RpoN-DEPENDENT ADAPTATION OF *Burkholderia xenovorans* LB400 FOR BIODEGRADATION AND BIOREMEDIATION OF DIBENZOFURAN

NOOR FAIZUL HADRY BIN NORDIN

THESIS SUBMITTED IN FULFILMENT OF THE REQUIREMENT FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

INSTITUTE OF BIOLOGICAL SCIENCES FACULTY OF SCIENCE UNIVERSITY OF MALAYA

2012

ABSTRACT

Alternative sigma subunit-54 (RpoN) forms holoenzyme complex when associated with core RNA Polymerase (RNAP) to specifically recognise and initiate transcription of specific sets of genes in response to environmental stimuli. RpoN has important role in many major adaptive responses in bacteria and is involved in various physiological responses such as pathogenesis, quorum sensing and bioremediation. The main focus of this study is to gain insight into the role of alternative sigma factor-54 (RpoN) of Burkholderia xenovorans LB400 in degradation of dibenzofuran via biphenyl degradation pathway. Additionally, this study also investigated the ability of Burkholderia cenocepacia J2315 in utilisation of dibenzofuran. The single knockout mutants of *rpoN* genes were established using pKNOCK suicide vector series resulting two *rpoN* mutants of Burkholderia xenovorans LB400; NRPLB [(rpoN1 mutant) and NRP2LB (rpoN2 mutant)] and one rpoN mutant of Burkholderia cenocepacia J2315 [NRPJ (rpoN mutant)]. The physiological and metabolic responses analyses were conducted to differentiate the single-gene knockout mutants from their wildtype strains; Burkholderia xenovorans LB400 and Burkholderia cenocepacia J2315. The physiological response analysis demonstrated that the ability of the mutants NRPLB and NRP2LB to form biofilm were not affected with inactivation of rpoN genes. However, the biofilm formation in NRPJ was reduced indicating the involvement of rpoN gene in formation of biofilm in Burkholderia cenocepacia J2315. Inactivation of rpoN2 gene does not affect motility of NRP2LB (rpoN2 mutant). However, inactivation of rpoN1 gene significantly reduced motility of NRPLB (rpoN1 mutant). Metabolic response analysis shows that *rpoN* genes play an important role in utilisation of nitrogenous compound even though the effects are depending on the species of the nitrogen. The altered nitrogen utilisation profile when using ammonium, histidine, asparagines, nitrate, glutamine and alanine as sole nitrogen source in

single-gene knockout mutants indicate that rpoN genes of Burkholderia xenovorans LB400 and Burkholderia cenocepacia J2315 are active and functional for nitrogen utilisation. The ability of Burkholderia xenovorans LB400 and Burkholderia cenocepacia J2315 in degrading orthosubstituted PCBs such as dibenzofuran was also determined. Degradation studies of dibenzofuran showed significant differences between wildtype Burkholderia xenovorans LB400, Burkholderia cenocepacia J2315 and their single-gene knockout mutants. Degradation rate was found higher in NRP2LB (rpoN2 mutant) compared to wildtype Burkholderia xenovorans LB400 but reduced significantly in NRPLB (rpoN1 mutant). This result was supported by gene expression analysis where RpoN-dependent bphA gene that encodes for biphenyl dioxygenase was highly expressed in NRP2LB (rpoN2 mutant) thus enhanced the degradation of dibenzofuran via biphenyl degradation pathway. This result indicates the important role of *rpoN1* gene in Burkholderia xenovorans LB400 in degradation of dibenzofuran. Simple phytotoxicity assay showed that byproducts from degradation of dibenzofuran by wildtype Burkholderia xenovorans, NRPLB (rpoN1 mutant) and NRP2LB (rpoN2 mutant) is less toxic towards the test species compared to dibenzofuran. Furthermore, the degradation byproducts from NRP2LB (rpoN2 mutant) was able to enhanced the growth of Sorghum saccharatum compared to control (water).

