STUDIES OF FORENSICALLY IMPORTANT FLIES OF CALLIPHORIDAE AND SARCOPHAGIDAE IN MALAYSIA: MORPHOLOGICAL TAXONOMY, GEOGRAPHICAL AND ECOLOGICAL DISTRIBUTION, SPECIES SUCCESSION ON CARCASSES, AND DNA-BASED IDENTIFICATION

TAN SIEW HWA

THESIS SUBMITTED IN FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

INSTITUTE OF BIOLOGICAL SCIENCES FACULTY OF SCIENCE UNIVERSITY OF MALAYA KUALA LUMPUR

2012

Abstract

In forensic entomology, knowledge of insect taxonomy, development, behaviour and ecology is required to allow accurate data interpretation from entomological evidence in investigations. In this thesis, five forensic entomology related studies have been carried out and discussed in two Malaysian forensically important fly families, the Calliphoridae and Sarcophagidae. These studies involve the taxonomy, species checklist, ecological distribution, dipteran succession pattern on pig carcasses in Sarawak and DNA-based species identification analysis.

A detailed taxonomical study of Sarcophagidae encompasses the examination of external morphological characters, and their terminology was constructed. Several important taxonomical characters were identified and their usefulness in establishing taxonomical key was evaluated. Knowledge of basic anatomy is important when inferring relationships among the sarcophagid flies.

The ecological distribution study of Calliphoridae and Sarcophagidae explores whether certain species are more associated with particular ecological habitats (e.g. urban, forest, swamp, etc.). Environmental influences (e.g. habitats and elevations) are discussed with regard to the presence of fly species. Habitat-specific species were also proposed. Understanding the distribution and ecology of these fly species may facilitate criminal investigations, especially in determining the location of the first crime scene. Species checklists of Calliphoridae and Sarcophagidae were also obtained.

Rates and stages of decomposition of two scavenged and clothed pig carcasses were studied in a tropical rainforest in Kuching, Sarawak, Malaysia. Comparisons between these two carcasses revealed that the scavenged carcass decomposed faster than the clothed one. Some important fly species were proposed to serve as the time (e.g. decomposition stage) and location (e.g. habitat) indicators. Diptera species were significantly different between these two pig carcasses due to differences in physical condition of the carcasses.

The efficacy of DNA-based identification of forensically important fly Calliphoridae species in Malaysia was evaluated using two genetics markers, the *cytochrome c oxidase* subunit I and II as well as 28S ribosomal DNA. Evolution and speciation of *Chrysomya defixa* and *Chrysomya pinguis*, such as incomplete lineage sorting, introgressive hybridisation, and ancestral polymorphism were also discussed. PCR-RFLP analysis of *cytochrome c oxidase* subunit I was also employed to facilitate species identification of *Chrysomya* in Malaysia.

Similar DNA-based study was conducted for Malaysian Sarcophagidae. However, only *cytochrome c oxidase* subunit I and II was included for the DNA barcoding analysis of 49 sarcophagid species. From the phylogeny, almost all species of Sarcophagidae were monophyletic except for *Boettcherisca javanica*, which provide strong evidence for proposal of new combination of genera, such as *Rosellea notabilis*, *Pseudothyrsocnema borneensis*, *Bellieriomima globovesica* and *Bellieriomima uniseta*.

Abstrak

Dalam bidang entomologi forensik, pengetahuan tentang taksonomi serangga, pembangunan, perilaku dan ekologi diperlukan untuk membenarkan tafsiran data yang tepat daripada bukti berhubung dengan serangga dalam penyiasatan. Dalam tesis ini, lima kajian berkaitan entomologi forensik telah dilakukan dan dibincangkan dengan menggunakan spesies daripada dua famili lalat Malaysia yang memainkan peranan yang penting dalam forensik, iaitu Calliphoridae dan Sarcophagidae. Kajian ini melibatkan taksonomi, senarai spesies, taburan ekologi, corak turutan diptera atas bangkai babi di Sarawak dan analisa pengenalan spesies berasaskan DNA.

Satu kajian taksonomi terperinci tentang Sarcophagidae meliputi pemeriksaan watak morfologi luaran dan terminology telah dilakukan. Beberapa watak taksonomi penting dikenalpasti dan kegunaannya dalam membina kunci taksonomi juga dinilai. Pengetahuan tentang anatomi asas adalah penting untuk menjelaskan dan merumuskan hubungan antara lalat-lalat sarcophagid.

