IMMUNOMODULATORY AND ANTI-METASTATIC ACTIVITIES OF SELECTED ZINGIBERACEAE SPECIES

CHEW ANN JEE

FACULTY OF SCIENCE UNIVERSITY OF MALAYA KUALA LUMPUR

2012

1

IMMUNOMODULATORY AND ANTI-METASTATIC ACTIVITIES OF SELECTED ZINGIBERACEAE SPECIES

CHEW ANN JEE

DISSERTATION SUBMITTED IN FULFILLMENT OF THE REQUIREMENT FOR THE DEGREE OF MASTER OF SCIENCE

INSTITUTE OF BIOLOGICAL SCIENCES FACULTY OF SCIENCE UNIVERSITY OF MALAYA KUALA LUMPUR

2012

ABSTRACT

The use of Zingiberaceae rhizomes as herbal medicine has been practised since historical time. There have been many researches on the anti-inflammatory, anti-oxidative, and anti-mutagenic properties on Zingiberaceae. However, scientific knowledge of Zingiberaceae plants in immunomodulatory and anti-metastatic aspects are quite limited. Therefore, the present study was conducted to evaluate the immunomodulatory and antimetastatic activities of ten selected Zingiberaceae species commonly consumed in Malaysia, namely Alpinia galanga, Boesenbergia rotunda, Curcuma aeruginosa, Curcuma domestica, Curcuma mangga, Curcuma xanthorrhiza, Kaempferia galanga, Zingiber montanum, Zingiber officinale, and Zingiber zerumbet. Each of the rhizomes was extracted with petroleum ether, chloroform and methanol and a total of 30 extracts were subjected for *in vitro* screening tests. The immunomodulatory activities of the extracts were examined using nitric oxide (NO) assay to determine their potentials in inhibiting NO generation in activated macrophage cells, RAW 264.7. In the anti-metastatic aspect, their antiproliferative and anti-migration potentials against highly metastatic hormone-independent human breast cancer cells, MDA-MB-231 were evaluated using conventional [3-(4,5dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] (MTT) assays and scratch wound assay. Besides that, in order to select the least toxic extract among the active ones, the potential toxicity of the extracts was determined using the Selectivity Index (SX). This was the first report demonstrating that varieties of local Zingiberaceae species are potent inhibitor of NO generation in activated macrophages, and also act as potent agents in antiproliferative and anti-migration of highly metastatic human breast cancer cells, MDA-MB-231. The best activity was demonstrated by the chloroform extract of Alpinia galanga, chloroform extract of Curcuma domestica, and petroleum ether extract Zingiber zerumbet. The present finding strongly suggests the potential of selected Zingiberaceae in a bioassay guided anti-cancer drug development programme.

ABSTRAK

Rizom Zingiberaceae telah digunakan sebagai ubat herba sejak sekian lama. Terdapat banyak kajian tentang ciri aspek anti-inflamasi, anti-oksidatif, dan anti-mutagenik rizom Zingiberaceae. Namun, pengetahuan saitifik berkaitan dengan aspek immunomodulator dan anti-metastasis spesis Zingiberaceae adalah terhad. Oleh itu, kajian ini dijalankan untuk mengkaji kesan immunomodulator dan anti-metastasis ke atats sepuluh Zingiberaceae spesis yang biasanya dimakan oleh penduduk tempatan di Malaysia, iaitu Alpinia galanga, Boesenbergia rotunda, Curcuma aeruginosa, Curcuma domestica, Curcuma xanthorrhiza, Kaempferiaa galanga, Zingiber montanum, Zingiber officinale, dan Zingiber zerumbet. Rizom daripada setiap spesis diekstrak dengan meggunakan petroleum eter, kloroform, dan methanol untuk menghasilkan 30 ektrak yang dikaji secara in vitro. Aktiviti immunomodulator ekstrak dikaji dengan menggunakan esei nitrik oksida (NO) dan untuk menentukan potensi setiap ekstrak untuk mengurangkan penghasilan NO dalam sel makrofaj. Bagi aspek anti-metastasis, kesan anti-proliferasi dan anti-migrasi terhadap sel kanser buah dada, MDA-MB-231 dikaji dengan menggunakan esei 'MTT' dan esei 'scratch wound'. Selain itu, 'Selectivity Index' (SX) telah digunakan untuk memilih ekstrak yang paling tidak toksik daripada ektrak yang paling aktif. Ini adalah laporan pertama yang menunjukkan pelbagai jenis Zingiberaceae spesis tempatan berpotensi sebagai immunomodulator untuk mengurangkan penghasilan NO generasi dalam sel makrofaj, dan juga bertindak sebagai agen anti-proliferasi dan anti-migrasi terhadap sel MDA-MB-231. Ekstrak kloroform Alpinia galanga, Curcuma domestica, dan ekstrak petroleum eter Zingiber zerumbet menunjukkan aktiviti yang terbaik. Kajian ini mencerminkan potensi Zingiberaceae spesis terpilih untuk kanjian lanjut dalam pembangunan ubat anti-kanser.

