FABRICATION AND CHARACTERIZATION OF HYBRID POLYMER SOLAR CELL

TOONG WAY YUN

DISSERTATION SUBMITTED IN FULFILLMENT OF THE REQUIREMENT FOR THE DEGREE OF MASTER OF SCIENCE

DEPARTMENT OF PHYSICS
FACULTY OF SCIENCE
UNIVERSITY OF MALAYA
KUALA LUMPUR

2012
Name of Candidate: Toong Way Yun
(I.C/Passport No: 850907-06-5138)

Registration/Matric No: SGR090061

Name of Degree: Master of Science (Dissertation)

FABRICATION AND CHARACTERIZATION OF HYBRID POLYMER SOLAR CELL

Field of Study: Organic Electronics

I do solemnly and sincerely declare that:

(1) I am the sole author/writer of this Work;

(2) This Work is original;

(3) Any use of any work in which copyright exists was done by way of fair dealing and for permitted purposes and any excerpt or extract from, or reference to or reproduction of any copyright work has been disclosed expressly and sufficiently and the title of the Work and its authorship have been acknowledged in this Work;

(4) I do not have any actual knowledge nor do I ought reasonably to know that the making of this work constitutes an infringement of any copyright work;

(5) I hereby assign all and every rights in the copyright to this Work to the University of Malaya (“UM”), who henceforth shall be owner of the copyright in this Work and that any reproduction or use in any form or by any means whatsoever is prohibited without the written consent of UM having been first had and obtained;

(6) I am fully aware that if in the course of making this Work I have infringed any copyright whether intentionally or otherwise, I may be subject to legal action or any other action as may be determined by UM.

Candidate’s Signature: Date:

Subscribed and solemnly declared before,

Witness’s Signature: Date:

Name: Dr. Khaulah Sulaiman
Designation: Senior Lecturer
ABSTRACT

The easy fabrication method, tunable physical and chemical properties and cost-effective fabrication process, makes organic solar cells (OSC) very attractive in photovoltaic application. Nonetheless, the device performance is limited due to the low charge mobility of the organic semiconductors that results in a less efficient of charge transport to the respective electrodes. In order to address such problems, hybrid polymer solar cells based on bulk heterojunction (BHJ) structure, which composed of a combination of both organic and inorganic semiconductors are employed. However, the BHJ device performances are strongly dependent on good processing conditions, especially enhancement of photons absorption as well as the improvement of charge transport properties. Hence, the involved parameters and properties should be well optimized.

This dissertation describes the study of effects of blend composition and types of acceptor materials used on the optical, structural, morphological as well as the electrical properties of the three different hybrid BHJ systems. The hybrid materials consist of a blend of p-type conjugated polymer of poly(3-hexylthiophene) (P3HT) and n-type inorganic metal oxide nanoparticles, namely, zinc oxide (ZnO), titanium dioxide (TiO$_2$) and yttrium oxide (Y$_2$O$_3$). The optical, structural and morphological characterizations of the blend thin films using UV-Visible absorption spectroscopy, X-ray diffraction (XRD) spectroscopy, Atomic Force Microscopy (AFM) and Field-effect Scanning Electron Microscopy (FESEM) are discussed. Furthermore, the co-relation of the thin film property with the device performance is presented. The results show that the device performance has been improved by optimizing the blend composition. This is due to an enhancement in light absorption in broader wavelength regime and improved charge transport through the formation of interpenetrating bicontinuous pathway for the holes and electrons to reach the respective electrodes. These results are supported by the observation of the AFM and FESEM images of the increment in RMS roughness and formation of phase separation features in the blends. Besides, the well dispersion of inorganic nanoparticles over P3HT yields a larger interfacial area for charge carrier generation. Among the three hybrid systems investigated, P3HT:ZnO device performs the best with an optimal blend composition of 3% of ZnO nanoparticles in blend.

In order to further improve the device performances, ZnO sol-gel synthesis route has been utilized to produce a better mixing blend of P3HT and ZnO. Additionally, several approaches have been employed, namely modifying the sol content in blends, varying the annealing temperature, and inserting an additional ZnO buffer layer between the active layer and cathode. An optimal annealing treatment offers improved optical absorption properties and more uniform film surface morphology with eliminated redundant large pores and grain agglomerations. The role of the ZnO buffer layer in the blend system can be seen as an agent in facilitating the electron collection from the active layer to the cathode. The results indicate that the device efficiency has been improved by about 5 times for P3HT:ZnO sol gel device with optimized sol content (0.1ml sol), annealed at an optimized temperature of 100°C with additional ZnO buffer layer, compared to the P3HT:ZnO nanoparticles-based device.
ABSTRAK

Fabrikasi yang mudah, ciri-ciri fizikal dan kimia bolehlaras dan kos efektif proses fabrikasi, telah menyebabkan sel suria organik (OSC) amat menarik dalam bidang penggunaan fotovoltaik. Walau bagaimanapun, prestasi peranti menjadi terbatas disebabkan oleh kelincahan pembawa cas yang rendah bagi semikonduktor organik yang mengakibatkan angkutan cas ke elektrod menjadi kurang cekap. Dalam usaha untuk menangani masalah tersebut, sel suria polimer hibrid berasaskan struktur simpang-hetero pukal (BHJ) yang terdiri daripada kombinasi semikonduktor organik dan bukan organik telah digunapakai. Namun demikian, prestasi peranti amat bergantung kepada keadaan pemprosesan yang baik, terutamanya peningkatan serapan foton serta penambah-baikan sifat angkutan. Oleh yang demikian, parameter dan sifat yang terlibat perlu dioptimakan dengan sebaiknya.