ABSTRAK

Sigma subunit alternatif-54 (RpoN) membentuk kompleks holoenzim apabila bergabung dengan Polymerase RNA teras (RNAP), untuk mengenali dan memulakan transkripsi set gen yang khusus sebagai tindak balas terhadap rangsangan persekitaran. RpoN memainkan peranan penting dalam banyak tindak balas penyesuaian utama dalam bakteria dan terlibat dalam pelbagai tindak balas fisiologi seperti patogenesis, penderiaan kuorum dan bioremediasi. Fokus utama kajian ini adalah untuk memahami peranan sigma faktor alternatif-54 (RpoN) Burkholderia xenovorans LB400 dalam degradasi dibenzofuran yang menggunakan laluan degradasi bifenil. Sebahagai tambahan, kajian ini juga menyiasat keupayaan Burkholderia cenocepacia J2315 dalam menggunakan dibenzofuran. Mutan-mutan 'knockout' gen-tunggal rpoN telah dibina menggunakan siri pKNOCK vektor menghasilkan dua mutan rpoN Burkholderia xenovorans LB400 [NRPLB (mutan rpoN1) dan NRP2LB (mutan rpoN2)] dan satu mutan rpoN Burkholderia cenocepacia J2315 [NRPJ (mutan rpoN)]. Analisis tindak balas fisiologi dan metabolik telah dijalankan untuk membezakan mutan-mutan 'knockout' gentunggal dari strain jenis liar; Burkholderia xenovorans LB400 dan Burkholderia cenocepacia J2315. Analisis tindak balas fisiologi menunjukkan bahawa keupayaan mutan NRPLB dan NRP2LB untuk membentuk biofilm adalah tidak terjejas dengan penyahaktifan gen rpoN. Walau bagaimanapun, pembentukan biofilm oleh NRPJ (mutan rpoN) adalah berkurangan, menunjukkan gen rpoN adalah terlibat dalam pembentukan biofilm oleh Burkholderia cenocepacia J2315. Penyahaktifan gen rpoN2 tidak menjejaskan motiliti NRP2LB (mutan rpoN2). Walaubagaimanapun, penyahaktifan gen rpoN1 mengurangkan motiliti NRPLB (mutan rpoN1) dengan ketara. Analisis tindak balas metabolik menunjukkan bahawa gen rpoN memainkan peranan yang penting dalam penggunaan sebatian bernitrogen walaupun kesannya bergantung kepada spesis nitrogen tersebut. Profil penggunaan nitrogen yang berubah dalam mutan-mutan 'knockout' gen-tunggal apabila menggunakan ammonium, histidina, asparagina, nitrat, glutamina dan alanina sebagai sumber nitrogen tunggal menunjukkan bahawa gen rpoN Burkholderia xenovorans LB400 dan Burkholderia cenocepacia J2315 adalah aktif dan berfungsi untuk penggunaan nitrogen. Keupayaan Burkholderia xenovorans LB400 dan Burkholderia cenocepacia J2315 mendegradasi PCBs orto-tertukarganti seperti dibenzofuran telah juga ditentukan. Kajian degradasi dibenzofuran menunjukkan perbezaan yang signifikan antara Burkholderia xenovorans LB400 jenis liar, Burkholderia cenocepacia J2315 jenis liar dan mutan-mutan 'knockout gen-tunggal mereka. Kadar degradasi didapati lebih tinggi dalam NRP2LB (mutan rpoN2) berbanding jenis liar Burkholderia xenovorans LB400 tetapi ianya dikurangkan dengan ketara dalam NRPLB (mutan rpoN1). Keputusan ini telah disokong oleh analisis ekspresi gen di mana *bphA*-bersandarkan RpoN, yang mengkodkan biphenyl dioxygenase diekspres berlebihan dalam NRP2LB (rpoN2 mutan) dan ianya meningkatkan degradasi dibenzofuran melalui laluan degradasi biphenyl. Keputusan ini menunjukkan peranan penting gen rpoN1 bagi Burkholderia xenovorans LB400 dalam pendegradasian dibenzofuran. Ujian kefitotoksikan mudah menunjukkan bahawa produk sampingan daripada degradasi dibenzofuran oleh Burkholderia xenovorans jenis liar, NRPLB (mutan rpoN1) dan NRP2LB (mutan *rpoN2*) adalah kurang toksik terhadap spesis yang diuji berbanding dengan dibenzofuran. Tambahan pula, produk sampingan degradasi dari NRP2LB (mutan *rpoN2*) dapat meningkatkan pertumbuhan Sorghum saccharatum berbanding kawalan (air).