Kajian taburan ekologi Calliphoridae dan Sarcophagidae, menjelajah jenis spesies lalat berkaitan dengan habitat ekologi khusus (seperti bandar, hutan, paya, dan lain-lain). Pengaruh persekitaran (seperti habitat dan altitud) dibahas berkaitan dengan kehadiran jenis lalat. Spesies khusus kepada habitat juga dicadangkan. Dengan memahami taburan dan ekologi lalat dapat memudahkan penyiasatan jenayah, terutama dalam menentukan tempat kejadian pertama bagi sebuah jenayah. Senarai spesies bagi Calliphoridae dan Sarcophagidae juga diperolehi.

Kadar dan peringkat pereputan dua bangkai babi - memulung dan berpakaian, dikaji di hutan hujan tropika di Kuching, Sarawak, Malaysia. Perbandingan antara kedua-dua bangkai menunjukkan bahawa bangkai memulung reput dengan lebih cepat daripada yang berpakaian. Beberapa spesies lalat yang penting dicadangkan sebagai penunjuk waktu (contohnya peringkat pereputan) dan lokasi (contohnya habitat). Diptera spesies yang berbeza secara nyata antara dua bangkai babi adalah disebabkan oleh perbezaan dalam keadaan fizikal bangkai.

Keberkesanan teknik berasaskan DNA untuk pengenalan spesies lalat forensik yang penting di Malaysia – Calliphoridae, dianalisis dengan menggunakan dua penanda genetik, *cythochrome oksidase* subunit I dan II serta 28S ribosomal DNA. Evolusi dan spesiasi daripada *Chrysomya defixa* and *Chrysomya pinguis*, seperti "incomplete lineage sorting", "introgressive hybridization" dan "ancestral polymorphism" juga dibincangkan. Analisis PCR-RFLP dalam *cytochrome c oksidase* subunit I juga digunakan untuk memudahkan pengenalan spesies *Chrysomya* di Malaysia.

Kajian berasaskan DNA yang serupa telah dilakukan untuk Sarcophagidae Malaysia. Namun, hanya *cytochrome c oksidase* subunit I dan II dijalankan untuk analisis DNA barcode kepada 49 spesies sarcophagid. Dari filogeni, hampir semua jenis Sarcophagidae spesies adalah monofiletik kecuali *Boettcherisca javanica*, di mana memberikan bukti yang kuat untuk mencadangkan kombinasi baru untuk genus tertentu, seperti *Rosellea notabilis, Pseudothyrsocnema borneensis, Bellieriomima globovesica* and *Bellieriomima uniseta*.

Acknowledgements

Acknowledgements

First of all, I would like to express my greatest gratitude to Professor Dr. Zulqarnain Mohamed, my first supervisor for his guidance, advice, support and encouragement. Without him, this research would have not been successful and completed. I am thankful for his wealth of knowledge in molecular genetics and as a great mentor. He had taught me in developing my own ideas and he was the first to teach me the molecular techniques.

I also wish to thank Puan Edah Mohd Aris, my second supervisor for her suggestion, support and encouragement. Appreciation also goes to Dr. Mohammed Rizman Idid, my third supervisor for his contribution of ideas, guidance and patience. His willingness to share his knowledge in phylogenetics is very much appreciated, and I never would have thought I could master it.

I am grateful to the Ministry of Science, Technology & Innovation, Malaysia, for awarding me the National Science Fellowship scholarship for my Ph.D. programme, and grant for short term research attachment programme to Department of Medical Entomology, Natiaonal Institute of Infectious Diseases (NIID), Tokyo, Japan. This study was also supported by the short term grants F0163/2004A, F0181/2005C and PS085/2007B from University of Malaya, Malaysia and the National e-Science Fund 02-01-03-SF0092 received from the Ministry of Science, Technology and Innovation, Malaysia.

I am indebted to Dr Hiromu Kurahashi, who has given me the golden opportunity to learn from him. He has passed me his invaluable knowledge of taxonomy in calliphorid and sarcophagid flies. I'm also grateful to Dr. Kobayashi and Dr. Tsuda from the NIID for their kind help during my attachment.

vi

Special thanks are extended to Professor Emeritus Miyagi, Professor Toma and Professor Okazawa, who had invited me to join their Sarawak field collections, making field work as fun as possible. A great deal of thanks also goes to curator of Sarawak Musuem, Dr. Charles Leh Moi Ung, Mr. and Mrs. Lo Kuek Fah, who had allowed me to use their laboratory and their land during my Dipteran successional study in Kuching.