Disertasi ini menerangkan kesan komposisi campuran dan jenis bahan penerima yang digunakan terhadap ciri-ciri optik, struktur, morfologi serta sifat elektrik bagi tiga sistem hybrid BHJ berbeza. Bahan hybrid terdiri daripada campuran bahan jenis-p polimer berkonjugat (3-hexylthiophene) (P3HT) dan bahan jenis-n nanopartikel oksida logam bukan organik, iaitu zink oksida (ZnO), titanium dioksida (TiO₂) dan yttrium oksida (Y₂O₃). Pencirian optik, struktur dan morfologi dibincangkan bagi filem nipis campuran yang menggunakan spektroskopi serapan ultraungu-cahaya-nampak (UV-Vis), spektroskopi belauan sinar-X (XRD), mikroskop daya atom (AFM) dan mikroskop electron daya imbasan (FESEM). Malahan, hubung-kait antara sifat filem nipis dengan prestasi peranti juga dibentangkan. Dapatkan kajian menunjukkan bahawa prestasi peranti telah ditingkatkan dengan mengoptimumkan komposisi campuran. Ini disebabkan oleh peningkatan dalam penyerapan cahaya di rantau gelombang yang lebih luas dan meningkatnya angkutan cas melalui pembentukan laluan dwi-berterusan saling-menyusup untuk pergerakan lohong dan electron sampai ke elektrod. Hasil ini disokong oleh pemahatan terhadap imej AFM and FESEM yang mana terdapat peningkatan dalam nilai kekasaran RMS dan pembentukan pemisahan fasa dalam filem campuran. Selain itu, penyerakan nanopartikel bukan organik yang seragam dalam P3HT menghasilkan kawasan sempadan antara-fasa yang lebih luas untuk menjana pembawa cas. Antara tiga jenis sistem hybrid yang dikaji, peranti P3HT:ZnO memberikan prestasi terbaik dengan 3% nanopartikel ZnO di dalam komposisi campuran optimum.

Selanjutnya, sintesis sol-jel ZnO telah dijalankan bagi menghasilkan suatu campuran P3HT and ZnO yang lebih baik. Tambahan pula, beberapa pendekatan telah diambil, iaitu dengan mengubah isi kandungan sol dalam campuran, mempelbagaikan suhu pemanasan, dan memasukkan satu lapisan penampan ZnO di antara lapisan aktif dan katod. Rawatan pemanasan yang optimum menawarkan ciri-ciri penyerapan optik yang lebih baik dan permukaan morfologi filem yang lebih seragam dengan menghapuskan liang dan gumpalan besar. Peranan lapisan penampan ZnO dalam sistem campuran tersebut boleh dilihat sebagai suatu ejen yang memudahkan kutipan elektron dari lapisan aktif ke katod. Dapatkan kajian ini menunjukkan bahawa prestasi bagi peranti berasaskan P3HT:sol-jel ZnO yang disediakan pada komposisi campuran (0.1 ml sol) dan suhu pemanasan optimum pada 100°C dan mengandungi satu lapisan penampan ZnO, telah meningkat sebanyak 5 kali ganda berbanding dengan peranti berasaskan P3HT:nanopartikel ZnO.
ACKNOWLEDGEMENTS

First and foremost I would like to thank God for the strength He has given to me that keeps me moving on to accomplish my goal. I would like to thank my family who have continuously inspired, encouraged and supported me in every trial that come to my way throughout my life. Also, I thank them for giving me not just financial, but moral and spiritual support.

I would also like to gratefully acknowledge my supervisor, Dr. Khaulah Sulaiman for her enthusiastic supervision and valuable guidance to me during this research work. This work would not have been possible without her support and assistance. Special thank to my senior, Mr. Fahmi Faraq Muhamad for his precious encouragement, support, and assistance to me. Besides, I am greatly grateful to all the officials, staff members and my labmates from Low Dimensional Materials Research Center, Department of Physics in University of Malaya, for their sincere assistance and support to me in completing this research work. Special thanks also to all my group members especially Mr. Lim Lih Wei, Mrs. Zurianti, Mr. Shahino Mah Abdullah, Mr. Muhamad Saipul and Miss Fadilah for their willingness to share their literature knowledge and invaluable advice to me.

I would also wish to express my gratitude and thanks to University of Malaya for providing the sufficient financial support to me in the form of scholarship and research grants of PS 303/2009C and PS 462/2010B to support my work and to participate in national and international conferences in different places.

