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CHAPTER 4 

CONSTRUCTION OF SINGLE-GENE KNOCKOUT MUTANT STRAINS OF 

Burkholderia xenovorans LB400 AND Burkholderia cenocepacia J2315 

 

4.0 Introduction 

 

Sigma-54 (encoded by the rpoN gene) that involves in many ancillary activities require an 

additional factor known as Enhanced Binding Protein (EBP) to activate the promoter and 

subsequently initiates the transcription process by rpoN gene. In order to determine the 

involvement of rpoN gene in degradation of xenobiotic compounds and other related activity, 

rpoN gene have to be inactivated. This chapter described the protocol used to knock out and 

deactivate the rpoN gene functions in selected Burkholderia species. The establishment of rpoN 

mutants was conducted using pKNOCK suicide vector via homologous recombination. In 

addition, several related genes such as the ntrC gene which involve in nitrogen assimilation have 

also been knocked out to determine its implication towards nitrogen utilisation in Burkholderia 

species.  

 

In order to inactivate the function of the rpoN genes, the information regarding the sequence are 

needed. To begin with, the rpoN gene sequences were obtained from GenBank and subsequently 

the sequence analysis was conducted. 

 

 



92 

 

4.1 Background study and sequence analysis of rpoN genes of Burkholderia xenovorans 

LB400 and Burkholderia cenocepacia J2315. 

 

The sequences of the Burkholderia xenovorans LB400 and the Burkholderia cenocepacia J23I5 

rpoN genes were obtained respectively from the GenBank. 

 

In order to identify putative rpoN genes in all Burkholderia species, whose genomes have been 

completely sequenced, BLAST search analyses of their translated genomes were performed. 

Most bacterial species only have a single copy of the rpoN gene in their genome but some, 

especially soil and rhizospheric bacteria including several of the Burkholderia species examined, 

possess two homologs of the rpoN genes with potentially different roles in gene regulation 

(Kullik et al. 1991, Poggio et al. 2006). For instance B. cenocepacia AU1054, B. cepacia 

AMMD, B. vietnamensis G4 and B. phytofirmans PsJN have two copies of the rpoN genes while 

B. pseudomallei, B. mallei and B. thailandensis E264 only have one copy of rpoN gene. The 

investigation with Bradyrhizobium japonicum, which possesses two homologs of the rpoN genes 

of different sizes show that these copies are highly similar and they are functionally 

interchangeable even though the larger homolog is thought to fulfil the dominant role as an 

alternative sigma factor (Kullik et al. 1991) and Burkholderia species such as B. cepacia AMMD 

appear to show the similar characteristic.  

 

The rpoN1 gene (locus tag: Bxe_A4122) of Burkholderia xenovorans LB400 located at 

chromosome 1 spanning 1518bp and encoding a protein of 505 amino acids while rpoN2 gene 

(locus tag: Bxe_B1172) of Burkholderia xenovorans LB400 located at chromosome 2 with size 
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of 1494bp and encoding a protein of 497 amino acids. With the size different of only 24bp, 

rpoN1 and rpoN2 genes of wildtype Burkholderia xenovorans LB400 might have their own 

function where each sigma factor is activated only by its cognate activator protein (Poggio et al 

2006). Furthermore, pairwise sequence comparison of rpoN1 and rpoN2 genes of B. xenovorans 

showed a degree of nucleotide sequences identity and similarity of approximately 58.2% which 

does not seem to be the results of recent events of duplication and might not functionally 

interchangeable. Recently it was suggested that some residues in the RpoN box interact with the 

-24 promoter sequence (Burrows et al., 2003; Doucleff et al., 2005). The difference found in 

amino acid of the RpoN Box in rpoN1 and rpoN2 genes of Burkholderia species might be the 

location where the interaction with -24 promoters sequence occured.  

 

A putative rpoN gene for Burkholderia cenocepacia J2315 was found located at its chromosome 

1 spanning 1506bp and encoding a protein of 501 amino acids (FJ02783) which was 92.8% 

homologous with B. cepacia AMMD rpoN2 gene. From the sequence analysis, the B. 

cenocepacia J2315 rpoN gene is monocistronic and also identical in sequence to the B. 

cenocepacia K56-2 rpoN gene (Saldias et al. 2008). 

 

4.1.1 BLAST analysis 

Sequence analysis of rpoN gene of Burkholderia species was commenced with BLAST analysis 

for nucleotide sequences of rpoN1 and rpoN2 genes of Burkholderia xenovorans LB400 

individually against GenBank database to obtain the closely related sequence for rpoN1 and 

rpoN2 genes, respectively (Figure 4.1). BLAST or Basic Local Alignment Search Tools able to 

find the similar sequences with the given reference sequence in GenBank using local alignment. 
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Based on E-value, the BLAST of rpoN1 gene shows 19 closely related rpoN genes which include 

rpoN gene from Burkholderia cenocepacia J2315 while rpoN2 gene of Burkholderia xenovorans 

LB400 shows 6 closely related rpoN sequences.  
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Figure 4.1: BLAST analysis for rpoN1 gene (above) and rpoN2 gene (below) of Burkholderia 

xenovorans LB400  
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4.1.2 Multiple sequence alignment (MSA) 

 

Multiple sequence alignment conducted for the amino acid sequences of rpoN genes from 

closely related Burkholderia species, exhibited the highly conserved region within the sequences. 

