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ABSTRACT 

 

The extensive use of commercial activated carbon as an adsorbent for the purification of 

industrial effluent is not economically feasible due its high operational cost. Therefore, 

this research has been undertaken to explore the potential of certain agro based residues 

to produce suitable adsorbent for scavenging divalent cations of lead (Pb), copper (Cu) 

and manganese (Mn) from waste water to meet specific industrial requirements. In this 

regard, powdered activated carbons (PAC) were produced from cellulosic precursors 

namely kenaf core (KC) and kenaf fiber (KF) and granular activated carbon (GAC) from 

mangostene fruit shell (MFS) by physio-chemical activation. Their performance of the 

prepared activated carbons (KCAC, KFAC and MFSAC) was compared with activated 

oil palm ash (AOPA) sample in batch sorption system.   

 

Design of experiment (DOE) based on central composite design (CCD) was used to 

study the effect of activation temperature, time and impregnation ration (IR) on 

adsorption performance along with maximum possible yield for powered activated 

carbon (PAC) from KC and KF.  The results demonstrated that the optimum condition to 

obtain highest removal percentage and yield were different depending on the 

characteristics of the raw materials and the adsorbate under investigation. MFS was used 

to prepare granular activated carbon (GAC) due to its hard texture. It was used for batch 

as well as fixed bed sorption system.  

 

The adsorption mechanisms of activated carbon and activated oil palm ash towards the 

divalent cations used for this study were completely different. This is expected owing to 

their different inherent surface morphological features. To prepare activated adsorbent 
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(AOPA) from natural oil palm ash (OPA), activation reaction by using sodium hydroxide 

has been carried out by using predefined reaction condition of temperature, time and 

impregnation ratio (IR)  suggested by the software (DOE).  

 

The surface characteristics of these powdered and granular adsorbent were determined in 

terms of their BET surface area, FTIR analysis, SEM analysis, bulk density and iodine 

number measurement.  Chemical composition of activated carbons (KCAC, KFAC and 

MFSAC) were analyzed by ultimate (C, H, N, others) and proximate analysis (C, 

moisture volatile materials and ash).  X-ray analysis (XRF) analysis was carried out to 

determine the chemical constituents of natural oil palm ash (OPA) and activated palm 

ash (AOPA). 

 

The effect of initial metal ion concentration (50- 100 mg/l), contact time, pH of the 

solution and temperature (30 °C, 50 °C and 70 °C) were determined in this work. 

Equilibrium data were further analyzed to evaluate kinetics, isotherm and 

thermodynamic behavior of the adsorbate - adsorbent system. The fixed bed column 

showed better performance with lower influent concentration, less flow rate of the 

influent and higher bed height of the adsorbent. Desorption by using mineral acid was 

suitable for regenerating the spent adsorbent for further use. It can be concluded that the 

overall performance of the prepared activated carbons are better than the activated ash 

sample. 
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ABSTRAK 

 

Penggunaan secara meluas karbon komersil yang diaktifkan sebagai bahan penjerap bagi 

penulenan bahan efluen industri adalah tidak begitu sesuai secara ekonomi kerana kos 

operasinya yang tinggi. Oleh itu, kajian ini telah dijalankan bagi meneroka potensi sisa 

pertanian tertentu untuk menghasilkan bahan penjerap yang bersesuaian bagi menjerap 

kation dwivalens plumbum (Pb), kuprum (Cu) dan mangan (Mn) daripada air sisa 

sebagai memenuhi keperluan industri yang khusus. Bagi penyelidikan ini, serbuk karbon 

yang diaktifkan telah dihasilkan dari prekursor cellulosic iaitu teras kenaf (KC) dan serat 

kenaf (KF) dan prestasi bahan-bahan tersebut untuk menyingkirkan logam berat tersebut 

telah dibandingkan dengan abu kelapa sawit teraktif (AOPA) dalam sistem berkelompok. 

 

Reka bentuk eksperimen (DOE) berdasarkan reka bentuk pusat komposit (CCD) telah 

digunakan untuk mengkaji kesan suhu pengaktifan, masa dan nisbah pengisitepuan (IR) 

mengenai prestasi penjerapan bersama-sama dengan hasil maksimum yang mungkin bagi 

karbon teraktif berkuasa (PAC) dari KC dan KF . Keputusan menunjukkan bahawa, 

keadaan optimum untuk mendapatkan peratusan penyingkiran tertinggi dan hasil adalah 

berbeza bergantung kepada ciri-ciri bahan mentah dan bahan terjerap yang diuji dalam 

eksperimen. MFS digunakan bagi menyediakan butiran karbon teraktif (GAC) kerana 

teksturnya yang keras. Ia telah digunakan untuk sistem penyerapan secara berkelompok 

serta sistem penyerapan yang tetap. 