Last but no least, I would like to thank all my friends and housemates for their understanding, care and encouragement, particularly Miss Nor Khairiah Za’aba, Miss Siti Hajar, Miss Maisara Othman, Miss Nur Maisarah, Mrs. Noor Hamizah Khanis, and Mr. Paul Lee Chun Hoong who have continuously given me moral and spiritual support when it is most required.
A. Published Full Papers (ISI-cited)

B. Conference Papers (Non-ISI cited)

TABLE OF CONTENTS

TABLE OF CONTENTS ... vii
LIST OF FIGURES .. xi
LIST OF TABLES .. xviii
LIST OF SYMBOLS ... xx
LIST OF ABBREVIATIONS ... xxi

CHAPTER 1: INTRODUCTION .. 1
1.1 Background of the Research Studies ... 1
1.2 History of Organic Solar Cells (OSCs) 3
1.3 The Reasons of Investigation on Hybrid Polymer Solar Cells 6
1.4 Research Objectives ... 9
1.5 Dissertation Outline ... 10

CHAPTER 2: THEORETICAL BACKGROUND 12
2.1 Overview .. 12
2.2 Conjugated Polymers .. 12
2.3 Charge Transport Characteristics of Conjugated Polymers 16
2.4 Electronic Properties of Conjugated Polymers 17
2.5 Doping ... 20
2.6 Optical Properties of Conjugated Polymers 22
2.7 Donor Material ... 24
2.7.1 Poly(thiophene) ... 24
 I) Regioregularity ... 25
 II) Solubility ... 25
 III) Regioregular Poly (3-hexylthiophene) (P3HT) 26
2.8 Acceptor Material ... 27
2.8.1 Inorganic Nanoparticles .. 27
2.8.2 Physical Properties of Inorganic Nanoparticles 29
 I) Optical Properties ... 29
 II) Structural and Morphological Properties 30
 III) Electrical Properties .. 30
2.8.3. Types of Inorganic Nanoparticles Used in This Research Work 31
 I) Zinc Oxide ... 31
 II) Titanium Dioxide ... 32
 III) Yttrium Oxide .. 33
CHAPTER 3: EXPERIMENTAL METHODOLOGY

3.1 Overview

3.2 Chemicals and Materials

3.2.1 Chemicals and Solutions Preparation

3.2.2 Substrates and Electrodes Preparation

3.2.3 Substrates Patterning and Cleaning

3.3 Thin Films Preparation via Spin Coating Technique

3.3.1 P3HT:ZnO Sol-Gel Film Preparation via Thermal Annealing Treatment

3.4 Devices Fabrication

3.4.1 Single Layer and Bulk Heterojunction (BHJ) Structures

3.4.2 Aluminum (Al) Electrodes Deposition via Thermal Evaporation

3.5 Characterization Techniques

3.5.1 Ultraviolet-Visible-Near Infrared (UV-VIS-NIR) Spectrophotometer

3.5.2 X-ray Diffraction (XRD) Technique

3.5.3 Atomic Force Microscopy (AFM)

3.5.4 Field-Emission Scanning Electron Microscopy (FESEM)

3.5.5 Surface Profilometer

3.5.6 Photovoltaic (PV) Measurement

CHAPTER 4: CHARACTERIZATION OF P3HT:ZNO HYBRID THIN FILMS AND SOLAR CELL DEVICES

4.1 Overview

4.2 Optical Characterization: Ultraviolet-Visible-Near Infrared (UV-Vis-NIR) Spectra Analysis

4.3 Structural Characterization: X-ray Diffraction (XRD) Spectra Analysis
4.4 Morphological Characterization: Atomic Force Microscopy (AFM) and Field Emission Scanning Electron Microscopy (FESEM) Analysis

4.4.1 AFM Characterization

4.4.2 FESEM Imaging

4.5 Electrical Characterization: Current Density-Voltage (J-V) Curve Analysis.

CHAPTER 5: HYBRID SOLAR CELLS BASED ON INORGANIC NANOPARTICLES AND P3HT:ZNO ACTIVE LAYERS PREPARED BY SOL-GEL SYNTHESIS ROUTE

