LIST OF CONTENTS

CHAPTER 1 INTRODUCTION

1.1 General
 1.1.1 Definition
 1.1.2 Background of the Study

1.2 Illicit Drug Market
 1.2.1 Global Drug Production
 1.2.2 Economics of Illicit Drug Trade
 1.2.3 Illicit Drugs Differ from Licit Products

1.3 The Drug Scene in Malaysia
 1.3.1 The Historical Emergence of Drugs of Abuse in Malaysia
 1.3.2 The Prevalence of Drugs of Abuse in Malaysia
 1.3.3 Dangerous Drugs Act 1952

1.4 Scope of this Study
 1.4.1 General Scope
 1.4.2 Assumptions
 1.4.3 Objectives of the Study

CHAPTER 2 REVIEW OF HEROIN: THE EMERGENCE, THE PRODUCTION AND THE ABUSE

2.1 Preliminary

2.2 Drug Classification

2.3 Definition of Heroin

2.4 Heroin: From Past to Present

2.5 Manufacture of Illicit Heroin
 2.5.1 Introduction
 2.5.2 Cultivation

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.8.1</td>
<td>Forensic Intelligence Stems From Basic Notions</td>
<td>100</td>
</tr>
<tr>
<td>3.8.2</td>
<td>Law of Identity</td>
<td>103</td>
</tr>
<tr>
<td>3.8.3</td>
<td>Causality</td>
<td>107</td>
</tr>
<tr>
<td>3.8.4</td>
<td>Necessity</td>
<td>112</td>
</tr>
<tr>
<td>3.8.5</td>
<td>Holons and Holarchy</td>
<td>114</td>
</tr>
</tbody>
</table>

CHAPTER 4 METHODOLOGY

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Preliminary</td>
<td>116</td>
</tr>
<tr>
<td>4.2</td>
<td>Materials</td>
<td>118</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Chemicals and Reagents</td>
<td>118</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Chemical Standards</td>
<td>118</td>
</tr>
<tr>
<td>4.2.2.1</td>
<td>Profiling of Major Components</td>
<td>118</td>
</tr>
<tr>
<td>4.2.2.2</td>
<td>Profiling of Manufacturing Impurities</td>
<td>119</td>
</tr>
<tr>
<td>4.2.2.3</td>
<td>Profiling of Trace Elements</td>
<td>119</td>
</tr>
<tr>
<td>4.2.3</td>
<td>Glassware and Plastic Ware</td>
<td>119</td>
</tr>
<tr>
<td>4.2.4</td>
<td>Apparatus</td>
<td>120</td>
</tr>
<tr>
<td>4.2.5</td>
<td>Instrumentation</td>
<td>121</td>
</tr>
<tr>
<td>4.3</td>
<td>Sampling</td>
<td>121</td>
</tr>
<tr>
<td>4.4</td>
<td>Task 1: Visual Examination and Physical Characteristics</td>
<td>123</td>
</tr>
<tr>
<td>4.4.1</td>
<td>Police Information</td>
<td>124</td>
</tr>
<tr>
<td>4.4.2</td>
<td>Photography</td>
<td>125</td>
</tr>
<tr>
<td>4.4.3</td>
<td>Color of the Heroin Substance</td>
<td>127</td>
</tr>
<tr>
<td>4.4.4</td>
<td>Texture of the Heroin Substance</td>
<td>128</td>
</tr>
<tr>
<td>4.4.5</td>
<td>Wrapping Style of the Plastic Package</td>
<td>128</td>
</tr>
<tr>
<td>4.4.6</td>
<td>Sealing of the Plastic Package</td>
<td>131</td>
</tr>
<tr>
<td>4.4.7</td>
<td>Weight of the Heroin Substance and Plastic Receptacle</td>
<td>132</td>
</tr>
<tr>
<td>4.4.8</td>
<td>Width of the Plastic Receptacle</td>
<td>133</td>
</tr>
</tbody>
</table>
4.4.9 Thickness of the Plastic Receptacle 134