 

 Mekanisme penjerapan karbon dan abu kelapa sawit teraktif terhadap kation dwivalens 

yang digunakan dalam kajian ini adalah berbeza sama sekali. Ini dijangka berdasarkan 

kepada ciri-ciri morfologi permukaan yang berbeza. Bagi menyediakan penjerap teraktif 
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(AOPA) dari abu kelapa sawit semulajadi (OPA); tindak balas pengaktifan dengan 

menggunakan natrium hidroksida telah dijalankan dengan menggunakan kaedah tindak 

balas yang ditentukan secara nisbah bagi suhu, masa dan pengisitepuan (IR) yang 

dicadangkan oleh perisian (DOE). 

 

Pencirian permukaan serbuk dan butiran penjerap secara terperinci telah dilakukan dari 

segi luas permukaan BET, analisis FTIR, SEM, ketumpatan pukal dan penentuan 

nombor iodin. Penentuan komposisi kimia karbon teraktif telah dijalankan melalui 

analisis muktamad (C, H, N, lain-lain) dan analisis proksimat (C, bahan meruap dan 

abu). Analisis sinar-X (XRF) analisis telah dijalankan bagi menentukan juzuk kimia 

AOPA. 

 

Kesan kepekatan ion logam awal (50 - 100 mg / l), masa sentuhan, pH medium dan suhu 

(30 ° C, 50 ° C, 70 ° C) telah ditentukan. Data keseimbangan yang telah dianalisis untuk 

menilai kinetik, isoterma dan kelakuan termodinamik  bahan terjerap dan sistem 

penjerap. Sistem penyerapan yang tetap menunjukkan prestasi yang lebih baik dengan 

kepekatan influen yang lebih rendah, kadar aliran influen yang berkurangan dan aras 

bahan penjerap yang lebih tinggi. Penyahjerapan dengan menggunakan asid mineral 

adalah sesuai bagi proses kitaran semula penjerap untuk kegunaan selanjutnya. Dapat 

disimpulkan bahawa prestasi keseluruhan karbon teraktif yang dihasilkan adalah lebih 

baik berbanding sampel abu teraktif. 
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CHAPTER ONE 

       INTRODUCTION 
 

1.1 Overview of the Research 

This chapter provides relevant information about environmental issues concerning 

water pollution created by release of heavy metals and the strategies so far taken for 

abatement of this problem. The contamination of ground and surface water in 

Malaysia, focusing mostly on aqueous effluent emanating from different types of 

industries has been described. The need for implementation of appropriate technique 

by applying adsorption onto suitable adsorbent is provided. The concluding phase of 

this chapter presents the problem statement, scope and objectives along with 

organization of the thesis. 

 

1.2 Research Background – Current Scenario and Water Pollution problem in 

Malaysia 

 For the last few decades, phenomenal economical development has been observed 

throughout Malaysia. Urbanization, agricultural expansion and industrialization have 

resulted in increased usage of water and the use of different toxic chemicals. This 

rapid development has resulted in widespread contamination of soil, vegetables and 

above all fouling of water bodies up to a greater extent (Adil, 2006). Water pollution 

is a very persistent problem. This situation has evolved gradually over time. 

Recognition of these sorts of problem usually takes a long time and application of 

necessary preventive measures takes even longer time (Adil, 2006). Different reports 

and complaints about industrial waste disposal, stinking water courses within 

overcrowded cities were an early manifestation of water pollution.  
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         It was reported earlier that industries- related to mining discharge toxic 

metallic waste into freshwater bodies which contaminates the surface water as well 

as causes soil pollution also (Ashraf et al., 2010). Besides that, some agro based 

industries namely rubber and oil palm mills, domestic and animal farming, sewage 

treatment plants are also releasing harmful chemicals.  

 

     To put more emphasis, the Department of Environment (DOE) has made 

rigorous effort through implementation of Environmental quality Act in 1974. The 

statistical report showed that, a total of 17991 water pollution point sources were 

monitored and it was observed that 54% of the pollutants come from sewage 

treatment plants, 38% from manufacturing industries, 5% from animal farms and 3% 

from Agricultural industries; namely rubber and oil palm mills (WEPA-2010). It is 

reported that some manmade factors such as unplanned urbanization, 

industrialization, deforestation, agricultural runoff along with anthropogenic sources 

of weathering of rocks and volcanic activities are the major causes for enriching 

water reservoirs with heavy metals (Ong and Kamruzzaman, 2009; Farkas et al., 

2007). 