5.1 Overview

5.2 Part I: Investigation of Hybrid Solar Cells Based on Various Inorganic Nanoparticles

5.2.1. Results on P3HT:TiO₂ Blend Films and Their Based Solar Cell Devices

5.2.2. Results on P3HT:Y₂O₃ Blend Films and Solar Cell Devices

5.2.3 Comparison of Hybrid Systems Based on Three Different Types of Inorganic Metal Oxide Nanoparticles

5.3 Part II: The Improvement of P3HT:ZnO Devices by Sol-gel Synthesis Route

5.3.1 First Approach: Effects of Different Sol Content

Figure 1.01:	Block diagram of research methodology used in this study........	11
Figure 2.01:	The examples of 1) non-conjugated polymers: (i) Polypropylene, (ii) Poly(vinyl alcohol); 2) conjugated polymers: (i) Polyacetylene, (ii) Polythiophene (Skotheim, et al., 1998).................................	14
Figure 2.02:	(a) The structure of ethylene comprises of σ bonds which formed from the three sp²-hybridized orbitals on each carbon atom. (b) The formation of π bond due to the overlap of the unhybridized pₓ orbital. (c) A cutaway view of the whole σ and π system within the ethylene molecule (Hari Singh Nalwa, 2002)...	15
Figure 2.03:	The schematic diagram of HOMO and LUMO bands....................	15
Figure 2.04:	Schematic representation of intrachain charge diffusion (left) and interchain charge diffusion (right) in polyacetylene.........................	16
Figure 2.05:	Potential energy as a function of bond length alternation for the two categories of conjugated polymers are exhibited for (a) a degenerate ground state conjugated polymer, trans-polyacetylene; (b) a non-degenerate ground state conjugated polymer (in the given example is poly-para-phenylene (PPP)).....	18
Figure 2.06:	Schematic structure and energy diagram for solitons in conjugated polymer is shown...	19
Figure 2.07:	Schematic structure and band diagrams for excitations in non-degenerate ground state conjugated polymers. Allowed optical transitions are exhibited by the blue-colored dashed arrows........	20
Figure 2.08:	Removal of two electrons (p-type doping) from a polyacetylene chain produces two radical cations. The combination of both radicals forms a spinless di-cation..	21
Figure 2.09:	Removal of two electrons (p-type doping) from a polythiophene chain produces bipolaron. Bipolaron moves as a unit up and down the polymer chain, which is responsible to the electrical properties of conjugated polymers...	22
Figure 2.10:	A coplanar π-orbitals polythiophene (top); a twisted substituted polythiophene (bottom) (Skotheim, et al., 1998)........................	23
Figure 2.11:	The chemical structure of monomer repeating unit of PTs...........	24
Figure 2.12:	The differences between regiorandom and regioregular PTs in aspect of chain structure and charge transport characteristics......	25
Figure 2.13: The chemical structure of P3HT……………………………………… 27
Figure 2.14: The structures and shapes of the inorganic nanoparticles that are widely used in hybrid polymer solar cells………………………… 29
Figure 2.15: Energy dispersion for the (a) bulk semiconductor compared with that of (b) the nanoparticles (Dhlamini, et al., 2008)……………… 31
Figure 2.16: The chemical structure of ZnO……………………………………… 32
Figure 2.17: The chemical structure of TiO$_2$…………………………………… 33
Figure 2.18: The chemical structure of Y$_2$O$_3$…………………………………… 34
Figure 2.19: Schematic structure of hybrid solar cell…………………………… 36
Figure 2.20: The working principle of hybrid polymer solar cell consisting of an electron donor and acceptor pair…………………………………… 38
Figure 2.21: The current density-voltage curve (J-V curve) of a hybrid solar cell under illuminated condition (dash line) ………………………………. 39
Figure 2.22: (a) The basic structure of a single layer solar cell. (b) Schematic of a single layer solar cell with a Schottky contact at the lower function electrode B contact. Photogenerated excitons can only be dissociated within a narrow depletion layer, and thus the device is exciton diffusion limited…………………………….. 41
Figure 2.23: The basic structure of a bilayer solar cell. (b) Schematic of a bilayer heterojunction solar cell. The donor (D) contacts the higher work function electrode A and the acceptor (A) contacts the lower work function electrode B, in order to achieve charge carrier collection, respectively. Excitons can only be dissociated within the region at the D/A interface…………………………… 42
Figure 2.24: (a) The basic structure of a bulk heterojunction solar cell. (b) Schematic of a bulk heterojunction solar cell device. The excitons can be dissociated throughout the volume of material as the D is well blended with A…………………………… 43
Figure 3.01: Pristine solutions and the P3HT:inorganic nanoparticles blend solutions……………………………………………………………………. 46
Figure 3.02: P3HT:sol-gel ZnO blend solutions………………………………………………………… 47
Figure 3.03: ITO substrates patterning…………………………………………………………. 49
Figure 3.04: The spin coating machine which is used for thin films deposition……………………………………………………………………………… 51
Figure 3.05: Schematic representation of the spin coating technique

Figure 3.06: The flow chart for the preparation of the P3HT:sol-gel ZnO films

Figure 3.07: The device construction of solar cells based on different devices geometry and hybrid systems

Figure 3.08: Thermal evaporation system for Al electrode deposition. The inset shows the designed shadow mask used in this work

Figure 3.09: The schematic diagram of the evaporation system arrangement within the vacuum chamber

Figure 3.10: Possible electronic transitions of π, σ or n electrons

Figure 3.11: Photograph of Jasco V-570 UV-VIS-NIR Spectrophotometer

Figure 3.12: Schematic diagram of the components of a UV-VIS-NIR spectrophotometer

Figure 3.13: The diffraction pattern of X-rays by planes of atoms

Figure 3.14: (a) Photograph of the XRD instrument (Bruker AXS). (b) The basic components of a X-ray diffractometer