ACKNOWLEDGEMENTS

First of all, I would like to convey my utmost gratitude and appreciation to my first supervisor, Associate Professor Dr. Nurhayati Zainal Abidin, and my second supervisor, Professor Datin Dr. Norhanom Abdul Wahab. They had given invaluable guidance, advise, assistance, insights, dedication and strong support during the research conducted. I owe my sincere and gratitude to their kind encouragements and for providing excellent facilities for the research. Their continuous support and good sense of humour had been of great value to me.

Besides that, I would like to acknowledge Mr. Md Rozlan Bin Md Tam and Syed Mohd Aliff Bin Syed Alias, the scientific officer assistants of Institute of Biological Sciences (ISB). They were responsible in processing and dealing with all my purchase orders and invoices for the research. They had been very patient and kind in helping me with problem regarding orders and purchases.

My deepest gratitude also goes to the members of B503, Biology Molecular Laboratory of the Institute of Postgraduate Studies (IPS), especially Ms. Sujatha a/p Ramasamy, Ms. Lai Li Kuan, Ms. Law Ing Kin, Ms. Veronica Yap, and Ms. Rebecca Ng. They would always like to share their scientific knowledge, updates and research experiences with me. Besides that, they had given sincere help and guidance whenever I stumbled in the research. Undeniably, they had enlightened my postgraduate life and left me many wonderful memories.

The present study was carried out at B503, Biology Molecular Laboratory of the IPS, University of Malaya, during the years 2010–2011. The research was supported by Postgraduate Research Fund (PPP) (PS 297-2010A) from University of Malaya, Malaysia.

v

Last but not least, I wish to express my heartfelt thanks to my family members, particularly my parents, Mr. and Mrs. Chew Kean Kok for their endless love, care, encouragements, as well as generous financial and emotional support. I would also like to express my appreciation to my boyfriend, Mr. Goh Chee Hong who had sacrificed his precious time and always be there for me whenever I needed help. Their love and support had strengthened my spirit to pursue on my research optimistically.

TABLE OF CONTENTS

	_
	::
	11
	IV
TABLE OF CONTENTS	v
I IST OF FIGURES	vii
LIST OF TABLES	
LIST OF SYMBOLS AND ABBREVIATIONS	xviii
CHAPTER 1: INTRODUCTION	1
CHAPTER 2: LITERATURE REVIEW	4
2.1 Cancer	4
2.1.1 Carcinogenesis	6
2.1.2 Cancer Metastasis	8
2.1.3 Angiogenesis	13
2.2 Innate Immune Responses	16
2.2.1 Macrophage	18
2.2.2 Inflammatory responses	21
2.2.3 Cytokines	22
2.2.4 Nitric oxide	24
2.3 Adaptive Immune Responses	27
2.4 Cancer and Immunity	28
2.4.1 Immunomodulators	29
2.5 Natural Products and Phytochemcials	31
2.6 Zingiberaceae	31
2.6.1 Alpinia galanga	33
2.6.2 Boesenbergia rotunda	34
2.6.3 Curcuma aeruginosa	35
2.6.4 Curcuma domestica	36
2.6.5 Curcuma mangga	37
2.6.6 Curcuma xanthorrhiza	38
2.6.7 Kaempferia galanga	39
2.6.8 Zingiber montanum	40
2.6.9 Zingiber officinale	41
2.6.10 Zingiber zerumbet	43
2.7 In Vitro Nitric Oxide Assay for Assessment of Immunomodulatory	44
Agents	
2.8 In Vitro Assays of Angiogenesis for Assessment of Anti-metastatic	45
Agents	
2.9 Solvent Extraction for Specific Phytochemical Groups	47
2.10 Soxhlet Extractor System	48