This highly conserved sequence might be sequence/ signature sequence motif that have specific 

function in that particular gene.  It was observed that rpoN1 and rpoN2 genes have a region 

called as RpoN box with 10 highly conserved amino acids (ARRTVAKYRE). However from the 

analysis, the RpoN boxes for rpoN2 genes have a different amino acid at the end of the sequence 

(ARRTVAKYRH) (Figure 4.2). From the previous research by Poggio and co workers (2006), it 

was suggested that certain amino acid in RpoN box are able to recognise the -24 sequence of the 

specific promoter for DNA binding and initiate the transcription process. The difference in 

rpoN1 and rpoN2 genes might indicates the different function played by both genes.  
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Figure 4.2: Multiple sequence alignment of the amino acids sequences of rpoN1 and rpoN2 

genes of closely related Burkholderia species using CLUSTALX2. 

 

4.1.3 Distance matrix of rpoN1 and rpoN2 genes of Burkholderia species 

 

The distance matrix between rpoN1 and rpoN2 genes of Burkholderia xenovorans LB400 and 

rpoN gene of Burkholderia cenocepacia J2315 were also calculated using their nucleotide 

sequences. The results show that rpoN1 gene of Burkholderia xenovorans LB400 is closely 

related with rpoN of Burkholderia cenocepacia J2315 with distance matrix of 0.08. By contrast, 

the distance matrix between rpoN1 and rpoN2 genes of Burkholderia xenovorans LB400 is high 

with value of 0.64 (Figure 4.3). 
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Fig. 4.3: Distance matrix of rpoN genes of Burkholderia species using MEGA5.05. 

1) rpoN1 B. xenovorans LB400      2) rpoN1 B. phytofirmans PsJN 

3) rpoN1 Burkholderia sp CCGE1001 4) rpoN1 Burkholderia sp CCGE1003 

5) rpoN1 Burkholderia sp CCGE1002 6) rpoN1 B. phymatum STM815 

7) rpoN1 B. multivorans ATCC17616 8) rpoN1 B. cenocepacia J2315 

9) rpoN1 Burkholderia sp. 383  10) rpoN1 B. cenocepacia AU1054 

11) rpoN1 B.ambifaria MC40-6  12) rpoN 1 B. glumae BGR1 

13) rpoN1 B. gladioli BSR3  14) rpoN1 B. thailandensis E264 

15) rpoN1 B. cenocepacia MCO-3 16) rpoN1 B. vietnamensis G4 

17) rpoN1 B. cenocepacia HI2424 18) rpoN1 B. ambifaria AMMD 

19) rpoN1 Burkholderia sp Y123  20) rpoN1 B. rhizoxinica HKI 454 

21) rpoN2 B. xenovorans LB400  22) rpoN2 B. phytofirmans PsJN 

23) rpoN2 Burkholderia sp CCGE1001 24) rpoN2 Burkholderia sp CCGE1003 

25) rpoN2 Burkholderia sp CCGE1002 26) rpoN2 B. phymatum STM815 

27) rpoN2 Burkholderia sp Y123 
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4.1.4 Phylogenetic tree construction 

 

In order to determine the difference between rpoN1 and rpoN2 genes, phylogenetic tree was 

constructed based on the nucleotide sequences using Neighbor-Joining method with Kimura-2 

parameter. Bootstrap of 1000 repetition shows the confidence level for clustering of the genes 

(Figure 4.4)  

 

 

Figure 4.4: Phylogenetic tree of rpoN genes of Burkholderia species.  

 

Cluster 1 

Cluster 2 

Cluster 3 
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The phylogenetic tree clearly illustrated three major clusters generated from previous multiple 

sequence alignment. The rpoN genes that clustered in cluster 1 are mostly from members of 

Burkholderia cepacia complex (Bcc), a group of pathogenic bacteria especially towards cystic 

fibrosis patients. This includes Burkholderia cenocepacia J2315 who has a highest implication 

towards CF patients compared to other Bcc members. In the second cluster, the rpoN genes are 

originated from chromosome 1 of the bacteria which mostly isolated from soil and rhizospheric 

environment including Burkholderia xenovorans LB400 who has an ability to degrade PCBs and 

biphenyl compounds. However the rpoN2 gene of Burkholderia xenovorans LB400 was not 

clustered together with rpoN 1 gene but forms a different cluster together with other rpoN genes 

from chromosome 2 of soil and rhizospheric bacteria. This result demonstrated that rpoN genes 

from pathogenic bacteria are not closely related to rpoN genes from soil and rhizospheric 

bacteria. This result also showed that rpoN1 and rpoN2 genes are not closely related. This was 

confirmed by pairwise analysis of the nucleotide sequences where the rpoN1 and rpoN2 genes of 

Burkholderia xenovorans LB400 have sequence identity and similary of only 58.2% which 

indicates that these two rpoN genes might have different function and able to initiate 

transcriptions process independently (Figure 4.5). 
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Figure 4.5: Pairwise sequence analysis of rpoN1 and rpoN2 gene for Burkholderia xenovorans 

LB400. 