Figure 3.15: Schematic diagram of an atomic force microscope

Figure 3.16: Photograph of Veeco Dimension 3000 AFM instrument

Figure 3.17: Field-emission scanning electron microscope (FESEM)

Figure 3.18: Principle features of a SEM instrument

Figure 3.19: (a) The schematic diagram of a contact profilometer. (b) Resultant surface profile that is generated based on the tip deflection

Figure 3.20: KLA Tensor P-6 surface profilometer for film thickness measurement

Figure 3.21: (a) An Oriel 67005 solar simulator. (b) The internal structure of the Oriel solar simulator

Figure 3.22: (a) A Keithley 236 SMU instrument. (b) A solar cell device connected to its appropriate terminals under I-V measurement

Figure 4.01: Absorption coefficient of pristine P3HT, ZnO and P3HT:ZnO blend films with different contents of ZnO nanoparticles. The inset shows the variation of maximum absorption coefficient peak values, a_{max} and film thickness, t as a function of blend composition
Figure 4.02: The pre-estimated E_g of the pristine (a) P3HT film and (b) ZnO nanoparticles film using plots of $d\ln(\alpha h\nu)/dh\nu$ versus $h\nu$…………… 79

Figure 4.03: Plots of $\ln(\alpha h\nu)$ versus $\ln(h\nu - E_g)$ to determine the n value for (a) P3HT and (b) ZnO nanoparticles films, respectively…………… 80

Figure 4.04: Plots of $(\alpha h\nu)^2$ against $h\nu$ for (a) P3HT and (b) ZnO films……… 81

Figure 4.05: The typical energy band diagram of (a) P3HT and (b) ZnO nanoparticles films where the conduction band of ZnO is tunable due to the variation in nanoparticles size…………………………… 82

Figure 4.06: Plots of $d\ln(\alpha h\nu)/dh\nu$ versus $h\nu$ to pre-estimate the E_g of the P3HT:ZnO blend films with different contents of ZnO…………… 83

Figure 4.07: Plots of of $(\alpha h\nu)^2$ against $h\nu$ for P3HT:ZnO blend films with different contents of ZnO………………………………………... 84

Figure 4.08: The XRD pattern of ZnO nanoparticles in powder form…………… 85

Figure 4.09: Williamson-Hall plots to determine the microstrain of ZnO……… 87

Figure 4.10: The XRD spectra of pristine P3HT and P3HT:ZnO blend films. The inset illustrates the orientation of P3HT crystallites with respect to the substrate…………………………………………………………… 87

Figure 4.11: Three-dimensional AFM images by 10×10 μm2 scan for (a) pristine P3HT and the blend films in different compositions with (b) 1%, (c) 2%, (d) 3%, (e) 4%, (f) 5%, and (g) 10% ZnO……… 93

Figure 4.12: 2-dimensional AFM images of the (a) pristine P3HT and its blends with (b) 1%, (c) 2%, (d) 3%, (e) 4%, (f) 5%, and (g) 10% ZnO…………………………………………………………………………… 97

Figure 4.13: The schematic illustration of some possible morphologies that most likely have been achieved for the P3HT:ZnO blends incorporated with different amount of ZnO contents……………… 99

Figure 4.14: FESEM images of (a) P3HT and its blends with (b) 1%, (c) 3%, (d) 5% and (e) 10% ZnO ((e(ii) shows the focused zone area of image (e)))………………………………………………………………………… 101

Figure 4.15: The FESEM images of pristine ZnO nanoparticles film…………… 101

Figure 4.16: The current density–voltage (J–V) characteristics of solar cell devices based on pristine P3HT and P3HT:ZnO blends in different blend compositions under dark condition………………… 102

Figure 4.17: Current density-voltage (J-V) characteristic curves of the solar cell devices under light illumination. The inset displays an equivalent circuit diagram of solar cells which consists of series
resistance, R_s and shunt resistance, R_{sh}

Figure 4.18: The schematic energy band diagram of ITO/PEDOT:PSS/P3HT:ZnO/Al devices.

Figure 4.19: The variation of (i) J_{sc} and V_{oc}, (ii) FF and η with the blend composition.

Figure 4.20: The variation of R_{sh} and R_s with the blend composition.

Figure 5.01: Absorption coefficient of P3HT:TiO$_2$ blend films with different contents of TiO$_2$ nanoparticles. The inset shows the variation of maximum absorption coefficient peak values, α_{max} and film thickness, t as a function of TiO$_2$ contents.

Figure 5.02: The XRD patterns of (i) TiO$_2$ in powder form; (ii) pristine P3HT and P3HT:TiO$_2$ blend films.

Figure 5.03: AFM images in 2D and 3D views for (a) pristine P3HT and P3HT:TiO$_2$ blend films with (b) 1%, (c) 2%, (d) 3%, (e) 4%, (f) 5%, and (g) 10% TiO$_2$.