ACKNOWLEDGEMENTS

First and foremost I would like express my sincere appreciation to both of my supervisors, Assoc Prof. Dr. Amir Feisal Merican and Dr. Yusrizam Sharifuddin for their help, guidance and constant support during the course of this PhD program. I would like to thanks Prof. Dr. Martin Buck and Dr. Robert H. A. Coutts of Imperial College London for their support and advice during the early stage of this project.

I am greatly indebted to International Islamic University Malaysia and Ministry of Higher Education for the scholarship and financial assistance for my PhD. Also thanks to IPPP, University of Malaya and RMC, International Islamic University Malaysia for PPP and FRGS research grants for this study, respectively.

I extend my special thanks to Ms Chan Lee Choo that helps me in the lab, Mr Ahmad Muzammil and Mr Mohd Nizam Yusof for their assistance in conducting GCMS analysis. I would also like to thank my friends and colleagues at CRYSTAL, University of Malaya and Department of Biotechnology, IIUM for their helps and assistance.

Many thanks to my families especially my parents; Tuan Haji Nordin Dahlan and Puan Kamariah Musa and my mother in law, Puan Hajjah Atijah Che Awang for their financial and moral support.

The most thanks naturally go to my wife Rasinah Zakaria without whom I would not have been able to complete this work. I have to thank her for being with me in my every ups and downs that sometimes postponing some of her own goals, for supporting me in every aspect of life and for patiently hearing about my problems in research. Finally, I would like to give my special thanks to my beloved daughters; Noor Batrisyia Auni and Noor Wareesha Ayra. Their patience with me alone should earn them credit for much of the success of this work. Trips have been cancelled and vacations postponed all in the name of science. Their endurance has been exemplary and without them, none of this would mean anything.

TABLE OF CONTENTS

Content	Page
ABSTRACT/ ABSTRAK	
ACKNOWLEDGEMENTS	
TABLE OF CONTENTS	
LIST OF TABLES	
LIST OF FIGURES	
ABBREVIATIONS	
CHAPTER 1: INTRODUCTION	
1.1 Background	1
1.2 Significance of study	4
1.3 Objectives of the study	4
CHAPTER 2: LITERATURE REVIEWS	
2.1 Introduction to the Genus Burkholderia	6
2.2 Diversity of Burkholderia	8
 2.3 Clinical role in humans 2.3.1 Burkholderia cepacia complex (Bcc) 2.3.2 Burkholderia cenocepacia J2315 	9 10 11
2.4 Burkholderia as a potential bioremediator 2.4.1 Burkholderia xenovorans LB400	14 18
2.5 Differences between health hazardous and environmentally important <i>Burkholderia</i>	22
 2.6 Sigma subunit in bacteria 2.6.1 Sigma subunit-54 (σ⁵⁴) 2.6.2 Sigma subunit-54 (σ⁵⁴)-dependent gene for nitrogen metabolism 2.6.3 Functional roles of <i>rpoN</i> genes 2.6.4 Xenobiotic degradation mediated by sigma subunit 54 	23 25 26 27 28

 2.7 Bioremediation 2.7.1 Dioxins and furans 2.7.2 Source of dioxins and furans 2.7.3 Formation and destruction of dioxins and furans 2.7.4 Control of dioxins and furans 2.7.5 Health effects towards dioxins and furans exposure 2.7.6 Human exposure to dioxins 2.7.7 Level of dioxins and furans in the environment 	30 31 33 33 35 36 38 40
 2.8 Microbial degradation of dioxins 2.8.1 Biodiversity of dioxin-degrading bacteria 2.8.2 Biodegradation via lateral dioxygenation 2.8.3 Biodegradation via angular dioxygenation 2.8.4 Biodegradation of chlorinated congeners 2.8.5 Dioxin degradation by <i>Burkholderia xenovorans</i> LB400 	41 42 47 50 52 53
2.9 Biphenyl dioxygenase 2.9.1 Structural versatilities 2.9.2 Functional versatilities 2.9.3 Regulations of <i>bph</i> genes 2.9.4 Bph expression is under the control of the σ^{54} RNAP	54 55 56 57 58
CHAPTER 3: MATERIALS AND METHODS	
3.1 Introduction	60
3.2 Bacterial strains	62
3.3 Growth and maintenance media	65
3.4 Bioinformatics analysis	67
 3.5 Establishment of the single-gene knockout mutant 3.5.1 Bacterial DNA extraction 3.5.2 Polymerase chain reaction (PCR) amplification 3.5.3 Agarose gel electrophoresis 3.5.4 Recovery of DNA from agarose gels 3.5.5 Ligation of amplicons for transformation 3.5.6 Preparation of competent cells 3.5.7 Transformation of DNA into E. coli JM109 3.5.8 Isolation of Plasmid DNA using mini prep kit 3.5.9 Restriction enzyme digestion 3.5.10 DNA sequencing 3.5.12 Biparental conjugation 	67 67 68 72 73 73 73 74 74 75 75 76 77
3.5.13 Screening for the single-gene knockout mutants	78