For providing the fly specimens, many thanks to Professor Dr. Baharudin Omar (National University Malaysia) and Professor Dr. Johari Surin (University of Malaya). Thanks to Mr. John Jeffery and Mr. Ramakrishnan, for their kindness in technical assistance of fly taxonomical studies.

Thanks are due to my all my genetics laboratory colleagues specially Dr. Teh Ser Huy, Dr. Syarifah, Fiqri, Roziah, Ng Pin Leng, Johnson, Kim Hian and Izzat, for their assistance, support and friendship.

I'd like to thank my husband, Teh Boon Heng, for his understanding and patience. Finally, I would like to express my gratitude to my parents and family, who provided unwavering support and patience, and letting me pursue my goals to become a scientist.

Contents

	Page
Abstract/Abstrak	ii
Acknowledgements	vi
List of figures	viii
List of tables	xiv
Abbreviations	xviii

Chapter 1: General introduction

1.1	Forensic entomology (FE)					
1.2	Brief his	Brief history of medicolegal entomology				
1.3	The use	of forensic e	entomology	2		
	1.3.1	Determinat	ion of post-mortem interval (PMI)	2		
	1.3.2	Inferring th	e place of death	3		
	1.3.3	Estimating	the cause of death	4		
1.4	Forensic	ally importa	int insect families	4		
	1.4.1	Calliphorid	lae – blow flies	5		
	1.4.2	Sarcophagi	dae – flesh flies	5		
1.5	Morpho	logy-based i	dentification	6		
1.6	DNA-ba	sed identific	cation	7		
	1.6.1	DNA-based	d identification methods	8		
	1.6.2	Genetic ma	urkers	9		
		1.6.2.1	mtDNA cytochrome c oxidase gene analysis	10		
		1.6.2.2	nuDNA 28S rRNA gene analysis	10		
1.7	Objectiv	ves		11		

2.0	Abstract	ţ		12	
2.1	Introduction				
2.2	Objectiv	ves		15	
2.3	Material	s and meth	ods	15	
	2.3.1	Collection	n of fly specimens	15	
	2.3.2	Study of b	pasic external taxonomic characters	17	
	2.3.3	Study of i	mportant taxonomic characters	18	
	2.3.4	Taxonomi	cal classification of Malaysian Sarcophagidae	18	
2.4	Results			19	
	2.4.1	Fly specir	nens	19	
	2.4.2	Study of e	external taxonomic characters	20	
		2.4.2.1	Morphological illustrations	22	
		2.4.2.2	Abbreviations used in illustrations	28	
	2.4.3	Important	morphological characters in Malaysian	31	
		Sarcophag	gidae		
	2.4.4	Taxonomi	cal classification of Malaysian Sarcophagidae	33	
		2.4.4.1	Key to the subfamilies of Malaysian	33	
			Sarcophagidae		
		2.4.4.2	Key to the tribes of Malaysian Sarcophaginae	33	
2.5	Discussi	ion		34	
2.6	5 Conclusion			37	

Chapter 3: Species checklist and ecological distribution study of

Calliphoridae and Sarcophagidae

3.0	Abstract	t		38	
3.1	Introduction				
3.2	Objectiv	/es		41	
3.3	Material	ls and Meth	ods	42	
	3.3.1	Collection	n sites	42	
	3.3.2	Collection	n of fly specimens	42	
3.4	Results			42	
	3.4.1	Collection	n sites	42	
	3.4.2	Species cl	Species checklist		
		3.4.2.1	Forensically important Malaysian Calliphoridae	47	
		3.4.2.2	Malaysian Sarcophagidae	48	
	3.4.3	Ecologica	l distribution	49	
		3.4.3.1	Ecological distribution of forensically important	50	
			Malaysian Calliphoridae		
		3.4.3.2	Ecological distribution of Malaysian	51	
			Sarcophagidae		
3.5	Discussi	ion		52	
3.6	Conclus	ion		57	