 

Since the similarity of rpoN1 and rpoN2 genes are very low, this study would like to investigate 

the effects of inactivation of each gene towards the ability of Burkholderia xenovorans LB400 in 

degrading dibenzofuran. In order to do that, rpoN1 and rpoN2 genes were amplified and knocked 

out using the pKNOCK vector system. 
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4.2 Identification and amplification of rpoN and ntrC genes from Burkholderia xenovorans 

LB400 and Burkholderia cenocepacia J2315  

 

The primer sets were designed to amplify the full length and partial gene sequences of the rpoN 

genes (Section 2.6.2). Using the RpLBF/R, Rp2LBF/R and JRpoNFS/R primer pairs, the 

complete rpoN1 and rpoN2 genes of Burkholderia xenovorans LB400 (located at chromosome 1 

and chromosome 2, respectively) and Burkholderia cenocepacia J2315 representing fragments 

ca. 1500 bp in size were successfully amplified while the RpLBIF/R, Rp2LBIF/R and 

JRpoNF2/R2 primer pairs gave partial fragments ca. 600bp in size (Figures 4.5 and 4.6) 

 

 

Figure 4.5: EtBr-stained 1% agarose gel electrophoresis of the rpoN gene amplicons generated 

by PCR from Burkholderia xenovorans LB400 and Burkholderia cenocepacia J2315. 

1: 1kb DNA size marker 

2: The amplified rpoN gene of Burkholderia xenovorans LB400  

3: The amplified rpoN gene of Burkholderia cenocepacia J2315  

6: The amplified partial rpoN gene of Burkholderia xenovorans LB400  

7: The amplified partial rpoN gene of Burkholderia cenocepacia J2315  

 

  1     2     3     4       5    6       7 

 

1.5kb 
1.0kb 

0.5kb 

 
1500bp 
 

~600bp 



103 

 

 

                  

Figure 4.6: EtBr-stained 1% agarose gel electrophoresis of the complete and partial rpoN2 gene 

of Burkholderia xenovorans LB400.  

1. Hyperladder 1 DNA size marker 

2. The amplified rpoN2 gene of Burkholderia xenovorans LB400 

3. The amplified partial rpoN2 gene of Burkholderia xenovorans LB400 

 

The full length versions of the ntrC genes of Burkholderia xenovorans LB400 and Burkholderia 

cenocepacia J2315 were successfully amplified using the NtrC-U1F/NtrC-R1 and 

NtLB178F/NtLB1514R primer pairs generating amplicons ca. 1600 bp and ca. 1500 bp, 

respectively. The partial versions of the ntrC genes from Burkholderia cenocepacia and 

Burkholderia xenovorans were also amplified using KpnI-NtrC-F1/ XbaI-NtrC-R2 and 

NtLB591F /NtLB1134R primer pairs to generate amplicons ca. 888 bp (Figure 4.7A) and ca. 600 

bp in size (Figure 4.7B), respectively. 

 

 

 

 

      1               2                3             

~1500bp 

 

~600bp 
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A                                                                  B 

                                            

 

Figure 4.7: EtBr-stained 1% agarose gel electrophoresis of the complete and partial ntrC genes 

of Burkholderia cenocepacia J2315 (A) and Burkholderia xenovorans LB400 (B). 

A 1: Hyperladder I DNA size marker 

2: The amplified ntrC gene of Burkholderia cenocepacia J2315 

3: The amplified partial ntrC gene of Burkholderia cenocepacia J2315 

B 1: Hyperladder I DNA size marker  

2: The amplified ntrC gene of Burkholderia xenovorans LB400  

3: The amplified partial ntrC gene Burkholderia xenovorans LB400  
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4.3 Cloning of the rpoN and ntrC genes into pGEM T Easy 

 

The rpoN genes of Burkholderia xenovorans LB400 and Burkholderia cenocepacia J2315 were 

separately cloned into the pGEM T Easy cloning vector and the resultant recombinant plasmids 

were digested with EcoRI yielding two DNA fragments representing 3 kbp of the cloning vector 

and ca. 1500 bp of the DNA insert (Figures 4.8 and 4.9). 

 

               

                           

Figure 4.8: EtBr-stained 1% agarose gel electrophoresis of EcoRI-digested plasmids carrying the 

rpoN gene. 

1: Hyperladder I DNA size marker 

2: EcoRI-digested plasmid carrying the rpoN gene of Burkholderia cenocepacia J2315  

3: EcoRI-digested plasmid carrying the rpoN1 gene of Burkholderia xenovorans LB400. 
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Figure 4.9: EtBr-stained 1% agarose gel electrophoresis of EcoRI-digested plasmid carrying the 

rpoN2 of Burkholderia xenovorans LB400 

1: Hyperladder I DNA size marker 

2: EcoRI-digested plasmid carrying the rpoN2 gene of Burkholderia xenovorans LB400. 
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The ntrC genes of Burkholderia xenovorans LB400 and Burkholderia cenocepacia J2315 were 

also successfully cloned into pGEM T Easy cloning vector. The EcoRI digestion of recombinant 

plasmid showed two DNA fragments representing 3 kbp of the cloning vector, ca. 1500 bp 

(Burkholderia xenovorans LB400) and 1600 bp  (Burkholderia cenocepacia J2315) of the DNA 

inserts (Figures 4.10A and 4.10B respectively). 

      A                                                       B 

                                           

 

Figure 4.10: EtBr-stained 1% agarose gel electrophoresis of EcoRI-digested replicate plasmids 

carrying the ntrC genes of Burkholderia xenovorans LB400 (A) and Burkholderia cenocepacia 

J2315 (B).  

A  1: Hyper ladder I DNA size marker 

 2-4: EcoRI-digested plasmids carrying ntrC gene of Burkholderia xenovorans LB400 

B 1: EcoRI-digested plasmid carrying ntrC gene of the B. cenocepacia J2315 ntrC gene. 