3.5.14 Construction of rpoN complementing plasmid	79
3.6 Metabolic and physiological response analysis	
3.6.1 Nitrogen utilisation assay	80
3.6.2 Biofilm formation assay	80
3.6.3 Motility assay	81
3.7 Biodegradation studies	81
3.7.1 Utilisation of dibenzofuran	81
3.7.2 Extraction of dibenzofuran	82
3.7.3 Standard curve	83
3.7.4 Qualitative and quantitative analysis of dibenzofuran by GC/MS	83
3.8 Expression analysis of <i>bphA</i> gene of <i>Burkholderia xenovorans</i> LB400	83
3.8.1 Extraction of total RNA	84
3.8.2 Synthesis of cDNA	85
3.8.3 Realtime PCR for gene expression analysis	86
3.9 Phytotoxicity studies for evaluation of bioremediation potential of the single- gene knockout mutant	88
3.9.1 Image recording and growth measurement	89
3.10 Statistical analysis	90
CHAPTER 4: CONSTRUCTION OF SINGLE-GENE KNOCKOUT MUTANT STRAINS OF Burkholderia xenovorans LB400 AND Burkholderia cenocepacia J2315	
4.0 Introduction	91
4.1 Background study and sequence analysis of <i>rpoN</i> genes of <i>Burkholderia xenovorans</i> LB400 and <i>Burkholderia cenocepacia</i> J2315	92
4.1.1 BLAST analysis	93
4.1.2 Multiple Sequence Analysis (MSA)	96
4.1.3 Distance matrix of <i>rpoN1</i> and <i>rpoN2</i> genes of <i>Burkholderia</i> species	97
4.1.4 Phylogenetic tree construction	99
4.2 Identification and amplification of <i>rpoN</i> and <i>ntrC</i> genes from <i>Burkholderia xenovorans</i> LB400 and <i>Burkholderia cenocepacia</i> J2315	102
4.3 Cloning of the <i>rpoN</i> and <i>ntrC</i> genes into pGEM T Easy	105
4.4 Cloning of partial copies of the <i>rpoN</i> and <i>ntrC</i> genes into pGEM T Easy	108
4.5 Cloning of partial copies of the <i>rpoN</i> and <i>ntrC</i> genes into the suicide vector pKNOCK	112

4.6 Screening for putative <i>rpoN</i> and <i>ntrC</i> mutants	116
4.7 Confirmation of the presence of <i>rpoN</i> and <i>ntrC</i> mutants by PCR amplification	n 125
4.8 Discussion	131
4.9 Summary	133
CHAPTER 5: PHYSIOLOGICAL AND METABOLIC CHARACTERISTICS OF THE SINGLE-GENE KNOCKOUT MUTANT STRAINS	
5.0 Introduction	134
5.1 Nitrogen utilisation by <i>Burkholderia cenocepacia</i> J2315, <i>Burkholderia xenovorans</i> LB400 and their single-gene knockout mutants	135
5.2 Biofilm formation assay	142
5.3 Motility assay	144
5.4 Discussion	147
5.5 Summary	150
CHAPTER 6: ANALYSIS OF DIBENZOFURAN DEGRADATION IN WILDTYPE Burkholderia xenovorans LB400, Burkholderia cenocepacia J2315 AND THE SINGLE-GENE KNOCKOUT STRAINS	
6.0 Introduction	151
6.1 Effects of dibenzofuran concentration on growth of wildtype <i>Burkholderia xenovorans</i> LB400, wildtype <i>Burkholderia cenocepacia</i> J2315 and their single-gene knockout mutants	154
6.2 Effects of temperature on growth of wildtype <i>Burkholderia xenovorans</i> LB400, wildtype <i>Burkholderia cenocepacia</i> J2315 and their single-gene knockout mutants	160
6.3 Effects of pH on growth of wildtype <i>Burkholderia xenovorans</i> LB400, wildtype <i>Burkholderia cenocepacia</i> J2315 and their single-gene knockout mutants	167