Chapter 4: Diptera succession study on pig carcassess in Kuching, Sarawak

4.0	Abstract	58
4.1	Introduction	59
4.2	Objectives	60
4.3	Materials and methods	66

	4.3.1	Study site		66
	4.3.2	Animal st	udy subjects	66
	4.3.3	Data colle	ection	67
4.4	Results			68
	4.4.1	Meteorolo	ogical data	68
	4.4.2	Temperat	ure and pH	69
	4.4.3	Decompo	sition stages	70
		4.4.3.1	Decomposition of carcass A	71
		4.4.3.2	Decomposition of carcass B	73
	4.4.4	Arthropod	l succession	76
		4.4.4.1	Arthropod succession - carcass A	78
		4.4.4.2	Arthropod succession - carcass B	79
	4.4.5	Immature	rearing	81
		4.4.5.1	Immature rearing from carcass A	82
		4.4.5.2	Immature rearing from carcass B	82
4.5	Discussi	on		82
4.6	Conclus	ion		89

Chapter 5: DNA-based identification of forensically important

Calliphoridae species in Malaysia

5.0	Abstract		91
5.1	Introduc	tion	92
5.2	Objectiv	/es	94
5.3	Material	s and methods	99
	5.3.1	Fly and larval specimens	99
	5.3.2	DNA extraction	102

5.3.3	PCR amplification		
	5.3.3.1	PCR optimisation – gradient temperature PCR	105
	5.3.3.2	PCR amplification of 5 sets of primer	106
	5.3.3.3	PCR amplification using DNA from fresh and	106
		archival specimens	
	5.3.3.4	PCR amplification using DNA from different life	106
		stages of the fly	
5.3.4	Purificatio	on of PCR products	106
	5.3.4.1	QIAquick [®] PCR purification	107
	5.3.4.2	QIAquick [®] gel extraction	107
5.3.5	Cloning a	nd sequencing	108
5.3.6	Polymerase chain reaction-restriction fragment length		
	polymorp	hism (PCR-RFLP) analysis	
5.3.7	Data and	phylogenetic analysis	110
Results			111
5.4.1	Samples		111
5.4.2	PCR amp	lification	114
	5.4.2.1	PCR optimisation – gradient temperature PCR	114
	5.4.2.2	PCR amplification with 5 sets of primer	118
	5.4.2.3	PCR amplification using DNA from fresh and	120
		archival specimens	
	5.4.2.4	PCR amplification using DNA from different life	121
		stages of the fly	
5.4.3	Purificatio	on of PCR products	122
	5.4.3.1	QIAquick [®] PCR purification	122

5.4

	5.4.4	PCR-RFL	Р		125
		5.4.4.1	PCR-R	FLP assay	125
		5.4.4.2	Dichoto	omy key of PCR-RFLP assay for species	129
			identifi	cation of eight Malaysian Chrysomya	
			species		
	5.4.5	DNA sequ	uence and	alyses	130
		5.4.5.1	Cytoch	rome c oxidase subunit I and II	130
			(a)	Sequence diversity	130
			(b)	Distribution of variation	132
			(c)	Estimation of best fit model	133
			(d)	Accumulation of nucleotide substitutions	134
			(e)	Pairwise sequence divergence	135
		5.4.5.2	Sequen	ces of 28S rDNA	137
			(a)	Sequence diversity	137
			(b)	Distribution of variation	140
			(c)	Estimation of best fit model	141
			(d)	Accumulation of nucleotide substitutions	142
			(e)	Pairwise sequence divergence	143
	5.4.6	Phylogene	etic trees		144
5.5	Discussi	ion			149
5.6	Conclus	ion			154

Contents

Chapter 6: DNA-based identification of forensically important

Sarcophagidae species in Malaysia

6.0	Abstract			155			
6.1	Introduc	Introduction					
6.2	Objectiv	Objectives					
6.3	Material	Materials and methods					
	6.3.1	Specimens		161			
	6.3.2	DNA extra	ction	165			
	6.3.3	PCR ampli	fication	165			
		6.3.3.1	PCR optimisation – gradient temperature PCR	165			
		6.3.3.2	PCR amplification with 2 sets of primer	165			
	6.3.4	Purification	n of PCR products	166			
	6.3.5	Cloning an	d sequencing	166			
	6.3.6 Polymerase chain reaction-restriction fragment length						
	polymorphism (PCR-RFLP) analysis						
	6.3.7	Data and p	hylogenetic analysis	167			
6.4	Results			168			
	6.4.1	Samples		168			
	6.4.2	PCR ampli	fication	170			
		6.4.2.1	PCR optimisation	170			
		6.4.2.2	PCR amplification with 2 sets of primer	172			
	6.4.3	Purification	n of PCR products	173			
		6.4.3.1	QIAquick [®] PCR purification	174			
		6.4.3.2	QIAquick [®] gel extraction	174			
	6.4.4	PCR-RFLF		175			
		6.4.4.1	PCR-RFLP assay	175			