  

      In Malaysia, surface water quality is degrading due to disposal of waste water 

containing pesticides and herbicides of high toxicity. The quality of fresh water of 

some major rivers in Malaysia is further declined drastically due to discharge of 

heavy metals from different factories; especially in industrial zone (Ashraf et al., 

2010). The report showed that, 36 rivers of the country had already exceeded the 

lead (Pb) limit of 0.01 mg/l (Chan, 2003). A recent study reported that, Mamut river 

situated at the interior of Sabah, in Malaysia is highly contaminated by metal rich 

wastes (Ali et al., 2004). This acute pollution has been resulted from open pit copper 
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mining activities carried out in 1975. The runoff from this mining operation contains 

high level of several metals; notably copper which originates from flotation process 

used for preparation of copper concentrates (Ali et al., 2004).  

 

    Tin mining is another oldest industry of Malaysia which is contributing 

significant amount of metallic sludge of lead, copper and manganese in surface 

water and soil. According to a recent investigation in ex-mining area of Bestari Jaya, 

Peninsular Malaysia; the presence of these metallic contaminants in the river water 

of Sungai Ayer Hitam has exceeded the maximum permissible limits fixed by 

Interim National Water Quality Standards for Malaysia (Ashraf et al., 2010).  

 

    In 2006, 340 water samples were collected from 48 locations of Peninsular 

Malaysia. The water from 19 wells from the city of Sarawak and 15 wells from 

Sabah were collected to analyze the purity of ground water in Malaysia (WEPA-

2011). The sampling showed that; around 15% to 100% of the sample obtained from 

all the respective area contains elevated level of manganese greater than the bench 

mark (WEPA-2011) set by the Government of Malaysia. Table 1.1 listed the major 

sources of heavy metals (lead, copper and manganese). 
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Table 1.1 Major sources of lead, copper and manganese from different industries 
(Kudesia, 2000) 

 

 

Aqueous stream contaminated by divalent cations of lead and copper is regarded 

as one of the most common problem found in Malaysia (Ashraf et al., 2010). 

Furthermore removal of manganese is of special interest due to the availability of limited 

research reported on adsorption of this micro pollutant using activated carbon or ash 

despite its potential toxicity, widespread application as plant nutrients, bio accumulating 

tendency and persistence in the environment. The statistics clearly reveals that, extensive 

research is needed to provide better understanding regarding their sorption mechanisms 

and to reduce these pollutants level within the purview of safe drinking water regulations 

or any other types of domestic or industrial consumption (Ashraf et al., 2010,  Ali et al., 

2004). In this context, the present research deals with the removal of divalent cations of 

lead Pb(II), copper Cu(II)  and manganese Mn(II) from synthetic waste water by using 

some inexpensive indigenous agricultural biomass. 

 

Industrial Effluents Pb Cu Mn 
Pulp and paper mills     - 

Fertilizers       

Inorganic chemicals, 
alkali, chlorine 

  - - 

Petroleum refining     - 

Organic chemicals, 
petrochemicals 

  - - 

Basic Steel works 
foundries, iron-steel 
refining 

      

Basic non ferrous metal 
works foundries 

      

Motor vehicle, aircraft 
and metal plating 

-   - 
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1.3 Wastewater Treatment Technology 

There are three methods for treating waste water, namely physical, chemical and 

biological.  

 

1.3.1 Physical Methods 

Physical methods are the widely used method and comprises of membrane filtration and 

adsorption technique. The major disadvantage of membrane technology is its high cost of 

periodic replacement. Moreover it has limited life time as membrane fouling occurs very 

quickly. Filtration by using membrane was frequently used for exclusion of metallic 

contaminants from paper mill waste waters (Merrill et al., 2001). 

 

The perusal of literature reflects that, liquid-phase adsorption is one of the most 

popular methods for the purification of waste stream. This is an attractive alternative 

technique. By implementation of proper process design, high quality treated effluents can 

be produced. For this some inexpensive raw materials can be used. Thus, among the 

other methods, adsorption can be considered as an effective sequestration process for 

decontamination of process effluents (Dabrowski, 2001). 