 3: Hyper ladder I DNA marker 
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4.4 Cloning of partial copies of the rpoN and ntrC genes into pGEM T Easy 

 

The partial sequences of the rpoN1 and rpoN2 genes of the Burkholderia xenovorans LB400 and 

rpoN gene of Burkholderia cenocepacia J2315 were separately cloned into pGEM T Easy and 

the resultant recombinant plasmids were designated as pGRPL (pGEM::rpoNSLB400), pGRP2L 

(pGEM::rpoN2SLB400) and pGRPJ (pGEM::rpoNSJ2315).  Following EcoRI digestion of these 

plasmids, two DNA fragments representing ca. 3000 bp of the cloning vector and ca. 600 bp of 

DNA insert were produced. Similarly successful insertion of the partial ntrC gene from 

Burkholderia cenocepacia J2315 and Burkholderia xenovorans LB400 in pGNtC 

(pGEM::ntrCSJ2315) and pGNtL (pGEM::ntrCSLB400) has been confirmed following digestion of 

the recombinant plasmid with EcoRI to produce bands corresponding to 3 kbp of the cloning 

vector and 888 bp DNA insert in pGNtC and 600bp DNA insert in pGNtL. Figure 4.11 shows 

EcoRI digestion of partial rpoN and ntrC insertion from Burkholderia cenocepacia J2315 in 

pGEM T Easy while Figures 4.12A and 4.12B show the EcoRI-digestion of partial rpoN1 gene 

(pGRpL) and rpoN2 gene (pGRp2L) of Burkholderia xenovorans LB400, respectively. 
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Figure 4.11: EtBr-stained 1% agarose gel electrophoresis of EcoRI-digested replicate plasmids 

carrying a partial copy of the Burkholderia cenocepacia J2315 rpoN gene (pGRPJ) and a partial 

copy of the Burkholderia cenocepacia J2315 ntrC gene (pGNtC). 

1: Hyperladder I DNA size marker 

2: pGRPJ (pGEM::rpoNSJ2315)   

3: pGRPJ (pGEM::rpoNSJ2315) 

4: pGNtrC (pGEM::ntrCSJ2315) 

5: pGNtrC (pGEM::ntrCSJ2315) 
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A)                    B) 

 

 

                                            

Figure 4.12: EtBr-stained 1% agarose gel electrophoresis of EcoRI-digested replicate plasmids 

carrying a partial copy of the (panel A) Burkholderia xenovorans LB400 rpoN1 gene (pGRpL) 

and (panel B) Burkholderia xenovorans LB400 rpoN2 gene (pGRp2L). 

A)                                B) 

1: 1kb DNA size marker     1: Hyperladder 1 DNA size Marker 

2: pGRpL (pGEM::rpoNSLB400)   2: pGRp2L (pGEM::rpoN2SLB400) 

3: pGRpL (pGEM::rpoNSLB400)   3: pGRp2L (pGEM::rpoN2SLB400) 

4: pGRpL (pGEM::rpoNSLB400) 
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The partial ntrC gene of the Burkholderia xenovorans LB400 was also successfully cloned into 

pGEM T Easy. Figure 4.13 shows EcoRI digestion of replicate recombinant plasmids designated 

as pGNtL (pGEM::ntrCSLB400) showing 3 kbp of the cloning vector and ca. 600 bp DNA insert. 

 

 

              

Figure 4.13: EtBr-stained 1% agarose gel electrophoresis of EcoRI-digested replicate plasmids 

carrying a partial copy of ntrC gene of B. xenovorans LB400. 

1: Hyperladder 1 DNA marker 

2: pGNtL (pGEM::ntrCSLB400)  

3: pGNtL (pGEM::ntrCSLB400)  
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4.5 Cloning of partial copies of the rpoN and ntrC genes into the suicide vector pKNOCK 

 

Following restriction of the pGRPL, pGRPJ, pGNtL and pGNtC with EcoR1, the insert 

fragments corresponding to the partial gene sequences of the rpoN genes and ntrC genes of 

Burkholderia xenovorans LB400 and Burkholderia cenocepacia J2315 were excised from the 

gels and ligated into linearised pKNOCK-cm which carry chloramphenicol resistant cassette at 

the EcoRI site prior to transformation into competent E. coli BW19851 cells. The resulting 

constructs were designated as pKRpJ (pKNOCKcm::rpoNSJ2315), pKRpL 

(pKNOCKcm::rpoNSLB400), pKNtJ (pKNOCKcm::ntrCSJ2315) and pKNtLB 

(pKNOCKcm::ntrCSLB400). Following EcoRI digestion of these recombinant plasmids, DNA 

fragment with sizes of ca. 600 bp for the partial rpoN genes and ca. 888 bp of the ntrC gene plus 

1,800 bp of the pKNOCK-cm plasmid in each digestion were produced (Figure 4.14). For 

pKNtLB, DNA fragments of ca. 600 bp of the ntrC gene and 1800 bp of pKNOCK-cm plasmid 

were obtained (Figure 4.15). 
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Figure 4.14: EtBr-stained 1% agarose gel electrophoresis of EcoRI-digested pKNOCK-cm 

replicate recombinants carrying partial copies of Burkholderia cenocepacia J2315 rpoN (pKRPJ; 

1.8 kbp + 564 bp), Burkholderia xenovorans LB400 rpoN gene (pKRPL1 and 2; 1.8 kbp + 614 

bp) and Burkholderia cenocepacia ntrC genes (pKNTJ1 and 2; 1.8 kbp + 888 bp).  