	6.4.5	DNA sequ	nence analyses	180
		6.4.5.1	Sequence diversity	180
		6.4.5.2	Distribution of variation	183
		6.4.5.3	Estimation of best fit model	184
		6.4.5.4	Accumulation of nucleotide substitutions	185
		6.4.5.5	Pairwise sequence divergence	186
	6.4.6	Phylogene	etic trees	190
6.5	Discuss	ion		192
6.6	Conclus	sion		201
Chapte	r 7: Gene	ral remark	s	
Chapte 7.1	r 7: Gene General	ral remark remarks	s	202
Chapte 7.1	r 7: Gene General	ral remark remarks	S	202
Chapte 7.1 Referen	r 7: Gene General	ral remark remarks	S	202 206
Chapte 7.1 Referen Append	r 7: Gene General nces lices	ral remark remarks	\$	202 206
Chapte 7.1 Referen Append App	r 7: Gene General nces lices	ral remarks remarks Meteorolo	s ogical data, readings of temperature and pH	202 206 229
Chapte 7.1 Referen Append App	r 7: Gene General nces lices bendix A	ral remarks remarks Meteorolo Phylogene	s ogical data, readings of temperature and pH etic trees	202 206 229 230
Chapte 7.1 Referen Append App App	r 7: Gene General nces lices bendix A bendix B	ral remarks remarks Meteorolo Phylogene Publicatio	s ogical data, readings of temperature and pH etic trees n	202 206 229 230 239

Page List of figures Figure 2.1 A small hard paper was inserted between the fifth sternite and 17 aedeagus of Boettcherisca karnyi (Hardy, 1927). Head of Boettcherisca karnyi, (a) left lateral view (b) anterior Figure 2.2 22 view. Figure 2.3 Head of Boettcherisca karnvi, (a) dorsal view of male (b) dorsal 23 view of female. Figure 2.4 Thorax of *Boettcherisca karnyi*, dorsal view. 23 Figure 2.5 Thorax of *Boettcherisca karnvi*, left lateral view. 24 Figure 2.6 Wing of Boettcherisca karnvi, dorsal view of right wing. 24 Figure 2.7 Legs of *Boettcherisca karnvi*, (a) dorsal view of left fore leg (b) 25 dorsal view of left mid leg (c) dorsal view of left hind leg. Figure 2.8 Abdomen of *Boettcherisca karnyi*, (a) dorsal view of female (b) 26 dorsal view of male. Figure 2.9 Abdomen of *Boettcherisca karnyi*, (a) ventral view of female (b) 26 ventral view of male. Figure 2.10 Postabdominal section of *Boettcherisca karnyi*, (a) left lateral 27 view of male (b) posterior view of female. Inset: spermatheca. Figure 2.11 Aedeagus of *Boettcherisca karnyi*, left lateral view. Close up of 27 male genitalia from Fig. 5.9(a) Figure 3.1 Geographic location of collection sites in this study. 46 Figure 4.1 Daily meteorological condition of experiment, maximum / 69 minimum ambient temperature and relative humidity as well as rainfall.

Figure 4.2 Temperature and pH of body, larval mass and soil from Carcass 70 A throughout decomposition stages.

viii

- Figure 4.3 Temperature and pH of body, larval mass and soil from Carcass 70 B throughout decomposition stages.
- Figure 4.4 Changes of decomposition of carcass A throughout the study. 72
- Figure 4.5 Changes of decomposition of carcass B throughout the study. 74
- Figure 4.6 Observation of decomposition stages and Diptera larval 80 succession pattern for carcass A and B.
- Figure 5.1 Schematic representation of the mitochondrial COI, COII, tRNA 105 leucine genes and intergenic regions modified from Schroeder *et al.*, 2003a.
- Figure 5.2 Schematic representation of the 28S rDNA with its divergence 105 domain. Locations of the primers and sizes of the amplification fragments using different primer combinations are shown.
- Figure 5.3 Gradient temperature PCR with temperatures ranging from 45°C 115 to 60°C for primers TY-J-1460 & C1-N-2800 in PCR optimisation.
- Figure 5.4 Gradient temperature PCR with temperatures ranging from 45°C 116 to 60°C for primers C1-J-2495 & TK-N-3775 in PCR optimisation.
- Figure 5.5 Gradient temperature PCR with temperatures ranging from 45°C 116 to 65°C for primers D1F & D2R in PCR optimisation.
- Figure 5.6 Gradient temperature PCR with temperatures ranging from 45°C 117 to 65°C for primers D3F & D3R in PCR optimisation.
- Figure 5.7 Gradient temperature PCR with temperatures ranging from 45°C 117 to 65°C for primers D3.5742F & D7R in PCR optimisation.