Figure 5.04: The J-V plots for P3HT:TiO$_2$ solar cells with different blend compositions under light illumination.

Figure 5.05: Variations in the device parameters for (i) J_{sc} and V_{oc}, (ii) R_s and R_{sh}, (iii) FF and η as a function of blend composition.

Figure 5.06: The optical spectra for the P3HT:Y$_2$O$_3$ blend films. The inset indicates the variation of α_{max} and film thickness as a function of Y$_2$O$_3$ content in P3HT:Y$_2$O$_3$ blends.

Figure 5.07: The XRD spectra of (i) Y$_2$O$_3$ nanopowder; (ii) P3HT:Y$_2$O$_3$ blend films.

Figure 5.08: The AFM images for (a) pristine P3HT and the blend films with (b) 1%, (c) 2%, (d) 3%, (e) 4%, (f) 5%, and (g) 10% Y$_2$O$_3$.

Figure 5.09: The J-V plots for pristine P3HT and P3HT:Y$_2$O$_3$ blend devices.

Figure 5.10: Variations in the device parameters for (i) J_{sc} and V_{oc}, (ii) R_s and R_{sh}, (iii) FF and η as a function of blend composition.

Figure 5.11: (i) Plots of $(\alpha hv)^2$ against $h v$ for ZnO, TiO$_2$ and Y$_2$O$_3$ films, the inset shows the plots of $\ln(\alpha hv)$ versus $\ln(hv - E_g)$ to determine the type of electronic transition for the nanoparticles. (ii) Absorption coefficient spectra of the P3HT:nanoparticles blends; the inset shows the estimated E_g of the blends.

Figure 5.12: The XRD spectra of P3HT:nanoparticles blend films.
Figure 5.13: The AFM images of P3HT:nanoparticles blend films in 3D and 2D views for (i) P3HT:ZnO, (ii) P3HT:TiO$_2$, and (iii) P3HT:Y$_2$O$_3$ film.

Figure 5.14: FESEM images of the (a) pristine inorganic metal oxide nanoparticles, and (b) P3HT:nanoparticles blend films with ZnO (I), TiO$_2$ (II) and Y$_2$O$_3$ (III).

Figure 5.15: Comparison of the J-V characteristics of the solar cells based on three different types of P3HT:metal oxide nanoparticles hybrid systems under white light illumination.

Figure 5.16: An inferred schematic energy band diagram for the P3HT:inorganic nanoparticles hybrid systems, placed between anode ITO and cathode Al.

Figure 5.17: Absorption coefficient spectra of pristine P3HT, sol-gel derived ZnO and P3HT:sol gel ZnO blend films with different sol contents. The inset indicates the variation of α_{max} and film thickness as a function of sol content. Also, the comparison between P3HT:ZnO NPs and P3HT:sol-gel ZnO films is shown.

Figure 5.18: The plots of $(\alpha h \nu)^2$ against $h \nu$ for P3HT:sol gel ZnO blend films with different sol contents.

Figure 5.19: The XRD patterns of P3HT:sol-gel ZnO blend films with different sol contents as well as XRD patterns of bare ZnO NPs deposited film and sol-gel derived ZnO films.

Figure 5.20: XRD parameters of blend films as a function of different sol contents, namely: (i) FWHM, (ii) crystallite size and (iii) dislocation density corresponding to (100), (002), and (110) planes.

Figure 5.21: The AFM images of P3HT:sol-gel ZnO blend films with (a) 0.05 ml, (b) 0.1 ml, (c) 0.2 ml, and (d) 0.3 ml sol content.

Figure 5.22: AFM images by 10 \times 10 μm2 scan in both 2D and 3D views of (i) P3HT:ZnO NPs and (ii) P3HT:sol gel ZnO blend films.

Figure 5.23: The FESEM images of P3HT:sol-gel ZnO films with (a) 0.05 ml, (b) 0.1 ml, (c) 0.2 ml, and (d) 0.3 ml sol.

Figure 5.24: The comparison of FESEM images between (i) P3HT:ZnO NPs film and (ii) P3HT:sol-gel ZnO film. The inset shows the surface micrograph of (i) bare ZnO NPs film and (ii) bare sol-gel derived ZnO film.

Figure 5.25: The J-V plots for P3HT:sol-gel ZnO solar cells with different sol contents in blends.

xvi
Figure 5.26: Variations in the device parameters for (i) \(J_{sc} \) and \(V_{oc} \), (ii) \(R_s \) and \(R_{sh} \), (iii) FF and \(\eta \) as a function of sol content in blends. 149

Figure 5.27: Photovoltaic comparison for P3HT:sol gel ZnO and P3HT:ZnO NPs films. 151

Figure 5.28: The optical spectra of P3HT:sol-gel ZnO films annealed at different temperatures, \(T_a \). The inset indicates the variation of \(\alpha_{max} \) and film thickness as a function of \(T_a \). 153

Figure 5.29: The plots of \((a\nu)^2\) against \(\nu \) for P3HT:sol gel ZnO blend films annealed at different \(T_a \). 153