1: Hyperladder I DNA size marker  4: pKRPL (pKNOCKcm::rpoNSLB400)  

2: pKRPJ (pKNOCKcm::rpoNSJ2315)  5: pKNTJ (pKNOCKcm::ntrCSJ2315)  

3: pKRPL (pKNOCKcm::rpoNSLB400)  6: pKNTJ (pKNOCKcm::ntrCSJ2315)  
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Figure 4.15: EtBr-stained 1% agarose gel electrophoresis of EcoRI-digested pKNOCK-cm 

replicate recombinant carrying partial copies of the Burkholderia xenovorans LB400 ntrC gene 

(pKNtLB; 1.8 kbp + 550 bp) 

1: Hyperladder I DNA size marker 

2: pKNtLB (pKNOCKcm::ntrCSLB400) 
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The insert fragment of partial rpoN2 gene from chromosome 2 of Burkholderia xenovorans 

LB400 in pGRp2L was also purified and ligated into linearised pKNOCK-Tc which carry 

tetracycline-resistance cassette at the EcoRI site prior to transformation into competent E. coli 

BW19851 cells. The EcoRI digestion of the resulting construct, designated as pKRp2L, yielded 

DNA fragment of ca. 600 bp for the partial rpoN2 gene and ca. 2,200 bp of the pKNOCK-tc 

vector in each digestion (Figure 4.16). 

 

 

 

 

Figure 4.16: EtBr-stained 1% agarose gel electrophoresis of EcoRI-digested pKNOCK-tc 

replicate recombinants carrying partial copies of the Burkholderia xenovorans LB400 rpoN2 

gene (pKRp2L; 2.2 kbp + 600 bp). 

1: Hyperladder I DNA size marker 

2: pKRp2L (pKNOCKtc::rpoNSLB400) 

 

 

 

~2,200bp 
(pKNOCK-tc) 

 

 

~600bp 

     1           2        3
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4.6 Screening for putative rpoN and ntrC mutants  

 

Biparental matings between the wild type Burkholderia strains and E. coli BW19851 carrying 

the pKNOCK-cm or pKNOCK-tc target gene constructs described above were performed and the 

progeny screened for mutated genes by PCR amplification. Putative knockout mutants were 

scored when PCR amplification using primers JRpoNFS/R failed to amplify amplicons of the 

expected size. Only one potential rpoN gene knock-out in putative mutants of B. cenocepacia 

J2315 was obtained when PCR failed to amplify amplicon of the expected size in lane 3 (rpoN 

mutant candidate 1 of Burkholderia cenocepacia J2315) (Figure 4.17). In order to determine if 

the absence of expected DNA fragment was due to the mutation of the rpoN gene, the 

amplification of mutated rpoN gene was complemented with the amplification of the active ntrC 

gene of Burkholderia cenocepacia J2315 using ntrC primers (NtrC-UF1/R1). The expected ntrC 

gene fragment was obtained in lane 7 as shown by the the wild type Burkholderia cenocepacia 

J2315 in lane 6 (Figure 4.17). 
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Figure 4.17: Colony PCR amplification assay of putative pKNOCK-cm Burkholderia 

cenocepacia J2315 rpoN mutants. Primer pairs used to generate the amplicons are shown in 

brackets.  

 1= Hyperladder I DNA size marker 

2= Wildtype Burkholderia cenocepacia J2315 (JRpoNFS/R) 

3= rpoN mutant candidate 1 of Burkholderia cenocepacia J2315 (JRpoNFS/R) 

4= rpoN mutant candidate 2 of Burkholderia cenocepacia J2315 (JRpoNFS/R) 

5= rpoN mutant candidate 3 of Burkholderia cenocepacia J2315 (JRpoNFS/R) 

6= Wildtype Burkholderia cenocepacia J2315 (NtrC-UF1/R1) 

7= rpoN mutant candidate 1 of Burkholderia cenocepacia J2315 (NtrC-UF1/R1) 

8= rpoN mutant candidate 2 of Burkholderia cenocepacia J2315 (NtrC-UF1/R1) 

9= rpoN mutant candidate 3 of Burkholderia cenocepacia J2315 (NtrC-UF1/R1)  

 

 

 

 



118 

 

Putative ntrC knockout mutants of Burkholderia cenocepacia J2315 was also scored when PCR 

failed to amplify amplicons of the expected size normally found with the wildtype Burkholderia 

cenocepacia J2315 as shown in lane 1 (Figure 4.18). Even though both ntrC mutant candidate 1 

(lane 2) and 2 (lane 3) failed to amplify the desired fragment size, the ntrC mutant candidate 2 

(lane 7) gave the expected amplicon as that of the wildtype Burkholderia cenocepacia J2315 as 

shown in lane 5 when amplified using rpoN primers which will be considered as potential mutant 

(Figure 4.18). 

 

Figure 4.18: Colony PCR amplification assay of putative pKNOCK-cm Burkholderia 

cenocepacia J2315 ntrC mutants. Primer pairs used to generate the amplicons are shown in 

brackets. 