- Figure 5.8 PCR amplification carried out by primer sets of COI+II. (a) TY- 118
 J-1460 and C1-N-2800 with the expected PCR products of
 1380 bp. (b) C1-J-2495 and TK-N-3775 with the expected size of 1324 bp.
- Figure 5.9 PCR amplification carried out using primers D1.F and D2.R 119 with the expected size of 781 bp.
- Figure 5.10 PCR amplification carried out by primers D3-5.F & D3-5.R and 119 D3-5.742.F & D7.R with the expected size of 704 bp and 940 bp, respectively.
- Figure 5.11 PCR amplification of fresh, 2 year-old, 10 year-old specimens 120 and negative control using TY-J-1460 and C1-N-2800 primers, with an expected product of 1380 bp.
- Figure 5.12 PCR products of different life stages of the fly on 1% agarose 121 gel electrophoresis. PCR amplification was carried out using C1-J-2495 and C1-N-2800 primers, with an expected product of 348 bp.
- Figure 5.13 Purified PCR products of primer set TY-J-1460 and C1-N-2800 122 (~1380bp) after PCR purification.
- Figure 5.14 Purified PCR product of primer set C1-J-2495 and TK-N-3775 123 (~1325bp) after PCR purification.
- Figure 5.15 Purified PCR products of primer set TY-J-1460 and C1-N-2800 123 (~1380bp) after gel extraction.
- Figure 5.16 Purified PCR product of primer set C1-J-2495 and TK-N-3775 124 (~1325bp) after gel extraction.

- Figure 5.17 Purified PCR product of primer sets of D1.F & D2.R (781 bp), 124D3-5.F & D3-5.R (704 bp) and D3-5.742F & D7.R (970 bp) after gel extraction.
- Figure 5.18 PCR-RFLP assay of *Ssp*I restriction endonuclease digestion of 126
 PCR fragment amplified by primer set TY-J-1460 and C1-N-2800 (1380bp) on 2% agarose gel.
- Figure 5.19 Further differentiation of PCR-RFLP assay of (a) *Taq*^αI and (b) 127 *MspI* restriction endonucleases digestion of PCR fragment
 amplified by primer set TY-J-1460 and C1-N-2800 (1380bp) on
 2% agarose gel.
- Figure 5.20 Distribution of nucleotide variation of mitochondrial DNA 132 COI+II of 2309bp sequences based on a 100bp sliding window plot with 25bp steps.
- Figure 5.21
 Genetic distance versus transition and transversion of
 134

 mitochondrial COI+II sequences of 98 taxa.
- Figure 5.22 DNA variation along the nucleotide position of nuclear DNA 140 28S rDNA of 2172bp sequences.
- Figure 5.23Genetic distance versus transition and transversion of nuclear14228S rDNA sequences of 49 taxa.
- Figure 5.24 Bayesian consensus phylogeny of COI+II genes. 147
- Figure 5.25 Bayesian consensus phylogeny of 28S rDNA gene. 148
- Figure 6.1 PCR optimisation using gradient temperatures from 45°C to 171 65°C for primers TY-J-1460 & C1-N-2800 for COI.
- Figure 6.2 PCR optimisation using gradient temperatures from 45°C to 171 65°C for primers C1-J2495 & TK-N-3775 for COI+tRNAleu+COII.