6.4 Analysis of dibenzofuran degradation using Gas-Chromatography-Mass Spectrometry (GC/MS)	173	
6.5 Gene expression analysis of RpoN-dependent <i>bphA</i> gene that involve in dibenzofuran degradation	180	
6.6 Discussion	184	
6.8 Summary	188	
CHAPTER 7: EVALUATION OF THE BIOREMEDIATION POTENTIAL OF THE SINGLE-GENE KNOCKOUT MUTANT STRAINS USING A SIMPLE PHYTOTOXICITY TEST SYSTEM		
7.0 Introduction	189	
7.1 Optimisation of exposure time required for the seeds to be affected by dibenzofuran	190	
7.2 Seed germination percentage of test species towards exposure to dibenzofuran and its crude degradation products		
7.3 Exposure of <i>Sinapis alba</i> towards dibenzofuran and its degradation products	196	
7.4 Exposure of <i>Lepidium sativum</i> towards dibenzofuran and its degradation products	198	
7.5 Exposure of <i>Sorghum saccharatum</i> towards dibenzofuran and its degradation products	200	
7.6 Discussion	202	
7.7 Summary	205	
CHAPTER 8: CONCLUDING REMARKS		
8.1 Introduction	206	
8.2 Possible roles of <i>rpoN1</i> and <i>rpoN2</i> genes in degradation of dibenzofuran	209	
8.3 Future Direction		
REFERENCES	211	

LIST OF TABLES

Table	Page
Table 2.1: Burkholderia strains that able to degrade aromatic compounds	16
Table 2.2: Air pollution control devices for PCDD/F emission	36
Table 2.3: Bacteria strains that able to degrade dioxins, furans and their analogues	45
Table 3.1: Bacterial strains used in this study	62
Table 3.2: Plasmids used in this study	63
Table 3.3: Primers designed to amplify <i>rpoN</i> and <i>ntrC</i> genes from <i>Burkholderia</i> <i>cenocepacia</i> J2315 and <i>Burkholderia</i> xenovorans LB400.	69
Table 3.4: Primers designed to amplify internal region of suicide vector pKNOCK	78
Table 3.5: Primers and pobes used in gene expression analysis using RT-qPCR	86
Table 5.1: Growth rate (μ h-1) of the bacteria grown in different nitrogen sources.	141
Table 7.1: Seed germination mean percentage of soil plants exposed to different treatments	195
Table 7.2: Mean percentage of inhibition on shoot and root of <i>Sinapis alba</i> .	197
Table 7.3: Percentage effect on shoots and roots of Lepidium sativum	199
Table 7.4: Percentage effect on shoots and roots of Sorghum saccharatum	201

LIST OF FIGURES

Figure		Page
Figure 2.1:	The J2315 genome sequence shows three chromosomal replicons	13
Figure 2.2:	LB400 genome which has a size of 9.7 Mbp, harboring ~9000 coding sequences distributed over three circular replicons	20
Figure 2.3:	Schematic representation of all central aromatic pathways (gray background), based on their main substrate, present in LB400	22
Figure 2.4	The involvement of RpoN (Sigma-54) in toluene and m-xylene catabolic pathway in <i>Pseudomonas putida</i> mt-2	29
Figure 2.5:	General structure of dibenzo-p-dioxin and dibenzofuran.	32
Figure 2.6:	The three main PCDD/F formation routes	34
Figure 2.7:	Metabolic pathway of dibenzofuran degradation via lateral dioxygenation	47
Figure 2.8:	Metabolic pathway of dibenzofuran degradation via angular dioxygenation	50
Figure 2.9:	Organisation of <i>bph</i> gene clusters encoding upper pathway enzymes in various bacterial strains	56
Figure 3.1:	Flowchart of main methodology	61
Figure 3.2:	General scheme for insertional mutagenesis using the pKNOCK vector	76
Figure 3.3:	Combination of primers used for the confirmation of potential mutants	79
Figure 4.1:	BLAST analysis for <i>rpoN1</i> gene (above) and <i>rpoN2</i> gene (below) of <i>Burkholderia xenovorans</i> LB400	95
Figure 4.2:	MSA of <i>rpoN1</i> and <i>rpoN2</i> genes of <i>Burkholderia xenovorans</i> LB400 against Genbank database using CLUSTALX2	97
Figure 4.3:	Distance matrix of <i>rpoN</i> genes of <i>Burkholderia</i> species using MEGA 5.05.	98
Figure 4.4:	Phylogenetic tree of <i>rpoN</i> genes of <i>Burkholderia</i> species.	99
Figure 4.5:	Pairwise sequence analysis of <i>rpoN1</i> and <i>rpoN2</i> genes for <i>Burkholderia xenovorans</i> LB400	101