 1= Wildtype Burkholderia cenocepacia J2315 (NtrC-UF1/R1) 

2= ntrC mutant candidate 1 of Burkholderia cenocepacia J2315 (NtrC-UF1/R1) 

3= ntrC mutant candidate 2 of Burkholderia cenocepacia J2315 (NtrC-UF1/R1) 

4= -NA- 

5= Wildtype Burkholderia cenocepacia J2315 (JRpoNFS/R) 

6= ntrC mutant candidate 1 of Burkholderia cenocepacia J2315 (JRpoNFS/R) 

7= ntrC mutant candidate 2 of Burkholderia cenocepacia J2315 (JRpoNFS/R) 

8= Hyperladder I DNA size marker  
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The rpoN1 mutant candidate of Burkholderia xenovorans LB400 were screened by amplification 

using RpLBF/R primers. Putative rpoN1 knockout of Burkholderia xenovorans LB400 mutant 

was scored when PCR failed to amplify the expected rpoN1 gene as shown by wildtype 

Burkholderia xenovorans LB400 in lane 2 (Figure 4.19). The ntrC gene carried by wildtype 

Burkholderia xenovorans LB400 and rpoN1 mutant candidates was also amplified to 

complement the negative identification. Even though rpoN1 mutant candidates 1, 2 and 3 of 

Burkholderia xenovorans LB400 (lanes 3, 4 and 5, respectively) showed  the absence of normal 

rpoN1 gene fragment as found in wildtype Burkholderia xenovorans LB400, only rpoN1 mutant 

candidates 1 and 2 (lanes 7 and 8, respectively) gave positive amplicons when amplified with 

ntrC primers (Figure 4.19). The rpoN1 mutant candidate 3 of Burkholderia xenovorans LB400 in 

lane 9 does not show the expected ntrC gene thus indicated that it might not have been derived 

from Burkholderia xenovorans LB400. 
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Figure 4.19: Colony PCR amplification assay of putative pKNOCK-cm Burkholderia 

xenovorans LB400 rpoN mutants. Primer pairs used to generate the amplicons are shown in 

brackets. 

1= Hyperladder I DNA size marker     

2= Wildtype Burkholderia xenovorans LB400 (RpLBF/R)    

3= rpoN1 mutant candidate 1 of Burkholderia xenovorans LB400 (RpLBF/R)   

4= rpoN1 mutant candidate 2 of Burkholderia xenovorans LB400 (RpLBF/R)    

5= rpoN1 mutant candidate 3 of Burkholderia xenovorans LB400 (RpLBF/R) 

6= Wildtype Burkholderia xenovorans LB400 (NtLBF/R) 

7= rpoN1 mutant candidate 1 of Burkholderia xenovorans LB400 (NtLBF/R) 

8= rpoN1 mutant candidate 2 of Burkholderia xenovorans LB400 (NtLBF/R) 

9= rpoN1 mutant candidate 3 of Burkholderia xenovorans LB400 (NtLBF/R)  
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Figure 4.20 shows that only one potential ntrC mutant candidate of Burkholderia xenovorans 

LB400 was obtained. The ntrC mutant candidate 2 of Burkholderia xenovorans LB400 not only 

shows the absence of expected amplicon of ntrC gene (lane 4) which as found in wildtype 

Burkholderia xenovorans LB400 but also shows the presence of expected rpoN1 gene of 

Burkholderia xenovorans LB400 (lane 8). The ntrC mutant candidates 1 (lane 7) and 3 (lane 9) 

did not show the presence of rpoN1 gene thus indicated that it might not have been derived from 

Burkholderia xenovorans LB400. 
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Figure 4.20: Colony PCR amplification assay of putative pKNOCK-cm Burkholderia 

xenovorans LB400 ntrC mutants. Primer pairs used to generate the amplicons are shown in 

brackets. 

1= Hyperladder I DNA size marker 

2= Wildtype Burkholderia xenovorans LB400 (NtLBF/R) 

3= ntrC mutant candidate 1 of Burkholderia xenovorans LB400 (NtLBF/R) 

4= ntrC mutant candidate 2 of Burkholderia xenovorans LB400 (NtLBF/R) 

5= ntrC mutant candidate 3 of Burkholderia xenovorans LB400 (NtLBF/R) 

6= Wildtype Burkholderia xenovorans LB400 (RpLBF/R) 

7= ntrC mutant candidate 1 of Burkholderia xenovorans LB400 (RpLBF/R) 

8= ntrC mutant candidate 2 of Burkholderia xenovorans LB400 (RpLBF/R) 

9= ntrC mutant candidate 3 of Burkholderia xenovorans LB400 (RpLBF/R) 
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The rpoN2 mutant candidates of Burkholderia xenovorans LB400 were screened using 

Rp2LBIF/R and RpLBF/R primer pairs which amplify the rpoN2 gene and rpoN1 gene of 

Burkholderia xenovorans LB400, respectively. Figure 4.21 shows that rpoN2 mutant candidates 

1, 3 and 5 of Burkholderia xenovorans LB400 (lanes 3, 5 and 7, respectively) gave negative 

identification when PCR failed to amplify the expected rpoN2 gene as shown by wildtype 

Burkholderia xenovorans LB400 in lane 2. However, only the rpoN2 mutant candidate 1 of 

Burkholderia xenovorans LB400 in lane 9 was considered as potential mutant since it yielded the 

expected rpoN1 gene as shown by wildtype Burkholderia xenovorans LB400 in lane 8. 
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Figure 4.21: Colony PCR amplification assay of putative pKNOCK-tc Burkholderia xenovorans 

LB400 rpoN2 mutants. Primer pairs used to generate the amplicons are shown in brackets. 