CHAPTER 3: MATERIALS AND METHODS	51
3.1 Plant Materials	51
3.2 Preparation of Plant Extracts	51
3.3 Nitric Oxide Assay	54
3.3.1 Preparation of diluents and reagents	54
3.3.2 Cell culture for RAW 264.7 cell line	54
3.3.3 RAW 264.7 cell preparation and seeding	55
3.3.4 Sample dilution	56
3.3.5 Treatment of RAW 264.7 cells with plant extracts	58
3.3.6 Measurement of nitrite concentration	60
3.3.7 Measurement of RAW 264.7 cell viability using the MTT assay	61
3.3.8 Statistical analysis	63
3.4 Cell Proliferation and Viability Assay on MDA-MB-231 Cell Line	63
3.4.1 Preparation of diluents and reagents	63
3.4.2 Cell culture for MDA-MB-231 cell line	63
3.4.3 MDA-MB-231 cell preparation and seeding	64
3.4.4 Sample dilution	65
3.4.5 Treatment of MDA-MB-231 cells with plant extracts	67
3.4.6 Measurement of MDA-MB-231 cell proliferation or viability	68
3.4.7 Statistical analysis	70
3.5 Cytotoxicity Assay	70
3.5.1 Preparation of diluents and reagents	70
3.5.2 Cell culture for MRC-5 cell line	71
3.5.3 MRC-5 cell preparation and seeding	71
3.5.4 Sample dilution	72
3.5.5 Treatment of MRC-5 cells with selected cytotoxic plant extracts	72
3.5.6 Measurement of cell viability	72
3.5.7 Statistical analysis	72
3.6 Scratch Wound Assay	72
3.6.1 Preparation of diluents and reagents	73
3.6.2 Cell culture for MDA-MB-231 cell line	73
3.6.3 MDA-MB-231 cell preparation and seeding	73
3.6.4 Sample dilution	74
3.6.5 Treatment of MDA-MB-231 cells with plant extracts	75
3.6.6 Measurement of cell migration ability	77
3.6.7 Statistical analysis	78
3.7 Thin-layer Chromatography	78
3.7.1 Stationary phase	79
3.7.2 Development of mobile phase	80
3.7.3 Choice of detection systems	80
3.7.4 Measurement of retardation factor	83

CHAPTER 4: RESULTS	84
4.1 Effects of the Zingiberaceae Extracts on Nitric Oxide Inhibitory Activity	84
4.1.1 Effects of the Zingiberaceae extracts on viability of RAW 264.7 cells	105
4.1.2 Comparisons on nitric oxide inhibitory activities among	108
Zingiberaceae extracts at 1.56–100 µg/mL	
4.2 Effects of the Zingiberaceae Extracts on MDA-MB-231 Cell Proliferation	118
or Viability	
4.2.1 Comparisons of the Zingiberaceae extracts on inhibitory effects of	135
cell proliferation or viability of MDA-MB-231 cells	
4.3 Cytotoxicity of the Zingiberaceae Extracts on MRC-5 Cells	138
4.3.1 Comparisons of the Zingiberaceae extracts on viability of MRC-5 cells	143
4.4 Effects of the Zingiberaceae Extracts on the Migration of MDA-MB-231	145
Cells	
4.4.1 Comparisons of the Zingiberaceae extracts on inhibitory effects of	193
cell migration activity of MDA-MB-231 cells	
4.5 Qualitative Analysis Using Thin-layer Chromatography	196
	100
CHAPTER 5: DISCUSSION	199
5.1 Extraction of the Selected Zingiberaceae Species	199
5.2 Effects of the Zingiberaceae Extracts on Nitric Oxide Inhibitory Activity	201
5.3 Effects of the Zingiberaceae Extracts on MDA-MB-231 Cell Proliferation or Viability	206
5.4 Cytotoxicity of the Zingiberaceae Extracts on MRC-5 Cells	209
5.5 Effects of the Zingiberaceae Extracts on Migration of MDA-MB-231 Cells	211
5.6 Qualitative Analysis Using Thin-layer Chromatography	216
CHAPTER 6: CONCLUSION	220
REFERENCES	223
APPENDIX I: PREPARATION OF DILUENTS AND REAGENTS	243
1.0 Preparation of Diluents and Reagents	243
1 1 Diluents and Reagents for Nitric Oxide Assay	243
1.1.2 Diluents and Reagants for Cell Proliferation and Vishility Assay	2.3
1.1.2 Diffuents and Reagents for Centrificitation and Viability Assay	243
1.1.5 Diffuents and Reagents for Cytotoxicity Assay	244
1.1.4 Diluents and Reagents for Scratch Wound Assay	244