 

1.3.2 Chemical Methods 

Chemical techniques for separation of toxic metals are rapid and efficient and no loss of 

sorbent is observed due to regeneration. But these methods are expensive. Accumulation 

and disposal of metal bearing sludge creates secondary pollution problem. Recently, 

advanced oxidation technique by generating hydroxyl radicals is used for degradation of 

pollutants but this is not economically feasible as high energy and chemical costs are 

involved (Mourao et al., 2006). The advantage and disadvantage of these methods are 

summarized in Table 1.2. 
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 Table 1.2 Advantage and Disadvantage of different method for waste water treatment 
(Adil, 2006) 

 

1.3.3 Biological Treatment 

Biosorption is often considered as the most attractive alternative when compared with 

physical and chemical methods (Keskinkan et al., 2003). Biological treatment involving 

microbial degradation of pollutants is a commonly used technique for waste water 

treatment. Due to some technical constrains, their application is restricted. The process is 

time consuming and requires a large area. Besides that it is constrained by lack of 

flexibility in design and operation (Bhattacharyya and Sarma, 2003). 

 

1.4 Problem Statement 

Among various pollutants present in surface water, inorganic species of heavy metals 

and metalloids are of major concern as they are difficult to remove owing to their smaller 

ionic size, complex state of existence, very low concentration in high volume and 

competition with non-toxic inorganic species (McLelland and Rock, 1988). In view of 

data from the literature, aqueous phase adsorption by utilizing different types of agro 

Physical/Chemical Method Advantages Disadvantages 
Ozonation Applicable for gaseous phase  Half life is short (20 min) 

Oxidation Rapid Process Byproduct formation and high 
energy cost 

Photochemical No sludge generation Byproduct formation 
Ion Exchange No adsorbent loss Not effective for all types of 

heavy metals 
Membrane Filtration Removes all contaminants Concentrated sludge is 

produced 
Coagulation Economically viable High sludge production 

Activated Carbon Highly effective Very expensive, non renewable 

Precipitation Low cost Byproduct formation 
               Adsorption Good % Removal Percentage Adsorbent requires 

regeneration and disposal 



  

 
7 

 

residues are one of the most popular methods for treating inorganic as well as organic 

contaminants from waste effluents. US environmental protection agency has cited 

sorption onto activated carbon as an excellent treatment technology (Moreno- Castilla, 

2004). It has a high adsorption capacity for metallic contaminants owing to its high 

surface area, adequate pore size and nucleophilic properties (Mohanty et al., 2005). 

However, the use of commercially available activated carbon is expensive as it is 

obtained from non renewable starting materials such as lignite, coal and petroleum coke. 

This has initiated a growing research interest towards production of porous adsorbent 

which can be derived from renewable, abundant and low cost materials originated from 

agricultural biomass (Babel and Kurniawan, 2003; Boonamnuayvitaya et al., 2005). 

 

 Agricultural biomass is obtained from organic origin; it can either be procured 

directly from plant species or indirectly from processing of commercial, domestic, 

industrial or agricultural products (Biofuels and Bioenergy Information, 2007). This 

biomass is considered very effective in producing adsorbent to be used for specific 

purposes by researchers due to its low ash and high volatile content which is essential to 

produce activated carbon having well developed pores inside the carbon matrix. The last 

residues obtained after burning of agricultural biomass in oxygenated atmosphere is ash 

particles which itself either in it’s original form or after some simple chemical treatment 

can be used as efficient adsorbent having extended surface area and suitable mineral 

composition which is appropriate for surface complexation with  divalent positive ions of 

lead, copper and manganese.  

 

Agricultural Industry in Malaysia is producing enormous amount of agricultural 

residues every year. A recent statistics showed that, 70 million tones of agro residues are 

produced by Malaysia annually (Tan, 2008). Dumping of these agro residues are creating 
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a secondary environmental pollution of great concern. Limited studies have been carried 

out to convert these agro residues as suitable adsorbent for commercial application to 

remove inorganic species by using batch and fixed bed adsorption system (Tan, 2008). 

From the literature, it is observed that many studies have been conducted to convert this 

biomass into activated carbon for the removal of organic contaminants by applying either 

physical or chemical activation method. In most of the cases the above mentioned 

methods have yielded activated carbon having low surface area with microporous texture 

which is suitable for gas phase application. Recently, combination of both the methods 

has been given priority to produce activated carbon that has extended surface area with 

large amount of mesopores which is suitable for liquid phase application. Moreover, 

limited reports have been observed for design and process parameter optimization for the 

production of activated carbon with maximum possible yield along with adsorption 

performance which is essential for commercialization of the end products. Previous 

research trend showed that limited studies have been conducted on designing process 

parameters for preparing adsorbent from oil palm ash for the desulfurization process by 

carrying out pozzolanic reaction between palm ash and group two alkali metal hydroxide 

(Zainudin et al., 2005).  