1= Hyperladder I DNA size marker      

2= Wildtype Burkholderia xenovorans LB400 (Rp2LBF/R)    

3= rpoN2 mutant candidate 1 of Burkholderia xenovorans LB400 (Rp2LBF/R)   

4= rpoN2 mutant candidate 2 of Burkholderia xenovorans LB400 (Rp2LBF/R)   

5= rpoN2 mutant candidate 3 of Burkholderia xenovorans LB400 (Rp2LBF/R)   

6= rpoN2 mutant candidate 4 of Burkholderia xenovorans LB400 (Rp2LBF/R)   

7= rpoN2 mutant candidate 5 of Burkholderia xenovorans LB400 (Rp2LBF/R)    

8= Wildtype Burkholderia xenovorans LB400 (RpLBF/R) 

9= rpoN2 mutant candidate 1 of Burkholderia xenovorans LB400 (RpLBF/R) 

10= rpoN2 mutant candidate 2 of Burkholderia xenovorans LB400 (RpLBF/R) 

11= rpoN2 mutant candidate 3 of Burkholderia xenovorans LB400 (RpLBF/R) 

12= rpoN2 mutant candidate 4 of Burkholderia xenovorans LB400 (RpLBF/R) 

13= rpoN2 mutant candidate 5 of Burkholderia xenovorans LB400 (RpLBF/R) 

14= Hyperladder I DNA size marker  
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4.7 Confirmation of the presence of rpoN and ntrC mutants by PCR amplification 

Positive PCR identification using combination of primers that amplify the gene of interest with 

pKNOCK internal primers will further confirmed the insertion of pKNOCK construct into the 

chromosome of Burkholderia mutants. The putative rpoN mutant of Burkholderia cenocepacia 

J2315 were amplified using a combination of rpoN primers and pKNOCK internal primers 

which sequences were based on the sequences of the chloramphenicol cassette (CmF/CmR) and 

the oriV/oriT region of the pKNOCK-cm vector (OriF/OriR) (Section 3.6.13). Two amplicons 

obtained using combination primers of JRpoNFS/OriR (lane 5) and JRpoNFS/cmR (lane 9) 

(Figure 4.22) were separately excised and purified prior to ligation into pGEM T Easy and 

subsequently transformed into E.coli JM109. Plasmid extracted from resultant transformants was 

sequenced to confirm the presence of the mutants. 

 

 

 

Figure 4.22: Colony PCR amplification of Burkholderia cenocepacia J2135 rpoN mutant using a 

combination of RpoN primers and pKNOCK-cm internal primers. Arrows indicate the potential 

amplicons for sequencing analysis. 
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Examination of the sequence of the recombinant plasmid containing the mutated fragment of 

Burkholderia cenocepacia J2315 rpoN gene confirmed that the mutation had been successfully 

inserted into the bacterial chromosome with the partial rpoN gene was observed at the 5’ end 

(indicated as red line) while chloramphenicol cassette was located at 3’ end (indicated as yellow 

line) . In between the rpoN gene and chloramphenicol cassette, the vector backbone was 

indicated with blue line (Figure 4.23)  

 

Figure 4.23: Alignment of DNA sequences of rpoN gene of Burkholderia cenocepacia J2315,    

chloramphenicol cassette from pKNOCK-cm vector and the Burkholderia cenocepacia J2315 

rpoN mutant.      
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Putative ntrC mutants of J2315 were amplified using a combination of ntrC primers 

(NtrCUF/NtrCR1) and pKNOCK internal primers (CmF/CmR and OriF/OriR). Four amplicons 

were obtained using the primer pairs of NtrCUF1/OriF (lane 2), NtrCUF1/OriR (lane 3), 

NtrCR1/OriR (lane 4) and NtrCR1/CmF (lane 8) as shown in Figure 4.24. Plasmid extracted 

from resultant transformants was sequenced to confirm the presence of the mutants. 

 

 

 

Figure 4.24: Colony PCR amplification of B. cepacia J2135 ntrC mutant using a combination of 

ntrC primers and pKNOCK-cm internal primers. Arrows indicate the potential amplicons for 

sequencing analysis. 
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Both putative rpoN1 and rpoN2 mutants of Burkholderia xenovorans LB400 were also amplified 

using RpLBF/R and Rp2LBF/R, respectively with combination of pKNOCK internal primers. 

Four amplicons were obtained for the rpoN1 mutants of Burkholderia xenovorans LB400 when 

amplified using RpLBF/OriF (lane 2), RpLBF/CmR (lane 7), RpLBR/CmR (lane 8) and 

RpLBR/CmR (lane 9) as shown in Figure 4.25. Plasmid extracted from resultant transformants 

was sequenced to confirm the presence of the mutants. 

 

 

Fig. 4.25: Colony PCR amplification of B. xenovorans LB400 rpoN mutant using a combination 

of rpoN primers and pKNOCK-cm internal primers. Arrows indicate the potential amplicons for 

sequencing analysis. 
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Only combination of rpoN2 primers with internal pKNOCK primers based on oriT/oriV region 

were used to amplify rpoN2 mutant of Burkholderia xenovorans LB400. Two amplicons were 

obtained using primer pairs of Rp2LBR/OriF (lane 3) and Rp2LBR/OriR (lane 4) as shown in 

Figure 4.26.  Plasmid extracted from resultant transformants was sequenced to confirm the 

presence of the mutants. 