- Figure 6.3 PCR amplification of COI using primers TY-J-1460 and C1-N- 172 2800 at 45°C with the expected 1380bp products from different species of Sarcophagidae
- Figure 6.4 PCR amplification of COI-tRNA-COII using primers C1-J-2495 173 and TK-N-3775 at 58°C with the expected 1324bp products from different species of Sarcophagidae (lanes 1-6).
- Figure 6.5Purified PCR products using primer sets TY-J-1460 & C1-N-1742800 (lanes 1-2, ~1380bp) and C1-J-2495 & TK-N-3775 (lanes3-4, ~1324bp) of different Sarcophagidae species.
- Figure 6.6 Purified PCR products from excised gel using primer sets TY-J- 174
 1460 & C1-N-2800 (lanes 1-2, ~1380bp) and C1-J-2495 & TKN-3775 (lane 3, ~1324bp) of different Sarcophagidae species.
- Figure 6.7 Different RFLP profiles of COI digested with restriction 176 endonuclease, *SspI* for (a) *B. peregrina*, (b) *H. kempi*, (c) *I. martellata* and (d) *L. brevicornis*.
- Figure 6.8 Different RFLP profiles of COI digested with restriction 177
 endonuclease, SspI for (a) L. ruficornis, (b) P. misera, (c) P.
 taenionota and (d) S. princeps.
- Figure 6.9 Identical RFLP profiles of COI digested with restriction 178
 endonuclease, SspI for (a) L. dux, (b) L. saprianovae, (c) S.
 crinita and (d) S. inextricata.
- Figure 6.10 Distribution of nucleotide variation of mitochondrial DNA 183 COI+II of 2308bp sequences based on a 100bp sliding window plot with 25bp steps.
- Figure 6.11
 Genetic distance versus transition and transversion of
 185

 mitochondrial COI+II sequences of 129 taxa.

xii

Figure 6.12 Bayesian consensus phylogeny of COI+II genes.

191

Page

List of tables

Table 2.1	List of sarcophagine fly species collected in this study.	19
Table 2.2	Abbreviations of terminology for body parts used in study.	28
Table 2.3	Abbreviations of chaetotaxy used in this study.	29
Table 2.4	Abbreviations of venation used in this study.	30
Table 2.5	Important morphological characters found in 28 Malaysian	32
	sarcophagidae species.	
Table 3.1	Collection sites with detail of state, locality, coordinates,	43
	altitude and habitat.	
Table 3.2	Checklist of forensically important Malaysian Calliphorid	47
	species collected in this study.	
Table 3.3	Checklist of Malaysian Sarcophagidae species collected in this	48
	study.	
Table 3.4	List of Calliphoridae species found in seven habitats.	50
Table 3.5	List of Sarcophagidae species found in seven habitats.	51
Table 4.1	List of selected succession studies, including animal model,	62
	size, physical condition and placement of carcass, locality and	
	experiment variable.	
Table 4.2	Comparison of selected succession studies of size of pig carcass	65
	and duration of different decomposition stage occurring in	
	geographic region.	
Table 4.3	Duration of decomposition stage.	71
Table 4.4	Summary of insect species collected from 2 pig carcasses.	76
Table 4.5	Succession of insect species collected from 2 pig carcasses	77
	throughout the decomposition stages.	
Table 4.6	Minimum duration of pupatation before emerge as adult.	81

xiv

- Table 5.1DNA region used in DNA-based identification analyses of blow96flies.
- Table 5.2Collection locality and reference data for Calliphoridae100specimens used in this study.
- Table 5.3Primer sequences used to amplify overlapping segments of the104mitochondrial COI and COII genes (Simon, 1994; Sperling etal., 1994) and 28S rDNA (Stevens & Wall, 2001).
- Table 5.4Internal sequencing primers used for mitochondrial cytochrome109c oxidase I and II subunits, 28S rRNA regions D1–D7 and
clones.clones.
- Table 5.5Fly species with mitochondrial DNA sequence data deposited112to the GenBank, which covers the genes of cytochrome coxidasesubunits one and two (COI+II) and the interveningtransfer RNA leucine (tRNA-leu).
- Table 5.6Fly species with nuclear DNA sequence data deposited to the113GenBank, which is the partial of 28S ribosomal DNA (28SrDNA).
- Table 5.7Characterisation of the restriction sites in 8 Malaysian128Chrysomya species.
- Table 5.8DNA sequence length polymorphism of mitochondrial DNA of131COI+II and its nucleotide composition in different species of
Calliphoridae.
- Table 5.9DNA variation of DNA region of mitochondrial COI+II.131
- Table 5.10Minimum pairwise sequence divergence between species and136maximum pairwise sequence divergence within species (bold)of COI+II.