APPENDIX II: CELL CULTURE PROTOCOL	245 245
	245
1.0 Preparation and Sterilization	243
1.1 Preparation and Sterilization of Apparatus and Liquids	245
1.1.1 Apparatus	245
1.1.2 Liquids	247
1.2 Preparation and Sterilization of Media	249
1.2.1 Basic DMEM medium	249
1.2.2 Supplemented DMEM 10% medium	250
1.2.3 Supplemented DMEM 20% medium	250
1.2.4 Freezing DMEM medium	251
1.2.5 Phosphate buffer saline (PBS) pH 7.2	251
1.3 Quality Control, Sterility Testing, and Storage of Media	251
1.3.1 Quality control	251
1.3.2 Sterility testing	251
1.3.3 Storage	252
2.0 Cell Culture	252
2.1 Reviving cells	252
2.2 Subculture of cells	253
2.3 Cryopreservation of cells	254
APPENDIX III: SODIUM NITRITE STANDARD CURVE	256
1.0 Generation of Sodium Nitrite Standard Curve	256
APPENDIX IV: THIN-LAYER CHROMATOGRAPHY PROTOCOL	258
1.0 Optimization Method for Development of Mobile Phase	258
2.0 Preparation of Chromogenic Sprays	260
2.1 50% Sulphuric Acid	260
2.2 Dragendorff's Reagent	260
2.3 Vanillin/Sulphhuric Acid Reagent	260

LIST OF FIGURES

Figure 2.1	Contrasting effects of mutations in (a) tumour suppressor genes and (b) oncogenes	8
Figure 2.2	Series of events involve in cancer cell metastasis from primary tumour sites to the skeleton (Cecchini <i>et al.</i> , 2005)	10
Figure 2.3	Schematic diagram showing an intercellular junctional complex. The complex consists of a tight junction (zonula occludems), adherens junction (zonula), and desmosome (macula adherens) (Karp 2008)	12
Figure 2.4	Stages of endothelial cell functions involve in angiogenesis (Goodwin, 2007)	14
Figure 2.5	Angiogenesis and growth of primary tumour (Karp, 2008)	16
Figure 2.6	Differentiation pathway of a bone marrow hematopoietic stem cell (Karp, 2008)	19
Figure 2.7	Rhizome of Alpinia galanga	33
Figure 2.8	Rhizomes of Boesenbergia rotunda	34
Figure 2.9	Rhizomes of Curcuma aeruginosa	35
Figure 2.10	Rhizomes of Curcuma domestica	36
Figure 2.11	Chemical structure of curcumin (Anand et al., 2008)	37
Figure 2.12	Rhizomes of Curcuma mangga	37
Figure 2.13	Rhizomes of Curcuma xanthorrhiza	38
Figure 2.14	Rhizomes of Kaempferia galanga	39
Figure 2.15	Rhizomes of Zingiber montanum	40
Figure 2.16	Rhizomes of Zingiber officinale	41
Figure 2.17	Chemical structure of [6]-gingerol (Miyoshi et al., 2003)	43
Figure 2.18	Rhizomes of Zingiber zerumbet	43
Figure 2.19	Chemical structure of zerumbone (Tanaka et al., 2001)	44
Figure 2.20	Conventional Soxhlet extractor system	50
Figure 3.1	Flow chart of the plant extraction procedure using petroleum ether, chloroform, and methanol.	53
Figure 3.2	Murine macrophage cells (RAW 264.7) observed under phase- contrast microscope with magnification $100 \times$	55
Figure 3.3	Template of serial dilution for NO assay	57
Figure 3.4	Template of a 96-well plate for NO assay showing the actual extract concentration (μ g in 0.1% DMSO) assayed and NaNO ₂ standard concentrations	59
Figure 3.5	Sample plate of purple azodye formed after 50 μ L of Griess reagent was added to 50 μ L of serially diluted NaNO ₂	60
Figure 3.6	After 4 h of RAW 264.7 cells incubated with fresh DMEM and MTT in PBS pH 7.2, viable cells formed brown colour formazan in the 96-well flat bottom plate	62