Figure 5.30: The AFM images in 2D and 3D of P3HT:sol gel ZnO films annealed at different \(T_a \) of (a) 75 °C, (b) 100 °C, (c) 150 °C, (d) 175 °C. 155

Figure 5.31: The J-V plots for P3HT:sol gel ZnO solar cells fabricated from active layers annealed at different \(T_a \). 156

Figure 5.32: Variation in the device parameters for (i) \(J_{sc} \) and \(V_{oc} \), (ii) \(R_s \) and \(R_{sh} \), (iii) FF and \(\eta \) as a function of annealing temperature. 157

Figure 5.33: Morphological characteristics of the P3HT:sol-gel ZnO film (i) without and (ii) with an additional ZnO buffer layer (BL) via AFM imaging. 159

Figure 5.34: The comparison of the J-V characteristics of the solar cell devices without and with an additional ZnO buffer layer. 160
LIST OF TABLES

Table 1.1:	A list of development in the organic solar cells	5
Table 3.1:	Blend compositions and the respectively masses of P3HT:inorganic nanoparticles blends	45
Table 3.2:	Blend compositions of P3HT:sol-gel ZnO	47
Table 3.3:	The deposition parameters of Al electrodes	56
Table 3.4:	Parameters of UV-VIS-NIR spectrum	60
Table 3.5:	Scanning parameters of XRD measurement	63
Table 3.6:	Parameters of the AFM measurement	66
Table 3.7:	Scanning parameters of film thickness measurement	71
Table 4.1:	The comparison of the absorption coefficient peak values and the corresponding wavelength positions for pristine P3HT and P3HT:ZnO blends	76
Table 4.2:	The values of average thickness for pristine P3HT, ZnO and P3HT:ZnO blend films	76
Table 4.3:	The values of E_g for pristine P3HT, ZnO and P3HT:ZnO blend films based on two different types of functions, in which the later one gives a more precise estimation value of E_g	84
Table 4.4:	Summary of the XRD properties of the P3HT:ZnO nanoparticles blend films with different ZnO content	89
Table 4.5:	The mean surface roughness and root-mean-square roughness of the films obtained from AFM for Figure 4.11	94
Table 4.6:	The comparison of device characteristics parameters for pristine P3HT and P3HT:ZnO solar cells with different ZnO concentration	104
Table 4.7:	The variation of R_{sh} and R_s with the blend composition	109
Table 5.1:	Summaries of the α_{max} values together with the corresponding wavelength positions, λ, film thickness, t and estimated E_g for pristine P3HT and P3HT:TiO$_2$ blends	112
Table 5.2:	Summaries of the Bragg diffraction angles and film roughnesses (obtained from AFM images) of pristine P3HT and P3HT:TiO$_2$ blends	113
Table 5.3:	The comparison of device characteristics parameters for P3HT:TiO$_2$ solar cells	117
Table 5.4: Summaries of the \(\alpha_{\text{max}} \) values together with the corresponding wavelength positions, \(\lambda \), film thickness, \(t \) and estimated \(E_g \) for pristine P3HT and P3HT:Y\(_2\)O\(_3\) blends

Table 5.5: Summaries of the Bragg diffraction angles and film roughnesses of pristine P3HT and P3HT:Y\(_2\)O\(_3\) blends

Table 5.6: The comparison of device characteristics parameters for P3HT and P3HT:Y\(_2\)O\(_3\) solar cells

Table 5.7: Variation in the J-V characteristics of P3HT: metal oxide nanoparticles hybrid solar cells

Table 5.8: The comparison of \(\alpha_{\text{max}} \) values, the corresponding wavelength positions, average film thicknesses and estimated \(E_g \) for P3HT:sol gel ZnO blends with different sol contents

Table 5.9 (i) & (ii): Summaries of the XRD parameters of P3HT:sol gel ZnO blend films with different sol contents

Table 5.10: Surface roughness values of the blend films obtained from AFM

Table 5.11: The comparison of device characteristics parameters for P3HT:sol-gel ZnO solar cells

Table 5.12: The comparison of the \(\alpha_{\text{max}} \) values, the corresponding wavelength positions, average film thicknesses and estimated \(E_g \) for the P3HT:sol gel ZnO films annealed at different \(T_a \)

Table 5.13: Surface roughness values of P3HT:sol gel ZnO films annealed at different \(T_a \)

Table 5.14: The comparison of device characteristics parameters for P3HT:sol gel ZnO solar cells

Table 5.15: Surface roughness values of the films obtained from AFM

Table 5.16: Device characteristics parameters of P3HT:sol gel ZnO solar cells with ZnO buffer layer spun at different spin speed

Table 5.17: Device characteristics parameters of P3HT:sol gel ZnO solar cells
LIST OF SYMBOLS