- Figure 4.5: EtBr-stained 1% agarose gel electrophoresis of the *rpoN* gene amplicons 102 generated by PCR from *Burkholderia xenovorans* LB400 and *Burkholderia cenocepacia* J2315.
- Figure 4.6: EtBr-stained 1% agarose gel electrophoresis of the complete and partial 103 *rpoN2* gene of *Burkholderia xenovorans* LB400.
- Figure 4.7: EtBr-stained 1% agarose gel electrophoresis of the complete and partial 104 *ntrC* genes of *Burkholderia cenocepacia* J2315 and *Burkholderia xenovorans* LB400
- Figure 4.8: EtBr-stained 1% agarose gel electrophoresis of *Eco*RI-digested plasmids 105 carrying the *rpoN* gene.
- Figure 4.9: EtBr-stained 1% agarose gel electrophoresis of *Eco*RI-digested plasmid 106 carrying the *rpoN2* of *Burkholderia xenovorans* LB400

Figure 4.10: EtBr-stained 1% agarose gel electrophoresis of *Eco*RI-digested replicate 107 plasmids carrying the *ntrC* genes of *Burkholderia xenovorans* LB400 and *Burkholderia cenocepacia* J2315

- Figure 4.11: EtBr-stained 1% agarose gel electrophoresis of *Eco*RI-digested replicate 109 plasmids carrying a partial copy of the *Burkholderia cenocepacia* J2315 *rpoN* gene (pGRPJ) and a partial copy of the *Burkholderia cenocepacia* J2315 *ntrC* gene (pGNtC).
- Figure 4.12: EtBr-stained 1% agarose gel electrophoresis of *Eco*RI-digested replicate 110 plasmids carrying a partial copy of the (A) *Burkholderia xenovorans* LB400 *rpoN1* gene (pGRpL) and (B) *Burkholderia xenovorans* LB400 *rpoN2* gene (pGRp2L).
- Figure 4.13: EtBr-stained 1% agarose gel electrophoresis of *Eco*RI-digested replicate 111 plasmids carrying a partial copy of *ntrC* gene of *B. xenovorans* LB400.
- Figure 4.14: EtBr-stained 1% agarose gel electrophoresis of *Eco*RI-digested 113 pKNOCK-cm replicate recombinants carrying partial copies of *Burkholderia cenocepacia* J2315 *rpoN*, *Burkholderia xenovorans* LB400 *rpoN* gene and *Burkholderia cenocepacia ntrC* genes.
- Figure 4.15:EtBr-stained 1% agarose gel electrophoresis of *Eco*RI-digested114pKNOCK-cm replicate recombinant carrying partial copies of the
Burkholderia xenovorans LB400 *ntrC* gene114