  

In this research three types of lignocellulosic i.e., kenaf core (KC), kenaf fiber 

(KF) and mangostene fruit shell (MFS) and one type of mineral based i.e., oil palm ash 

(OPA) residues are taken to produce powdered and granular activated adsorbents for 

batch and fixed bed sorption system.  

 

In Malaysia, the National Kenaf Research and Development Program has been 

started to produce kenaf crops due to its expanded application in different industrial 

sector.  The government has allocated around RM 12 million (Aber et al., 2009) for 
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further development of the kenaf-based industry under the 9th Malaysia Plan (2006–

2010). Kenaf (Hibiscus cannabinus L.)  is the common name given to a fiber collected 

from the stalks of the Kenaf plants. These plants belong to the genus Hibiscus, having 

family name of Malvaceae. It grows in tropic and subtropical regions abundantly. Kenaf 

(Hibiscus cannabinus L.) is one of the most fast growing herbaceous plants having 

similar morphological features like cotton and jute. Presently nine varieties of kenaf have 

been introduced in Malaysia as one of the potential plant to replace tobacco plantation. 

This plant contains branchless stalk. The stalk consists of a central wooden core. The 

bark is made up of fibrous materials and it surrounds the core. Kenaf fiber (KF) is 

extracted from the outer bark and the wooden core (KC) are taken in this research to 

prepare powdered activated carbon (PAC).  

 

Mangostene (Mangostana garcinia) fruits are mainly cultivated in the tropical 

region. It grows abundantly in Thailand, Malaysia, Philippines, Indonesia, Brazil, 

Honduras, Panama and Hawaii. After consumption of the fruits, the peels are thrown 

without any potential applications. Compared to other two cellulosic precursors, it is 

relatively hard. Thus the dried fruit peels are taken to produce granular activated carbon 

(GAC). It was used to prepare fixed bed to design and assemble a lab scale column for 

treating synthetic water.  

 

Malaysia produces a large amount of agro-based waste biomass-generated from 

oil palm industries which consists of empty fruit bunch (EFB), palm shell (PS) and 

mesocarp fiber (PF). The statistical report showed that, about 110 million tones of 

renewable non oil biological mass from palm oil industry is produced each year (Tan, 

2008). Oil palm ash (OPA) is a kind of particulate material which is produced from 

combustion of this waste biomass (EFB, PS and PF) in boiler to obtain steam for 
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electricity generation. Oil palm ash has a very fine texture. Thus it has been considered 

to produce powdered activated adsorbent. Each year 4 million tones of palm ash is 

produced in Malaysia. It is a persistent and carcinogenic agent having bioaccumulation 

tendency (Foo and Hameed, 2009).  The situation is quite alarming in terms of 

environmental stand point. The price of this ash disposal (either in landfills or ash ponds) 

is around $5/tones in developing countries and $50/tones in developed countries (Foo 

and Hameed, 2009).  From one hectare of agricultural land of oil palm, about 50–70 

tones of biomass residues are obtained. Oil palm industry is presently generating the 

largest amount of biomass in Malaysia which is 85.5% out of more than 70 million tones 

(Shuit et al., 2009) as shown in Figure 1.1 (oil palm 85.5%, sugarcane 0.5%, rice 0.7 %, 

wood 3.7% and municipal waste 9.5%). 

 

 

 

Figure 1.1 Biomass Productions in Malaysia 

 

 Until recently, no attempts have been made to produce activated adsorbent from 

natural oil palm ash (OPA) or activated carbon (AC) from different parts of kenaf crop 

Oil palm Municipal 
waste Sugarcane Rice Wood 
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and mangostene fruit shell by physiochemical activation technique and optimize their 

preparation condition for industrial scale application. The utilization of these types cheap 

raw materials will not only purify the contaminated stream but it will simultaneously 

reduce waste disposal problem to a greater extent.  

 

1.5      Objectives of the Research  

The adsorption property of an adsorbent is highly influenced by its preparation 

conditions and the starting material. Preparation variables such as temperature, time and 

impregnation ratio will significantly change its surface area, pore size distribution and 

surface functional groups. Therefore, it is a challenge to produce specific types of 

adsorbent which are suitable for certain applications. For a commercial scale production, 

these points should be considered carefully to get maximum output of the process. The 

following objectives have been addressed in this work. 

 

 (i)  To produce powdered and granular adsorbent from agro based residues of Kenaf 

core (KC), Kenaf fiber (KF) and Mangostene Fruit Shell (MFS) respectively, by 

converting them into activated carbon using the two step physio-chemical activation 

methods of alkali hydroxide impregnation and physical activation using carbon dioxide. 