4.5 Task 2: Analysis of Plastic Films by ATR-FTIR 134

4.5.1 ATR-FTIR Procedure for Plastic Films 135

4.5.1.1 Settings for ATR-FTIR 135

4.5.1.2 Analysis of Case Plastic Films 135

4.5.2 Instrumental and Statistical Validation for Spectral Variation by Specimen Plastic Films 136

4.6 Task 3: Profiling of Major Components by GC-FID and GC-MS 137

4.6.1 GC-FID Procedures for the Profiling of Major Components 137

4.6.1.1 GC-FID Method 137

4.6.1.2 Analysis of Heroin Case Samples 138

 i) Internal Standard Solution 138

 ii) Calibration Standards and Control Sample 138

 iii) Preparation and Analysis of Case Samples 139

4.6.1.3 Optimization and Validation of the GC-FID Method 139

4.6.2 Statistical Validation Using Simulated Heroin Links 142

4.6.2.1 Preparation of Samples for Simulated Links 142

4.6.2.2 Analysis of Simulated Heroin Samples 144

4.6.3 GC-MS Procedures for the Profiling of Major Components 145

4.6.3.1 GC-MS Method 145

4.6.3.2 Analysis of Heroin Case Samples 145

4.6.3.3 Validation of GC-MS Method 145

4.7 Task 4: Profiling of Manufacturing Impurities by GC-FID 146

4.7.1 GC-FID Procedures for the Profiling of Manufacturing Impurities 147

4.7.1.1 GC-FID Method 147

4.7.1.2 Analysis of Heroin Case Samples 147
i) 2 N Sulfuric Acid 147

ii) Extraction Solvent 147

iii) Sample preparation by liquid-liquid extraction 148

4.7.1.3 Optimization and Validation of the GC-FID Method 148

i) Optimization and Validation by a Control Sample 148

ii) Optimization and Validation Using Validation Samples 149

4.7.2 Statistical Validation Using Simulated Heroin Links 152

4.7.2.1 Preparation of Samples for Simulated Links Using the Weight Equivalent to 15 mg Heroin Base Approach 152

4.7.2.2 Preparation of Samples for Simulated Links Using the Constant 650 mg Weight Approach 153

4.8 Task 5: Profiling of Trace Elements by ICP-MS 154

4.8.1 ICP-MS Procedures for the Profiling of Trace Elements 154

4.8.1.1 ICP-MS Method 154

4.8.1.2 Analysis of Heroin Case Samples 155

i) Dissolving Acid Solution (1% HNO3) 155

ii) Standard Preparation 155

iii) Calibration 156

iv) Sample Preparation 156

4.8.1.3 Partial Method Validation 157

4.8.2 Statistical Validation Using Simulated Heroin Links 158

4.8.3 Additional Studies 159

4.8.3.1 Drinking Water 159

4.8.3.2 Piped Water and Water from a Contaminated Container 159

4.9 Task 6: Data Management and Database Build-up 160

4.9.1 General Procedure 160
CHAPTER 5 RESULTS AND DISCUSSION

5.1 Preliminary

5.2 Task 1: Visual Examination and Physical Characteristics

5.2.1 Police Information
5.2.2 Photography
5.2.3 Color of the Heroin Substance
5.2.4 Texture of the Heroin Substance
5.2.5 Wrapping Style of the Plastic Package
5.2.6 Sealing of the Plastic Package
5.2.7 Weight of the Heroin Substance
5.2.8 Weight of the Plastic Receptacle
5.2.9 Width of the Plastic Receptacle
5.2.10 Thickness of the Plastic Receptacle
5.2.11 Classification of Heroin Cases by Physical Characteristics
5.2.12 Summary

5.3 Task 2: Analysis of Plastic Films by ATR-FTIR

5.3.1 Qualitative Classification of Case Plastic Films Based on Polymer Compositions
5.3.2 Instrumental and Statistical Validation for Spectral Variation Analysis

5.3.2.1 Data Normalization for Minimization of Instrumental and Environmental Influences
5.3.2.2 Repeatability and Reproducibility Improved by Data Normalization
5.3.2.3 Statistical Evaluation of Normalized Data by PCA
5.3.3 IR Spectral Variation Analysis for the Classification of Case Plastic Films
5.3.4 Summary

5.4 Task 3: Profiling of Major Components by GC-FID and GC-MS

5.4.1 GC-FID Method Optimization and Validation

5.4.1.1 Choice of GC Capillary Column and Selectivity

5.4.1.2 Solvent Studies

5.4.1.3 Repeatability and Reproducibility

5.4.1.4 Linearity and Limit of Detection (LOD)

5.4.1.5 Accuracy as Measured by Recovery

5.4.1.6 Dissolution Vessels and Sample Weight Test

5.4.1.7 Sample Stability

5.4.1.8 Capability of the Method for Sample Classification

5.4.1.9 Summary

5.4.2 Evaluation of the Statistical Robustness of the Optimized GC-FID Method in Sample Classification by Pattern Analysis