 

 

Figure 4.26: Colony PCR amplification of B. xenovorans LB400 rpoN2 mutant using a 

combination of rpoN2 primers and pKNOCK-tc internal primers. Arrows indicate the potential 

amplicons for sequencing analysis. 
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The putative ntrC mutants of Burkholderia xenovorans LB400 were also amplified using 

combination of ntrC primers and pKNOCK-cm internal primers CmF/CmR and OriF/OriR. 

Three amplicons were obtained from the amplification using primer pairs of NtLBF/OriR (lane 

3), NtLBR/OriF (lane 4) and NtLBF/CmF (lane 6) as shown in Figure 4.27. Plasmid extracted 

from resultant transformants was sequenced to confirm the presence of the mutants. 

 

 

 

Fig. 4.27: Colony PCR amplification of B. xenovorans LB400 ntrC mutant using a combination 

of ntrC primers and internal primers based on the sequence of the pKNOCK-cm vector. Arrows 

indicate the potential amplicons for sequencing analysis. 
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4. 8 Discussion 

 

Investigations on the role of the rpoN gene in Burkholderia species require the development of 

loss-of-function mutants. However, genetic studies of this nature with the Burkholderia genus 

have been hampered by their inherent resistance to most antibiotics commonly used for genetic 

selection and limited availability of cloning vectors. Recent advances have been made to develop 

mutation systems for Burkholderia cenocepacia (Saldias et al. 2008) and a similar system is 

described here with the successful development of a system to knock out the rpoN genes in 

Burkholderia based on the pKNOCK plasmid. The plasmid pKNOCK is a suicide vector which 

utilises the R6K γ-origin of replication to provide and encode the π protein in trans through 

growth in E. coli (Kolter et al. 1978).  

 

  Confirmation of the successful generation of rpoN and ntrC gene mutants of both Burkholderia 

xenovorans LB400 and Burkholderia cenocepacia J2315 is based on negative PCR amplification 

of the full length gene amplicons as compared to the wild types. The absence of expected size of 

amplicon was due to the insertion of pKNOCK vector which carried the partial fragment of 

respective gene. Amplification using primers that were designed to amplify the full length of the 

gene will only results in bigger amplicons with additional size from pKNOCK vector and partial 

insertion of the particular gene. However, this bigger DNA amplicon which includes the target 

gene, pKNOCK vector and partial insertion of the gene was difficult to be amplified. To 

complement this assay, the amplification of other genes which possessed by both mutant and 

wild type were added. This amplification step was able to confirm that the mutants were not 

different from their wild type except for the mutation in the target gene. The amplification of full 
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length gene amplicons has been used as initial screening step and will be further analysed. 

Several potential mutants of rpoN and ntrC genes of Burkholderia cenocepacia J2315 and 

Burkholderia xenovorans LB400 have been identified using this method. However this assay 

does not preclude other interpretations and with this in mind, attempts have been made to 

amplify the region between the inserted DNA and the suicide vector. To amplify this region, 

primers within the pKNOCK region, oriT/oriV (Alexeyev and Shokolenko, 1995) and the 

chloramphenicol cassette (Alexeyev et al., 1995) have also been designed for combined use with 

forward and reverse primers of the genes both upstream and downstream of the inserted DNA. 

From this combination of primers, two DNA fragments were amplified from rpoN mutant of 

Burkholderia cenocepacia J2315 while four DNA frgamnets were obtained from potential ntrC 

mutant of Burkholderia cenocepacia J2315. The rpoN mutant of Burkholderia xenovorans 

LB400 showed four DNA fragments whereas only three fragments were obtained from ntrC 

mutant of Burkholderia xenovorans LB400. Since the rpoN2 mutant of Burkholderia xenovorans 

LB400 was constructed using pKNOCK-tc, only combinations with OriF/OriR from oriT/oriV 

region of pKNOCK-tc were used. Two fragments were obtained from these combinations. All 

these fragments were ligated and transformed into pGEM T easy vector prior to DNA 

sequencing. The resultant amplicon from rpoN mutant of J2315 showed an identical sequence to 

the Burkholderia cenocepacia J2315 rpoN gene of the wild type and the chloramphenicol 

cassette of pKNOCK-cm at 5’-end and 3’-end, respectively with pKNOCK vector backbone in 

between them. This DNA alignment confirmed the insertional mutagenesis was successfully 

achieved and verifies that the strategy can be used for screening of other mutants. The rpoN1 

mutant of Burkholderia xenovorans LB400 and two other ntrC mutants of both Burkholderia 

cenocepacia J2315 and Burkholderia xenovorans LB400 also showed the same pattern of 
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sequence with partial sequence identical to its original rpoN gene sequence and the remaining 

sequence resemble the vectors backbone and antibiotic resistance cassette of pKNOCK-cm. 

Since the rpoN2 mutant of Burkholderia xenovorans LB400 was using oriT/oriV sequence in its 

primer combination, the amplicon consist of partial rpoN2 original sequence and oriT/oriV was 

obtained. The amplification of partial rpoN gene associated with partial pKNOCK sequence 

indicates the successful mutant construction. 

 

4.9 Summary 

The knock-out system for rpoN and ntrC genes for both Burkholderia xenovorans LB400 and 

Burkholderia cenocepacia J2315 was successfully developed using a series of pKNOCK suicide 

vectors via homologous recombination. The mutant detection using PCR amplification with 

combination of primers for rpoN and ntrC genes and primers designed based on internal 

sequence of pKNOCK vector able to confirm the construction of mutants when complemented 

with DNA sequencing. 

 

 

 

 

 

 

 

 

 