Powdered activated adsorbent was prepared from siliceous raw materials of natural oil 

palm ash (OPA) by pretreatment with alkali metal hydroxide 

 

(ii)  To optimize the production condition to obtain maximum yield along with maximum 

removal percentage of divalent cations of lead, Pb (II), copper, Cu (II) and Mn (II) for 

powdered activated carbon (PAC) from KC and KF by using Design of Experiment 

(DOE). The production condition for oil palm ash samples were optimized also. 

However, the granular activated carbon (GAC) from mangostene fruit shell (MFSAC) 
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were prepared under identical condition to compare the sorption efficiency of three types 

of adsorbate (lead, copper and manganese) based on their chemical properties.  

 

(iii)  To characterize the surface of the adsorbents by physical and chemical tests. 

 

(iv) To determine the effects of adsorbate (Pb, Cu and Mn) initial concentration, contact 

time, temperature and pH on adsorption performance through batch adsorption test. 

The kinetics, isotherm and thermodynamics parameters of different adsorbate adsorbent 

systems under investigation were determined. 

 

(v)  To analyze the breakthrough curve for adsorption of divalent cations of Pb, Cu and 

Mn by using granular adsorbent (MFSAC). The column dynamics studies are carried out 

by changing the initial concentration of the feed, flow rate of the adsorbate as well as the 

bed height of the prepared sorbent. The adsorbents used were regenerated by using 

eluting agents of distilled water, organic and mineral acids.  

 

1.6 Outline of the Thesis 

There are a total of 9 chapters in this thesis. Chapter One (Introduction) gives the 

overview of present situation of water pollution problem in Malaysia. This chapter 

briefly explains the research objectives and overall content of the thesis. 

 

Chapter Two (Literature Review) provides important information about 

preparation of activated carbon from various precursors carried out by previous 

researchers. Important mechanism to convert ash materials as suitable adsorbent has been 

discussed also in terms of relevant literature. For producing both types of adsorbent, 
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selection of appropriate technique along with the importance for process parameters 

optimization has been explained in the last section. 

 

Chapter Three (Theoretical Background of Batch and Fixed Bed Study) provides 

basic concepts of batch adsorption for different adsorbate adsorbent system. Basic 

phenomenon of fixed bed adsorption, it’s importance in industrial scale and limitations 

are discussed in the second section. The third section summarizes the sorption dynamics 

of Fixed Bed in terms of Bohart-Adams, Thomas and Yoon-Nelson models.  

 

Chapter Four (Materials and Methodology) deals with the experimental set up for 

production of powered and granular adsorbents. The detailed methodology and the 

reason to activate OPA by alkali treatment rather than converting it to activated carbon is 

discussed in the subsequent section. The experimental procedure by using response 

surface methodology (RSM), statistical analysis and model development, surface 

characterization, batch and fixed bed sorption techniques and regeneration of the 

prepared adsorbent is explained. The last section of the chapter comprises of schematic 

flow chart of all research activities in this project. 

 

Chapter Five (Results and Discussion)  presents results and discussion obtained 

from RSM technique to prepare activated carbon and activated oil palm ash together with 

ANOVA analysis and regression models for each adsorbate adsorbent system. Process 

parameters are optimized to get maximum removal percentage under the studied range of 

variable. The last section provides the necessary physio-chemical characteristics of the 

adsorbent’s surface which is essential to understand sorption mechanisms in detail. 
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Chapter Six (Results and Discussion) presents the results obtained for surface 

characterization of the prepared adsorbents by different physical and chemical tests. 

 

Chapter Seven (Results and Discussion) deals with the batch adsorption studies 

carried out for all types of powdered and granular adsorbents. Equilibrium isotherm, 

kinetics and thermodynamic parameters are evaluated. The last section provides the 

necessary information for regeneration of the metal loaded adsorbent by using different 

eluting agents. Overall performance of powder and granular activated carbons with 

activated oil palm ash towards the divalent cations under investigation are compared 

with other types of adsorbents. 

 

Chapter Eight (Results and Discussion) presents the break through curve analysis 

and different process parameters related to fixed bed studies. The last section evaluates 

the model parameters necessary to understand sorption dynamics in continuous flow 

adsorption, regeneration and recycling of the fixed bed up to four cycles. 