5.4.2.1 Performance of the Methods

5.4.2.2 Evaluation of Statistical Robustness using PCA

5.4.2.3 Summary

5.4.3 Statistical Validation Using Simulated Heroin Links

5.4.3.1 Simulated Dataset

5.4.3.2 Cutting Efficiency

5.4.3.3 Compositional Variation

5.4.3.4 Evaluation of Pretreatment Methods

5.4.3.5 Evaluation of Linkages and Distance Measures

5.4.3.6 Summary

5.4.4 GC-MS Method Optimization and Validation

5.4.4.1 Optimization of GC-MS Parameters

5.4.4.2 Specificity and Precision of the Results
5.4.4.3 Precision of Retention Time 254
5.4.4.4 Limit of Detection 255
5.4.4.5 Summary 255

5.4.5 Analysis of Heroin Case Samples 256
5.4.5.1 Qualitative Analysis by GC-MS 256
5.4.5.2 Quantitative analysis by GC-FID 258
5.4.5.3 Classification of Heroin Case Samples by Major Opium-based Alkaloids 262
5.4.5.4 Summary 264

5.4.6 Additional Study: Development of a Novel Chemometric Procedure (Tetrahedrons) for Sample Classification 265
5.4.6.1 Development of the Tetrahedron Model 265
i) Construction of a Tetrahedron 265
ii) Computation 268
iii) Advantages of the Tetrahedron Method 271
5.4.6.2 Chemometric Procedure Using Tetrahedrons 271
5.4.6.3 Computation 273
5.4.6.4 Summary 274

5.5 Task 4: Profiling of Manufacturing Impurities by GC-FID 276
5.5.1 GC-FID Method Optimization and Validation 276
5.5.1.1 Choice of GC Capillary Column 277
5.5.1.2 Choice of Ramping Rate 279
5.5.1.3 Peak Identification and Relative Retention Times 281
i) Target Manufacturing Impurities 281
ii) n-Alkanes in Control Sample 285
5.5.1.4 Injection Volume 285
5.5.1.5 Injector Temperature 287
5.5.1.6 Choice of Extraction Solvent 289
5.5.1.7 Extraction pH 291
5.5.1.8 Extraction Vessels 293
5.5.1.9 Additional Optimization Aspects 293
5.5.1.10 Repeatability, Reproducibility and Linearity Checked by Validation Samples 294
5.5.1.11 Repeatability, Reproducibility, Linear Range, LOD, LOQ and Linearity Checked by the Control Sample 297
5.5.1.12 Extraction Reproducibility 299
5.5.1.13 Summary 300

5.5.2 Statistical Evaluation Using Simulated Heroin Links 302
5.5.2.1 Variation Associated with LLE and Sample Weight Difference 303
5.5.2.2 Sample Weight Equivalent to 15 mg heroin base Sample Weight Approach 305
 i) Evaluation of Pretreatment Methods 305
 ii) Evaluation of Linkages and Distance Measures 308
5.5.2.3 The Constant Sample Weight (650 mg) Approach 309
 i) Principal Component Analysis 311
 ii) Hierarchical Cluster Analysis 312
 iii) K-means clustering 313
 iv) Discriminant analysis 314
5.5.2.4 Harmonized Statistical Model for Both Approaches 315
5.5.2.5 Summary 316

5.5.3 Analysis of Heroin Case Samples and Sample Classification by Trace Manufacturing Impurities 318
5.5.3.1 Sample Weight Equivalent to 15 mg heroin base Approach 318
5.5.3.2 The Constant Sample Weight (650 mg) Approach 322
5.5.3.3 Classification of Heroin Case Samples Using Harmonized Statistical Model

5.5.3.4 Limitations

5.5.3.5 Summary

5.6 Profiling of Trace Elements by ICP-MS

5.6.1 ICP-MS Method Validation

5.6.1.1 Repeatability and Reproducibility

5.6.1.2 Linearity, LOD and LOQ

5.6.1.3 Accuracy as Measured by Recovery

5.6.1.4 Sample Precision

5.6.1.5 Sample Weight Test

5.6.1.6 Dissolution Vessels

5.6.1.7 Sample Filtration

5.6.1.8 Summary

5.6.2 Statistical Validation Using Related Samples

5.6.2.1 Variation Associated with ICP-MS Analysis

5.6.2.2 Evaluation of Pretreatment Methods

5.6.2.3 Evaluation of Linkages and Distance Measures

5.6.2.4 Summary

5.6.3 Analysis of Heroin Case Samples

5.6.3.1 Sample Analysis

5.6.3.2 Elemental Composition in Heroin Samples

5.6.3.3 Potential Elements from Tap Water and Mixing Container

5.6.3.4 Correlation between Elements

5.6.3.5 Classification of Heroin Case Samples by Trace Elements

5.6.3.6 Summary