Figure 3.7	After removal of the media, the formazan formed at the bottom of each well were dissolved with 100 μ L of DMSO, forming	62
Figure 3.8	purple colour solvent Human breast cancer cell line, MDA-MB-231 (oestrogen- receptor negative, ER–) observed under phase-contrast microscopa with magnification 100×	64
Figure 3.9	Template of serial dilution for cell proliferation and viability assay	66
Figure 3.10	Template of a 96-well plate for Cell proliferation and viability assay showing the actual extract concentration (μ g in 0.1% DMSO) and Doxorubicin hydrochloride (μ g in 0.1% DMSO) assayed	68
Figure 3.11	Formazan formed at the bottom of the well were observed	69
C	under a phase-contrast microscope with magnification 100×	
Figure 3.12	Human lung fibroblast cell line (MRC-5) observed under phase-	71
	contrast microscope with magnification $100 \times$	
Figure 3.13	Diagram of serial dilution for Scratch wound assay	75
Figure 3.14	Confluent cell monolayers of MDA-MB-231 were wounded using a sterile 200 μ L-pipette tip along the diameter of the well, which was then observed under a phase-contrast microscope with magnification 50%	76
Figure 3.15	Template of a six-well plate for scratch wound assay showing the actual extract concentration (ug in 0.1% DMSO) assayed	77
Figure 3.16	A cut of TLC plate ($2 \text{ cm} \times 10 \text{ cm}$) with marked baseline and solvent front, which is ready to be used for qualitative analysis	79
Figure 3 17	Typical TLC chromatogram	83
Figure 4.1	Effects of crude (A) petroleum ether (B) chloroform and (C)	88
Figure 4.1	methanol extracts of <i>Alpinia galanga</i> on NO production in RAW 264.7 cells	00
Figure 4.2	Effects of crude (A) petroleum ether, (B) chloroform, and (C) methanol extracts of <i>Boesenbergia rotunda</i> on NO production in RAW 264.7 cells	89
Figure 4.3	Effects of crude (A) petroleum ether, (B) chloroform, and (C) methanol extracts of <i>Curcuma aeruginosa</i> on NO production in RAW 264.7 cells	90
Figure 4.4	Effects of crude (A) petroleum ether, (B) chloroform, and (C)	92
	methanol extracts of <i>Curcuma domestica</i> on NO production in RAW 264.7 cells	
Figure 4.5	Effects of crude (A) petroleum ether, (B) chloroform, and (C) methanol extracts of <i>Curcuma mangga</i> on NO production in RAW 264.7 cells.	94
Figure 4.6	Effects of crude (A) petroleum ether, (B) chloroform, and (C) methanol extract of <i>Curcuma xanthorrhiza</i> on NO production in RAW 264.7 cells.	96

Figure 4.7	Effects of crude (A) petroleum ether, (B) chloroform, and (C) methanol extracts of <i>Kaempferia galanga</i> on NO production in RAW 264.7 cells	98
Figure 4.8	Effects of crude (A) petroleum ether, (B) chloroform, and (C) methanol extracts of <i>Zingiber montanum</i> on NO production in RAW 264.7 cells	100
Figure 4.9	Effects of crude (A) petroleum ether, (B) chloroform, and (C) methanol extracts of <i>Zingiber officinale</i> on NO production in RAW 264.7 cells	102
Figure 4.10	Effects of crude (A) petroleum ether, (B) chloroform, and (C) methanol extracts of <i>Zingiber zerumbet</i> on NO production in RAW 264.7 cells	104
Figure 4.11	Effects of crude Zingiberaceae extracts at 1.56 µg/mL on NO production in RAW 264.7 cells	109
Figure 4.12	Effects of crude <i>Zingiberaceae</i> extracts at 3.13 µg/mL on NO production in RAW 264.7 cells	109
Figure 4.13	Effects of crude <i>Zingiberaceae</i> extracts at 6.25 µg/mL on NO production in RAW 264.7 cells	110
Figure 4.14	Effects of crude <i>Zingiberaceae</i> extracts at 12.5 µg/mL on NO production in RAW 264.7 cells	111
Figure 4.15	Effects of crude <i>Zingiberaceae</i> extracts at 25 µg/mL on NO production in RAW 264.7 cells	112
Figure 4.16	Effects of crude <i>Zingiberaceae</i> extracts at 50 µg/mL on NO production in RAW 264.7 cells	113
Figure 4.17	Effects of crude <i>Zingiberaceae</i> extracts at 100 µg/mL on NO production in RAW 264.7 cells	114
Figure 4.18	Growth inhibition by (A) petroleum ether, (B) chloroform, and (C) methanol extracts of <i>Alpinia galanga</i> on MDA-MB-231 cells using the MTT assay	120
Figure 4.19	Growth inhibition by (A) petroleum ether, (B) chloroform, and (C) methanol extracts of <i>Boesenbergia rotunda</i> on MDA-MB- 231 cells using the MTT assay	121
Figure 4.20	Growth inhibition by (A) petroleum ether, (B) chloroform, and (C) methanol extracts of <i>Curcuma aeruginosa</i> on MDA-MB- 231 cells using the MTT assay	122
Figure 4.21	Growth inhibition by (A) petroleum ether, (B) chloroform, and (C) methanol extracts of <i>Curcuma domestica</i> on MDA-MB-231 cells using the MTT assay	124
Figure 4.22	Growth inhibition by (A) petroleum ether, (B) chloroform, and (C) methanol extracts of <i>Curcuma mangga</i> on MDA-MB-231 cells using the MTT assay	125
Figure 4.23	Growth inhibition by (A) petroleum ether, (B) chloroform, and (C) methanol extracts of <i>Curcuma xanthorrhiza</i> on MDA-MB- 231 cells using the MTT assay	127