 

The conclusions of the overall findings of this research are given in Chapter 

Nine. The conclusion summarizes the extent of which the listed objectives are achieved 

throughout this study. The last section deals with some recommendations and their 

significance related to this study for future application. 
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      CHAPTER TWO 
LITERATURE REVIEW 

 

2.1 Introduction 

This chapter is subdivided into three sections. The first section describes the basic 

concept of adsorption, the forces governing the sorption process and general information 

regarding preparation and application of activated carbons in liquid phase adsorption. An 

overview of various types of ligno-cellulosic precursors and the methodology applied for 

them to produce activated carbons, characterization as well as the applications of these 

adsorbents for removal of contaminants from waste stream is then presented. The second 

section provides brief information about the physio-chemical characteristics of oil palm 

ash and relevant literature review to convert it as a suitable adsorbent for aqueous phase 

adsorption. The regeneration technologies for both types of adsorbents (activated carbon 

and activated ash) so far being adopted by previous researchers are then presented. A 

short summary of this chapter is given in the last section. 

 

2.2 Adsorption 

Adsorption is defined as the process of retaining atoms, molecules or ions of dissolved 

solids, liquids or gases on the surface having certain active sites (Paul, 1995). The 

phenomenon is observed due to the presence of unsaturated and unbalanced molecular 

forces that are present on every porous solid. When a porous adsorbent is in contact with 

a solution, it tends to accumulate a layer of adsorbate ions, molecules, gases or vapor to 

satisfy the residual surface forces (Eckenfelder, 2000) and forms a boundary layer. In the 

case of aqueous phase adsorption; the atoms, molecules or ions present in a liquid will 

diffuse inside the surface of the solid where they attach and retain themselves by weak 

intermolecular forces.  For designing the adsorption processes, it is essential to optimize 
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the sorbent-sorbate ratio and the adsorption capacity of the targeted contaminants at 

constant temperature and pH for a fixed adsorbate concentration range. 

 

2.2.1 Factors Affecting Adsorption 

The factors on which the extent of adsorption depends are: 

 The effective surface area including appropriate pore size distribution of the 

adsorbent. 

 The solubility of the adsorbate in aqueous phase.  

 The nature of the active sites or surface functional groups on the surface.  

 The concentration of the liquid phase.  

 The nature of adsorbent or adsorbate.  

 The temperature of the surroundings.  

 pH of the system in  case of liquid phase applications.  

 

2.2.2 Classification of Adsorption 

Adsorption process can be classified into two main types; such as, physical adsorption 

(physisorption) and chemical adsorption (chemisorptions).  

 

2.2.2.1 Physical Adsorption  

Physisorption involves weak forces of van der walls, hydrogen bonding and dipole-

dipole interactions between the sorbent and sorbate. It is reversible and resembles with 

condensation process. The process of physisorption is exothermic with a heat of 

adsorption analogous to that of latent heat of condensation (Cooney and David, 1999). 

Equilibrium is attained quickly, followed by the intra-particle diffusion process of the 

adsorbate molecules inside the capillary pores of the sorbent structure. The rate of 
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sorption varies reciprocally with the square of the particle diameter but increases usually 

with the increasing concentration of the adsorbate and the temperature of the 

surroundings. The rate of physisorption is inversely proportional with the molecular 

weight of the sorbate species (Eckenfelder, 2000). Physical adsorption represents 

comparatively weak adsorptive forces between sorbate and sorbent. It proceeds with 

almost zero or negligible activation energy (Mattson and Mark, 1971). 

 

2.2.2.2 Chemical Adsorption  

Chemical adsorption proceeds by exchange or sharing of electrons between the sorbate 

and sorbent (Allen and Koumanova, 2005). It is non reversible and occurs at high 

temperature with significant activation energy. Chemisorption is characterized by 

interaction between sorbate and specific functional groups attached on the surface of the 

sorbent (Mattson and Mark, 1971). It may be exothermic or endothermic depending on 

the magnitude of the energy changes during the sorption process. Table 2.1 shows a 

comparison of physical and chemical adsorption. 

 

Table 2.1   Comparison of Physical and Chemical Adsorption (Ahmad, 2006). 
 
 

Parameters Physical Adsorption Chemical Adsorption 
Rate of adsorption Controlled By Diffusion Controlled by surface chemical 

reaction 
Effect of temperature Almost None Positive 

Enthalpy change (Kcal/mol) <10 >20 

Type of Interaction Reversible Irreversible 

Surface Coverage Complete Incomplete 

Sorption/mass ratio Large Small 

Specifity Low High 

Activation Energy Small Large 
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For removal of heavy metals, adsorption is considered as one of the most popular 

technique compared to other methods due to its low cost, abundant availability, simple 

process design with high removal efficiency, easy mode of operation and 

biodegradability. Moreover, it can treat pollutants in more concentrated form (Arami et 

al., 2005). It does not produce large amount of toxic sludge (Crini, 2006). 