Figure 4.16:	EtBr-stained 1% agarose gel electrophoresis of <i>Eco</i> RI-digested pKNOCK-tc replicate recombinants carrying partial copies of the <i>Burkholderia xenovorans</i> LB400 <i>rpoN2</i> gene	115
Figure 4.17:	Colony PCR amplification assay of putative pKNOCK-cm <i>Burkholderia cenocepacia</i> J2315 <i>rpoN</i> mutants.	117
Figure 4.18:	Colony PCR amplification assay of putative pKNOCK-cm <i>Burkholderia cenocepacia</i> J2315 <i>ntrC</i> mutants	118
Figure 4.19:	Colony PCR amplification assay of putative pKNOCK-cm <i>Burkholderia xenovorans</i> LB400 <i>rpoN</i> mutants	120
Figure 4.20:	Colony PCR amplification assay of putative pKNOCK-cm <i>Burkholderia xenovorans</i> LB400 <i>ntrC</i> mutants	122
Figure 4.21:	Colony PCR amplification assay of putative pKNOCK-tc <i>Burkholderia xenovorans</i> LB400 <i>rpoN2</i> mutants	124
Figure 4.22:	Colony PCR amplification of <i>Burkholderia cenocepacia</i> J2135 <i>rpoN</i> mutant using a combination of RpoN primers and pKNOCK-cm internal primers.	125
Figure 4.23:	Alignment of DNA sequences of <i>rpoN</i> gene of <i>Burkholderia cenocepacia</i> J2315, chloramphenicol cassette from pKNOCK-cm vector and the <i>Burkholderia cenocepacia</i> J2315 <i>rpoN</i> mutant.	126
Figure 4.24:	Colony PCR amplification of <i>B. cepacia</i> J2135 <i>ntrC</i> mutant using a combination of <i>ntrC</i> primers and pKNOCK-cm internal primers.	127
Figure 4.25:	Colony PCR amplification of <i>B. xenovorans</i> LB400 <i>rpoN</i> mutant using a combination of <i>rpoN</i> primers and pKNOCK-cm internal primers.	128
Figure 4.26:	Colony PCR amplification of <i>B. xenovorans</i> LB400 <i>rpoN2</i> mutant using a combination of <i>rpoN2</i> primers and pKNOCK-tc internal primers.	129
Figure 4.27:	Colony PCR amplification of <i>B. xenovorans</i> LB400 <i>ntrC</i> mutant using a combination of <i>ntrC</i> primers and internal primers based on the sequence of the pKNOCK-cm vector.	130
Figure 5.1:	Growth curves comparison of NRPJ (<i>rpoN</i> mutant) and NNTJ (<i>ntrC</i> mutant) to wildtype <i>Burkholderia cenocepacia</i> J2315 in M9 minimal media supplemented various nitrogen sources	137

Figure 5.2:	Growth curves comparison of the NRPLB (<i>rpoN1</i> mutant), NRP2LB (<i>rpoN2</i> mutant), NNTLB (<i>ntrC</i> mutant) and wildtype <i>Burkholderia xenovorans</i> LB400 in M9 minimal media supplemented with various nitrogen sources	139
Figure 5.3:	Quantitative comparison of biofilm formation by <i>Burkholderia cenocepacia</i> J2315, NRPJ (<i>rpoN</i> mutant) [<i>RpoN</i> (J)] and NNTJ (<i>ntrC</i> mutant) [<i>NtrC</i> (J)].	143
Figure 5.4:	Quantitative comparison of biofilm formation by <i>Burkholderia</i> <i>xenovorans</i> LB400, NRPLB (<i>rpoN1</i> mutant), NRP2LB (<i>rpoN2</i> mutant) and NNTLB (<i>ntrC</i> mutant).	143
Figure 5.5:	Motility assay on motility agar plates, incubated at 37°C for 48h.	144
Figure 5.6:	Average colony sizes of wildtype <i>Burkholderia cenocepacia</i> J2315, NRPJ (<i>rpoN</i> mutant) and NNTJ (<i>ntrC</i> mutant) measured after 24h and 48h of incubation on motility agar plates	145
Figure 5.7:	Average colony sizes of wildtype <i>Burkholderia xenovorans</i> LB400, NRPLB (<i>rpoN1</i> mutant), NRP2LB (<i>rpoN2</i> mutant) and NNTLB (<i>ntrC</i> mutant) measured 24h and 48h of incubation on motility agar plates	146
Figure 6.1:	Growth of wildtype <i>Burkholderia xenovorans</i> LB400 in minimal media supplemented with different concentration of dibenzofuran as sole carbon source	155
Figure 6.2:	Growth of NRPLB (<i>rpoN1</i> mutant) in minimal media supplemented with different concentration of dibenzofuran as sole carbon source	156
Figure 6.3:	Growth of NRP2LB (<i>rpoN2</i> mutant) in minimal media supplemented with different concentration of dibenzofuran as sole carbon source	157
Figure 6.4:	Growth of wildtype <i>Burkholderia cenocepacia</i> J2315 and NRPJ (<i>rpoN</i> mutant) in minimal media supplemented with different concentration of dibenzofuran as sole carbon source	159
Figure 6.5:	Growth of wildtype <i>Burkholderia xenovorans</i> LB400 in minimal media supplemented with 5µg/mL dibenzofuran and incubated at 30°C, 37°C and 40°C.	161
Figure 6.6:	Growth of NRPLB (<i>rpoN1</i> mutant) in minimal media supplemented with 5μ g/mL dibenzofuran and incubated at 30°C, 37°C and 40°C	162
Figure 6.7:	Growth of NRP2LB (<i>rpoN2</i> mutant) in minimal media supplement with $5\mu g/mL$ dibenzofuran and incubated at 30°C, 37°C and 40°C	163