Figure 4.24	Growth inhibition by (A) petroleum ether, (B) chloroform, and (C) methanol extracts of <i>Kaempferia galanga</i> MDA-MB-231 cells using the MTT assay	129
Figure 4.25	Growth inhibition by (A) petroleum ether, (B) chloroform, and (C) methanol extracts of <i>Zingiber montanum</i> on MDA-MB-231 cells using the MTT assay	132
Figure 4.26	Growth inhibition by (A) petroleum ether, (B) chloroform, and (C) methanol extracts of <i>Zingiber officinale</i> on MDA-MB-231 cells using the MTT assay	133
Figure 4.27	Cytotoxicity of crude (A) petroleum ether, (B) chloroform, and (C) methanol extracts of <i>Zingiber zerumbet</i> on MDA-MB-231 cells	134
Figure 4.28	Growth inhibition by doxorubicin hydrochloride on MDA-MB- 231 cells using the MTT assay	135
Figure 4.29	Cytotoxic effects of crude petroleum ether extract of <i>Alpinia</i> galanga on MRC-5 cells using the MTT assay	139
Figure 4.30	Cytotoxic effects of crude chloroform extract of <i>Alpinia</i> galanga on MRC-5 cells using the MTT assay	139
Figure 4.31	Cytotoxic effects of crude petroleum ether extract of <i>Boesenbergia rotunda</i> on MRC-5 cells using the MTT assay	140
Figure 4.32	Cytotoxic effects of crude chloroform extract of <i>Boesenbergia</i> <i>rotunda</i> on MRC-5 cells using the MTT assav	141
Figure 4.33	Cytotoxic effects of crude chloroform extract of <i>Curcuma</i> <i>domestica</i> on MRC-5 cells using the MTT assay	142
Figure 4.34	Cytotoxic effects of crude petroleum ether extract of <i>Zingiber</i> <i>zerumbet</i> on MRC-5 cells using the MTT assay	142
Figure 4.35	Effects of crude petroleum ether extract of <i>Alpinia galanga</i> at 12.5 µg/mL on migration in MDA-MB-231 cells	147
Figure 4.36	Effects of crude chloroform extract of <i>Alpinia galanga</i> at 12.5 µg/mL on migration in MDA-MB-231 cells	149
Figure 4.37	Effects of crude methanol extract of <i>Alpinia galanga</i> at 100 µg/mL on migration in MDA-MB-231 cells	150
Figure 4.38	Effects of crude petroleum ether extract of <i>Boesenbergia</i> rotunda at 12.5 µg/mL on migration in MDA-MB-231 cells	152
Figure 4.39	Effects of crude chloroform extract of <i>Boesenbergia rotunda</i> at 12.5 µg/mL on migration in MDA-MB-231 cells	153
Figure 4.40	Effects of crude methanol extract of <i>Boesenbergia rotunda</i> at 25 µg/mL on migration in MDA-MB-231 cells	155
Figure 4.41	Effects of crude petroleum ether extract of <i>Curcuma aeruginosa</i> at 25 µg/mL on migration in MDA-MB-231 cells	156
Figure 4.42	Effects of crude chloroform extract of <i>Curcuma aeruginosa</i> at 50 μ g/mL on migration in MDA-MB-231 cells	158

