.2.2	Colony-Forming Unit Assay	53
	4.2.3	Agar Well Diffusion Assay	61
	4.2.4	Minimum Inhibitory Concentrations Assay	70
4.3	Physic	ochemical Properties of Larval Extract	74
	4.3.1	Robustness	75
	4.3.2	Heat Stability	80
	4.3.3	Freeze-Thaw Stability	85
CHAPTER V	CON	CLUSION	89
BIBLIOGRAPHY			91
APPENDICES			99

LIST OF FIGURES

Figure

Page Numbers

Fig. 2.1.2	Condition of a 52-year-old diabetic woman's wound before, during and after undergoing maggot therapy	9
Fig. 2.1.3a	Two-day old <i>Lucilia curpina</i> larvae fed on fresh, raw cow liver and mouse pellet	11
Fig. 2.1.3b	Cross-sectional view of the vertically feeding <i>L. cuprina</i> larvae	11
Fig. 3.1.1	Fly colonies of <i>L. cuprina</i> at the insectariums of Medical Entomology Unit, IMR	28
Fig. 3.2.1a	15-ml glass Dounce homogenizer used to homogenize <i>L. cuprina</i> late second-instar larvae	31
Fig. 3.2.1b	Centrifuged L. cuprina larval homogenate	31
Fig. 3.2.1c	Vacuum-concentrator used for concentrating the larval extract and removing methanol	32
Fig. 4.1a	Enlarged view of a Dounce homogenizer	39
Fig. 4.1b	Vacuum- concentrated larval extract of <i>L. cuprina</i>	41
Fig. 4.1c	Suspension of <i>L. cuprina</i> larval extract (200 mg/ml) for antibacterial assays	41
Fig. 4.2.1a	Effect of <i>Lucilia cuprina</i> larval extract on bacterial growth	44
Fig. 4.2.1b	Potency of <i>Lucilia cuprina</i> larval extract against the seven bacteria tested	50

Fig. 4.2.2a	Effect of <i>Lucilia cuprina</i> larval extract on bacterial viability using CFU assay	55
Fig. 4.2.2b	Potent bactericidal effect of <i>L. cuprina</i> larval extract on <i>P. aeruginosa</i> cultures	58
Fig. 4.2.2c	Potent bactericidal effect of <i>L. cuprina</i> larval extract on <i>E. coli</i> cultures	59
Fig.4.2.3a	Antibacterial activity of <i>L. cuprina</i> larval extract against bacteria using agar well diffusion assay	63
Fig.4.2.3b	Inactivity of <i>L. cuprina</i> larval extract against <i>S. aureus</i> in agar well diffusion assay	64
Fig.4.2.3c	Inactivity of <i>L. cuprina</i> larval extract against MRSA in agar well diffusion assay	64
Fig.4.2.3d	Inactivity of <i>L. cuprina</i> larval extract against <i>S. epidermidis</i> in agar well diffusion assay	65
Fig.4.2.3e	Inactivity of <i>L. cuprina</i> larval extract against <i>S. pyogenes</i> in agar well diffusion assay	65
Fig.4.2.3f	Inactivity of <i>L. cuprina</i> larval extract against <i>K. pneumoniae</i> in agar well diffusion assay	66
Fig.4.2.3g	Inactivity of <i>L. cuprina</i> larval extract against <i>E. coli</i> in agar well diffusion assay	66
Fig. 4.2.3h	Inhibition zone of <i>P. aeruginosa</i> against <i>L. cuprina</i> larval extract in agar well diffusion assay	68
Fig. 4.3.1a	Potency of 13-month-old <i>L. cuprina</i> larval extract against bacteria in comparison to the controls (freshly prepared larval extract)	76
Fig. 4.3.1b	Change of colour in the 13-month-old <i>L. cuprina</i> larval extract (right) as compared to the freshly prepared larval extract (left)	79

xiii

Fig. 4.3.2	Potency of heat-treated <i>L. cuprina</i> larval extract against bacteria	81
Fig. 4.3.3	Potency of freeze-thawed <i>L. cuprina</i> larval extract against bacteria	86