Figure 6.8:	Growth of wildtype <i>Burkholderia cenocepacia</i> J2315 in minimal media supplemented with $5\mu g/mL$ dibenzofuran and incubated at 30°C, 37°C and 40°C	164
Figure 6.9:	Growth of NRPJ (<i>rpoN</i> mutant) in minimal media supplemented with 5μ g/mL dibenzofuran and incubated at 30°C, 37°C and 40°C	166
Figure 6.10:	Effects of pH levels on growth of wildtype <i>Burkholderia xenovorans</i> LB400 in minimal media supplemented with 5µg/mL dibenzofuran	168
Figure 6.11:	Effects of pH levels on growth of NRPLB (<i>rpoN1</i> mutant) in minimal media supplemented with $5\mu g/mL$ dibenzofuran	169
Figure 6.12:	Effects of pH level on growth of NRP2LB ($rpoN2$ mutant) in minimal media supplemented with $5\mu g/mL$ dibenzofuran	170
Figure 6.13:	Effects of pH levels on growth of wildtype <i>Burkholderia cenocepacia</i> J2315 in minimal media supplemented with 5µg/mL dibenzofuran	171
Figure 6.14:	Effects of pH level on growth of NRPJ ($rpoN$ mutant) in minimal media supplemented with $5\mu g/mL$ dibenzofuran	172
Figure 6.15:	Chromatograms of standard solutions for dibenzofuran in hexane.	174
Figure 6.16:	Standard curve of dibenzofuran based on the abundance ion.	175
Figure 6.17:	Degradation of dibenzofuran by wildtype <i>Burkholderia xenovorans</i> LB400, NRPLB (<i>rpoN1</i> mutant) and NRP2LB (<i>rpoN2</i> mutant).	177
Figure 6.18:	Degradation of dibenzofuran by wildtype <i>Burkholderia cenocepacia</i> J2315 and NRPJ (<i>rpoN</i> mutant).	178
Figure 6.19:	Expression of <i>bphA</i> gene in wildtype <i>Burkholderia xenovorans</i> LB400, NRPLB (<i>rpoN1</i> mutant) and NRP2LB (<i>rpoN2</i> mutant) after 12 hours incubation in M9 minimal media when supplemented with dibenzofuran	182
Figure 6.20:	Expression of <i>bphA</i> gene in wildtype <i>Burkholderia xenovorans</i> LB400, NRPLB (<i>rpoN1</i> mutant) and NRP2LB (<i>rpoN2</i> mutant) after 24 hours incubation in M9 minimal media when supplemented with dibenzofuran	183
Figure 7.1:	Shoots and roots growth of <i>Sorghum saccharatum</i> at different exposure time towards water, M9 minimal media and dibenzofuran.	191

- Figure 7.2:Shoots and roots growth of *Lepidium sativum* at different exposure time192towards water, M9 minimal media and dibenzofuran
- Figure 7.3: Shoots and roots growth of *Lepidium sativum* at different exposure time 193 towards water, M9 minimal media and dibenzofuran

ABBREVIATIONS

PCBs	Polychlorinated biphenyl
BPDO	Biphenyl dioxygenase
μg	Microgram
mL	Milliliter
m/z	Mass-to-charge ratio
cm	Centimeter
EtBr	Ethidium Bromide
O.D.	Optical density