Figure 4.43	Effects of crude methanol extract of <i>Curcuma aeruginosa</i> at 100 µg/mL on migration in MDA-MB-231 cells	159
Figure 4.44	Effects of crude petroleum ether extract of <i>Curcuma domestica</i> at 12.5 µg/mL on migration in MDA-MB-231 cells	161
Figure 4.45	Effects of crude chloroform extract of <i>Curcuma domestica</i> at 12.5 µg/mL on migration in MDA-MB-231 cells	162
Figure 4.46	Effects of crude methanol extract of <i>Curcuma domestica</i> at 12.5 µg/mL on migration in MDA-MB-231 cells	164
Figure 4.47	Effects of crude petroleum ether extract of <i>Curcuma mangga</i> at 100 µg/mL on migration in MDA-MB-231 cells	165
Figure 4.48	Effects of crude chloroform extract of <i>Curcuma mangga</i> at 25 µg/mL on migration in MDA-MB-231 cells	167
Figure 4.49	Effects of crude methanol extract of <i>Curcuma mangga</i> at 100 µg/mL on migration in MDA-MB-23 cells	168
Figure 4.50	Effects of crude petroleum ether extract of <i>Curcuma xanthorrhiza</i> at 25 µg/mL on migration in MDA-MB-23 cells	170
Figure 4.51	Effects of crude chloroform extract of <i>Curcuma xanthorrhiza</i> at 12.5 µg/mL on migration in MDA-MB-231 cells	171
Figure 4.52	Effects of crude methanol extract of <i>Curcuma xanthorrhiza</i> at 50 µg/mL on migration in MDA-MB-231 cells	173
Figure 4.53	Effects of crude petroleum ether extract of <i>Kaempferia galanga</i> at 100 µg/mL on migration in MDA-MB-231 cells	174
Figure 4.54	Effects of crude chloroform extract of <i>Kaempferia galanga</i> at 25 µg/mL on migration in MDA-MB-231 cells	176
Figure 4.55	Effects of crude methanol extract of <i>Kaempferia galanga</i> at 25 µg/mL on migration in MDA-MB-231 cells	177
Figure 4.56	Effects of crude petroleum ether extract of <i>Zingiber montanum</i> at 25 μ g/mL on migration in MDA-MB-231 cells	179
Figure 4.57	Effects of crude chloroform extract of <i>Zingiber montanum</i> at 25 μ g/mL on migration in MDA-MB-231 cells	180
Figure 4.58	Effects of crude methanol extract of <i>Zingiber montanum</i> at 100 μ g/mL on migration in MDA-MB-231 cells	182
Figure 4.59	Effects of crude petroleum ether extract of <i>Zingiber officinale</i> at 25 μ g/mL on migration in MDA-MB-231 cells	183
Figure 4.60	Effects of crude chloroform extract of <i>Zingiber officinale</i> at 25 μ g/mL on migration in MDA-MB-231 cells	185
Figure 4.61	Effects of crude methanol extract of <i>Zingiber officinale</i> at 100 μ g/mL on migration in MDA-MB-231 cells	186
Figure 4.62	Effects of crude petroleum ether extract of <i>Zingiber zerumbet</i> at 12.5 μ g/mL on migration in MDA-MB-231 cells	188
Figure 4.63	Effects of crude chloroform extract of Zingiber zerumbet at 25 μ g/mL on migration in MDA-MB-231 cells	189

Figure 4.64	Effects of crude methanol extract of Zingiber zerumbet at	191
-	100 µg/mL on migration in MDA-MB-231 cells	
Figure 4.65	Effects of [6]-Gingerol at 12.5 µg/mL on migration in	192
	MDA-MB-231 cells	

APPENDIX II:

Figure 2.1	Sterilizing Oven	247
Figure 2.2	Pipette canisters were placed with spaces between to allow	247
_	circulation of hot air in the sterilizing oven.	
Figure 2.3	Autoclave	248
Figure 2.4	Reusable filter	248
Figure 2.5	Disposable Sterilizing Filter	248
Figure 2.6	Escco Class II Biohazard Cabinet	250
Figure 2.7	Refrigerator	252
Figure 2.8	Example of Cell Morphology in Culture.	253
Figure 2.9	Example of Cell Morphology in Culture.	253
Figure 2.10	CO_2 incubator.	254
Figure 2.11	Liquid Nitrogen Freezer (MVE).	255
Figure 2.12	Interior of Liquid Nitrogen Freezer	255
Figure 2.13	Canes in Canister	255
APPENDIX III:		
Figure 3.1	Sodium Nitrite Standard Curve	257
APPENDIX IV:		
Figure 4.1	PRISMA construction from three mobile phases giving best separation	259

LIST OF TABLES

Table 2.1	Action of certain cytokines produced by macrophages (Campbell & Reece, 2005)	24
Table 2.2	In vitro assays of angiogenesis (Goodwin, 2007)	46
Table 2.3	Types of phytochemicals extracted by different solvents (Houghton & Raman, 1998)	48
Table 3.1	Selection of detection systems for thin-layer chromatography (Houghton & Raman, 1998)	82
Table 4.1	Effects of the <i>Zingiberaceae</i> extracts on viability of RAW 264.7 cells	106
Table 4.2	Classifications of the effectiveness of NO inhibition activity of 29 tested crude <i>Zingiberaceae</i> extracts ¹ at 1.56 μ g/mL, 3.13 μ g/mL, 6.25 μ g/mL, 12.5 μ g/mL, 25 μ g/mL, 50 μ g/mL, and 100 μ g/mL in RAW 264.7 cells	115
Table 4.3	<i>In vitro</i> cytotoxicity of <i>Zingiberaceae</i> extracts on MDA-MB-231 cells measured by the MTT assay	137
Table 4.4	<i>In vitro</i> cytotoxicity of <i>Zingiberaceae</i> extracts on MRC-5 and MDA-MB-231 cells and their selectivity index	144
Table 4.5	Classifications of the effects of anti-proliferative activity or viability of 30 tested crude <i>Zingiberaceae</i> extracts ¹ against MDA-MB-231 cells into four groups.	146
Table 4.6	Absolute migration capability of <i>Zingiberaceae</i> extracts determined by Scratch wound assay using MDA-MB-231 cells	195
Table 4.7	Qualitative analysis of crude chloroform extract of <i>Alpinia</i> galanga using thin-layer chromatography	196
Table 4.8	Qualitative analysis of crude chloroform extract of <i>Curcuma domestica</i> using thin-layer chromatography	197
Table 4.9	Qualitative analysis of crude petroleum ether extract of <i>Zingiber zerumbet</i> using thin-layer chromatography	198
APPENDIX II:		
Table 2.1	Methods of sterilization and the limitations (Freshney, 2005)	245
Table 2.2	Sterilization of equipment and apparatus (Freshney, 2005)	246
Table 2.3	Sterilization of liquids and the storage conditions (Freshney, 2005)	249
APPENDIX III:		
Table 3.1	Absorbance readings at 540 nm for a two-fold serial dilution of sodium nitrite coducted using a flat-bottom 96-well plate	256
Table 3.2 APPENDIX IV:	Transformed data for plotting Sodium Nitrite Standard Curve	256
Table 4.1	Solvent groups for PRISMA TLC optimization (Houghton & Raman, 1998)	258