xv

- Table 5.11DNA sequence length polymorphism of nuclear DNA of 28S138rDNA and its nucleotide composition in different species of
Calliphoridae.
- Table 5.12DNA variation and nucleotide compositions of the region 28S138rDNA.
- Table 5.13Distribution of indels in the 28S rDNA with the nucleotide139positions.
- Table 5.14Pairwise divergence of 28S rDNA of *Chrysomya* species based143on the frequency of substitutions between and within species
(bold).(bold)
- Table 6.1Forensically important Sarcophagidae species found on human159cadaver reported in forensic cases in the previous work.
- Table 6.2DNA region used in DNA-based identification analyses of flesh160flies.
- Table 6.3List of species, voucher number and locality for specimens used162in this study.
- Table 6.4DNA sequences of COI+II genes deposited in Genbank for168specimens of flies used in the present study.
- Table 6.5Characterisation of the restriction sites of potential forensically179important sarcophagine species.
- Table 6.6DNA sequence length polymorphism of mitochondrial DNA of181COI+II and its nucleotide composition in different species of
Sarcophagidae.Sarcophagidae.
- Table 6.7DNA variation of DNA region of mitochondrial COI+II.182

- Table 6.8Matrix of minimum pairwise sequence divergence between187species and maximum pairwise sequence divergence within
species (bold) of COI+II.
- Table 6.9Proposed classification of Sarcophagidae species based on197comparisons of taxonomical classifications with the presentCOI+II phylogeny.

Abbreviations

A	adenine
AT	adenine and thymine
ACCTRAN	Accelerated transformation
AIC	Akaike Information Criterion
bp	base pair
С	cytosine
CA	California
cm	centimetre
COI	cytochrome c oxidase subunit I
COII	cytochrome c oxidase subunit II
COI+II	cytochrome c oxidase subunits I and II
CR	control region
DNA	deoxyribonucleic acid
dNTP	deoxyribonucleoside triphosphate
Dr.	Doctor
E	east
e.g.	exempli gratia
et al.	et alia
etc.	et cetera
G	gamma distribution, Γ
G	guanine
GmbH	Gesellschaft mit beschränkter Haftung (company with limited liability)
GPS	Global Positioning System
GTR	general time reversible
Н	height

Ι	invariable sites
i.e.	id est
ISSR	inter simple sequence repeat
ITS	internal transcribed spacer
ITS1 and 2	internal transcribed spacer 1 and 2
ITS2	internal transcribed spacer 2
kb	kilo base
kg	kilogram
L	length
L.	Linnaeus
LSU	large subunit
m	metre
max	maximum
MEGA	Molecular Evolutionary Genetics Analysis
MgCl ₂	magnesium chloride
mg/ml	milligram per millilitre
min	minimum
ml	millilitre
mm	millimetre
mM	millimolar
MP	maximum parsimony
mtDNA	mitochondrial DNA
Ν	north
N/A	not available
ND4	NADH dehydrogenase subunits 4
ND5	NADH dehydrogenase subunits 5

ng	nanogram
NJ	neighbour-joining
nst	number of substitution type
nuDNA	nuclear DNA
PCR	polymerase chain reaction
PCR-RFLP	polymerase chain reaction-restriction fragment length polymorphism
pers. comm.	personal communication
рН	potential hydrogen
PMI	post-mortem interval
RFLP	restriction fragment length polymorphism
RNA	ribonucleic acid
rDNA	ribosomal DNA
rRNA	ribosomal RNA
Sdn. Bhd.	Sendirian Berhad
sp.	species (in singular)
spp.	species (in plural)
sp. nov.	species nova
s. lat.	sensu lato
Т	thymine
TBE	Tris/Borate/EDTA
TBR	tree bisection-reconnection
ТМ	trademark
tRNA	transfer ribonucleic acid
tRNA-leu	transfer ribonucleic acid leucine
TVM	transversional model
UK	United Kingdom

- USA United States of America
- vs versus
- W width
- 10th tenth
- 13th thirteenth
- 17th seventeenth
- 20th twentieth
- 100th hundredth
- 12S 12 Svedberg
- 18S 18 Svedberg
- 28S 28 Svedberg
- µl microlitre
- μM micromolar
- °C degree Celsius
- % percent
- & and
- = equal to
- > more than
- < less than
- ~ approximately

to

_

- \downarrow cleavage site
- [®] registered
- $\times g$ earth's gravitational acceleration