> Less than
< More than
π Pi
σ Sigma
T Transmittance
A Absorbance
I₀ Light intensities
E Energy
λ Wavelength
d Interatomic spacing distance
θ Diffraction angle
Eₐ Energy gap
Δr Bond length alternation
I_SC Short-circuit current
V_OC Open circuit voltage
P_max Maximum power
P_out Output power
V_max Voltage at maximum power
I_max Current at maximum power
P_in Input power
FF Fill factor
η Power conversion efficiency
α Absorption coefficient
t Film thickness
B Full width at half maximum
t_c Crystallite size
C Scherrer constant
ε Strain
Λₑ Exciton diffusion length
Dₑ Exciton diffusion coefficient
τₑ Exciton lifetime
Rₐ Mean surface roughness
V_on Turn-on voltage
J_sc Short-circuit current density
R_sh Shunt resistance
R_s Series resistance
D/A Donor/Acceptor
J-V Current density-voltage
δ Dislocation density
T_a Annealing temperature
Lists of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BHJ</td>
<td>Bulk heterojunction</td>
</tr>
<tr>
<td>1-D</td>
<td>One dimensional</td>
</tr>
<tr>
<td>AFM</td>
<td>Atomic force microscopy</td>
</tr>
<tr>
<td>Ag</td>
<td>Silver</td>
</tr>
<tr>
<td>Al</td>
<td>Aluminum</td>
</tr>
<tr>
<td>AM 1.5</td>
<td>Air mass 1.5</td>
</tr>
<tr>
<td>Au</td>
<td>Gold</td>
</tr>
<tr>
<td>BL</td>
<td>Buffer layer</td>
</tr>
<tr>
<td>C₆₀</td>
<td>Buckminsterfullerene</td>
</tr>
<tr>
<td>Ca</td>
<td>Calcium</td>
</tr>
<tr>
<td>CB</td>
<td>Conduction band</td>
</tr>
<tr>
<td>CdSe</td>
<td>Cadmium selenide</td>
</tr>
<tr>
<td>CHCl₃</td>
<td>Chloroform</td>
</tr>
<tr>
<td>Cu</td>
<td>Copper</td>
</tr>
<tr>
<td>DEA</td>
<td>Diethanolamine</td>
</tr>
<tr>
<td>EDX</td>
<td>X-ray spectroscopy</td>
</tr>
<tr>
<td>FESEM</td>
<td>Field-effect scanning electron microscopy</td>
</tr>
<tr>
<td>FWHM</td>
<td>Full width at half maximum</td>
</tr>
<tr>
<td>HCl</td>
<td>Hydrochloric acid</td>
</tr>
<tr>
<td>HE</td>
<td>High energy</td>
</tr>
<tr>
<td>HOMO</td>
<td>Highest occupied molecular orbital</td>
</tr>
<tr>
<td>ITO</td>
<td>Indium tin oxide</td>
</tr>
<tr>
<td>JCPDS</td>
<td>Joint committee on powder diffraction standards</td>
</tr>
<tr>
<td>LE</td>
<td>Low energy</td>
</tr>
<tr>
<td>LUMO</td>
<td>Lowest unoccupied molecular orbital</td>
</tr>
<tr>
<td>MEH-PPV</td>
<td>Poly[2-methoxy-5-(2′-ethylhexyloxy)-p-phenylene vinylene]</td>
</tr>
<tr>
<td>MgPh</td>
<td>Magnesium phthalocyanine</td>
</tr>
<tr>
<td>NPs</td>
<td>Nanoparticles</td>
</tr>
<tr>
<td>OSCs</td>
<td>Organic solar cells</td>
</tr>
<tr>
<td>P3HT</td>
<td>Poly(3-hexylthiophene)</td>
</tr>
<tr>
<td>PbS</td>
<td>Plumbum sulfide</td>
</tr>
<tr>
<td>PCBDM.</td>
<td>[6,6]-phenyl-C₆₁-butyric acid methyl ester</td>
</tr>
<tr>
<td>PCE</td>
<td>Power conversion efficiency</td>
</tr>
<tr>
<td>PEDOT:PSS</td>
<td>Poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate)</td>
</tr>
<tr>
<td>PPP</td>
<td>Poly-para-phenylene</td>
</tr>
<tr>
<td>PT</td>
<td>Poly(thiophene)</td>
</tr>
<tr>
<td>PV</td>
<td>Photovoltaic</td>
</tr>
<tr>
<td>RMS</td>
<td>Root-mean-square</td>
</tr>
<tr>
<td>rpm</td>
<td>Rotations per minute</td>
</tr>
<tr>
<td>SMU</td>
<td>Source measuring unit</td>
</tr>
<tr>
<td>STC</td>
<td>Standard test condition</td>
</tr>
<tr>
<td>TiO₂</td>
<td>Titanium dioxide</td>
</tr>
<tr>
<td>UV-VIS-NIR</td>
<td>Ultraviolet-visible-near-infrared</td>
</tr>
<tr>
<td>VB</td>
<td>Valence band</td>
</tr>
<tr>
<td>XRD</td>
<td>X-ray diffraction</td>
</tr>
<tr>
<td>ZnO</td>
<td>Zinc oxide</td>
</tr>
</tbody>
</table>