LIST OF SYMBOLS AND ABBREVIATIONS

°C	degrees Celsius
%	percentage
[]	concentration
<	less than
>	more than
\leq	less than or equal to
\geq	more than or equal to
µg/mL	microgram per millimetre
μm	micrometre
μL	micro litre
μΜ	micromole
cm	centimetre
g	gram
g/L	gram per litre
h	hour
mg	milligram
mg/mL	milligram per millilitre
min	minute
mm	millimetre
mm/h	millimetre per hour
mL	millimetre
nm	nanometre
М	mole
rpm	revolutions per minute
et al.	et alia (and other)
i. e.	id est (that is)
L	litre
Р	probability
$(PG)E_2$	prostaglandin
[NF]-κB	nuclear factor
L-NAME	$N^{\rm G}$ -nitro- _L -arginine methyl ester
L-NIO	<i>N</i> -iminoethyl- _L -ornithine
L-NNA	N ^G -nitro- _L -arginine
cNOS	constitutive nitric oxide synthase
dH ₂ O	distilled water
eNOS	endothelial nitric oxide synthase
iNOS	inducible nitric oxide synthase
nNOS	neuronal nitric oxide synthase
ABS	absorbance
ANOVA	analysis of variance

ATCC	American Type Culture Collection
CD	costimulatory molecule
CO_2	carbon dioxide
COX	cycloxygenase
CI	Cytotoxicity Index
DMEM	Dulbeccos's Modified Eagle's Medium
DMSO	dimethyl sulphoxide
ECM	extracellular matrices
EMT	epithelial mesenchymal transition
Eq.	equation
FBS	foetal bovine serum
FDA	Food and Drug Administration
H_2PO_4	phosphoric acid
H_2SO_4	sulphuric acid
HCl	hydrochloric acid
HOAc	acetic acid
IKK	IκB-β kinase
IC ₅₀	cytostatic concentrations
IFN-γ	interferon-gama
IL .	interleukin
IR	inhibitory rate
KH ₂ PO ₄	potassium dihydrogen phosphate
KI	potassium iodide
LN_2	liquid nitrogen
LPS	lipopolysaccharide
МАРК	mitogen-activated protein kinase
MC _A	absolute migration capability
MCP	monocyte chemoattractant protein
MDA-MB-231	human breast cancer cell
MEM	minimum Essential Medium Eagle
MMP	matrix metalloproteinase
MRC-5	human lung fibroblast cell
MTT	3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide
Na ₂ HPO ₄	sodium hydrogen phosphate
NaCl	sodium chloride
NaHCO ₃	sodium bicarbonate
NaNO ₂	sodium nitrite
NaOH	sodium hydroxide
NADPH	nicotinamide adenine dinucleotide phosphate-oxidase
NO	nitric oxide

NO ₂	nitrite
NOS	nitric oxide synthase
NK	natural killer
O_2^-	superoxide anion
OD ₅₄₀	optical density at 540 nm
ONOO ⁻	peroxynitrite
PBS	phosphate buffer saline
\mathbf{R}_{f}	retardation factor
RAW 264.7	murine macrophages cell
RNS	reactive nitrogen species
ROS	reactive oxygen species
S.E.M	standard error of mean
SPSS 16.0	Statistical Package for the Social Sciences Version 16.0
TJ	tight junction
TLC	thin-layer chromatography
TLR	toll-like receptor
TNF-α	tumour necrosis factor-alpha
UV	ultraviolet