xiv

LIST OF TABLES

Table		Page Numbers
Table 4.2.1a	Comparison of mean OD ratio of controls and test samples at 630 nm for seven bacteria tested	45
Table 4.2.1b	Mean OD ratios for controls between the Gram- positive and Gram-negative bacteria	48
Table 4.2.1c	Mean OD ratios for test samples between the Gram-positive and Gram-negative bacteria	49
Table 4.2.1d	Mean potency of <i>L. cuprina</i> larval extract against bacteria	51
Table 4.2.2a	Comparison of mean CFU/ml of control and test sample plates for seven bacteria tested	54
Table 4.2.2b	Percentage of viable bacterial cells in the test sample plates after overnight incubation with <i>L. cuprina</i> larval extract	57
Table 4.2.3	Diameter of inhibition zones produced in BHIA plates after overnight incubation	67
Table 4.2.4	Broth microdilution MICs of <i>L. cuprina</i> larval extract against bacteria	72
Table 4.3.1a	Comparison of mean potency of freshly prepared <i>L. cuprina</i> larval extract and 13-month-old <i>L. cuprina</i> larval extract against bacteria	77
Table 4.3.1b	Mean potency of 13-month-old <i>L. cuprina</i> larval extract against bacteria	78
Table 4.3.2a	Comparison of mean potency of freshly prepared <i>L. cuprina</i> larval extract and boiled <i>L. cuprina</i> larval extract against bacteria	82

Table 4.3.2b	Comparison of mean potency of freshly prepared <i>L. cuprina</i> larval extract and autoclaved <i>L. cuprina</i> larval extract against bacteria	83
Table 4.3.2c	Mean potency of boiled and autoclaved <i>L. cuprina</i> larval extract against bacteria	84
Table 4.3.3a	Comparison of mean potency of freshly prepared <i>L. cuprina</i> larval extract and freeze-thawed <i>L. cuprina</i> larval extract against bacteria	87
Table 4.3.3b	Mean potency freeze-thawed <i>L. cuprina</i> larval extract against bacteria	88

xvi

LIST OF SYMBOLS AND ABBREVIATIONS

Symbols	Definitions
%	percent
°C	degree Celsius
μl	microliter
μm	micrometer
BaCl ₂ .2H ₂ O	barium chloride dihydrate
g	gram
H_2SO_4	sulphuric acid
М	molar
mg	milligram
mg/ml	milligram/mililiter
ml	mililiter
w/v	weight/volume

Abbreviations	Definitions
ANOVA	Analysis of Variance
ATCC	American Type Culture Collection
BA	blood agar
BHI	brain heart infusion
BHIA	brain heart infusion agar
CFU	colony-forming unit
DNA	deoxyribonucleic acid
ECM	extracellular matrix
ES	excretions/secretions
HSD	honesty significant difference
IMR	The Institute for Medical Research
LPS	lipopolysaccharides
MDT	maggot debridement therapy
MICs	minimum inhibitory concentrations
MRSA	methicillin-resistant <i>Staphylococcus aureus</i>
MSSA	methicillin-susceptible <i>Staphylococcus</i> aureus

OD	optical density
PBS	phosphate-buffered saline
rpm	revolutions per minute
SPSS	Statistical Package for the Social Sciences
ТВ	turbidometric
VRSA	Vancomycin-resistant <i>Staphylococcus</i> aureus

LIST OF APPENDICES

Appendix **Page Numbers** 99 Optical density (OD) of growth controls for seven Appendix I bacteria tested Optical density (OD) of test samples for seven 99 **Appendix II** bacteria tested **Appendix III** Multiple comparisons of antibacterial potency of 100 L. cuprina larval extract against seven selected bacteria using Tukey's HSD post-hoc test Optical density (OD) of bacterial suspensions 101 **Appendix IV** before overnight incubation for Minimum Inhibitory Concentration Assay **Appendix V** Optical density (OD) of bacterial suspensions after 102 overnight incubation for Minimum Inhibitory **Concentration Assay** Optical density (OD) of bacterial suspensions **Appendix VI** 103 incubated with 13 months old larval extract **Appendix VII** Optical density (OD) of bacterial suspensions 103 incubated with boiled larval extract Appendix VIII Optical density (OD) of bacterial suspensions 104 incubated with autoclayed larval extract Optical density (OD) of bacterial suspensions 104 **Appendix IX** incubated with freeze-thawed larval extract