 

2.3 Adsorbate 

The components present in ionic phases inside the solution that are adsorbed by the 

adsorbent are called adsorbate. In general, the higher the concentration of solute, the 

higher is the equilibrium uptake of the adsorbate on the surface of the adsorbent (Seader 

and Ernest, 1998). The elements of divalent cations of heavy metals (Pb, Cu and Mn) 

were taken here to prepare synthetic solution of adsorbate for bench scale adsorption 

studies in batch or continuous column in the laboratory. Heavy metals constitute a group 

of transition and post transition metals (IUPAC 2002). Heavy metals usually possess 

higher specific gravity, i.e more than five. 

 

2.3.1 Properties of Adsorbate 

The presence of maximum permissible limit of heavy metals including lead, copper and 

manganese in drinking as well as municipal and industrial waste water has been strictly 

regulated in most of the countries through legislation due to their potential toxicity.  

 

2.3.1.1 Lead, Pb(II) 

Lead is a soft, malleable, bluish gray heavy metal which belongs to the fourth column of 

the periodic table (Group IVB). Its maximum valency is IV but II is far more stable. 

Tetravalent lead forms few compounds of PbO2, PbCl4 and Pb(SO4)2 which are very 

powerful oxidizing agents. Combustion of coal generates lead into atmosphere. It is one 
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of the most widely used metals in piping, accumulators, lead chambers, anti-knock 

substances, soldering and colored pigments. In nature, lead occurs as galena, cerussite 

(PbCl2) and sulphide. The earth’s crust and ocean water contain 15 ppm and 5 ppb of 

lead respectively.  It can diffuse inside the soft tissues and form metallothionein. About 

500 mg of lead can create toxicity in human body (Kudesia, 2000). The toxicity 

symptoms are brain damage, uncoordinated body movement, convulsions, loss of 

appetite and after certain range it can cause coma and death.   

 

2.3.1.2 Copper, Cu(II) 

The name copper was derived from its Latin name cuprum which is a malleable and 

ductile metal. It is an excellent conductor of heat and electricity. Copper is an element of 

subgroup IB of the periodic table having valency II and I. It occurs in nature as sulphide. 

It inhibits the growth of root and shoot and production yield of the crops. The uptake of 

nutrient is adversely affected in presence of copper. It is frequently accumulated by 

different agricultural crops and from there it enters into the food chain causing potential 

danger to animal and human health. Copper is present in the waste effluents of several 

industries. It is an essential micronutrient for crops. Thus it can easily accumulate in 

surface waters. The excessive ingestion of copper than the desired limit can cause severe 

liver and gastrointestinal problems (Kudesia, 2000). Copper poisoning occurs due to 

consumption of acidic beverages stored in containers of copper. It can cause pathological 

changes in brain tissues. More than 470 mg of copper in human body will have toxic 

effects and can cause hypertension, sporadic fever, anemia, coma and even death 

(Kudesia, 2000).  
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2.3.1.3 Manganese, Mn(II) 

Manganese occurs in nature as oxides, silicates and carbonates. Concentration greater 

than 100 ppm of manganese can cause growth retardation, fever, muscular fatigue and 

eye blindness. Inorganic species especially divalent cations of manganese and it’s 

metalloids are commonly found in iron (Fe) bearing wastewater. The intake of 

manganese can cause neurological disorder in men when inhaled at concentration greater 

than 10 mg/day. Even at lower concentrations, it produces objectionable stains on fabric. 

Many industries, especially mining source discharge Mn (II) ions into natural freshwater 

bodies without sufficient prior treatment. It is very difficult to remove as this is the last 

member of Irving William series which has the least tendency to form stable surface 

complexes and thereby removed by sorption from waste water. Some physical and 

chemical properties including the electronic configuration of the selected cations are 

listed in Table 2.2. 

 

Table 2.2 Properties of Lead Pb (II), Copper Cu (II) and Manganese Mn (II) 

 

Chemical Properties Lead, Pb(II) Copper, Cu(II) Manganese, Mn(II) 

Ionic Radius   1.19°A 0.73°A 0.79°A 
First Ionization 
Potential 

7.416 7.726 7.435 

Electronegativity 2.33 1.9 1.55 
First Hydrolysis 
constant,  Log KOH 

7.71 8.00 10.59 

The softness parameter 
(ability to leave valence 
electrons), σP 

0.131 0.104 0.125 

 

2.3.2 Classification of Adsorbate 

Metallic species exhibiting a net positive charge is classified as Lewis acid (Shriver, 

Atkins and Langford, 1991). Metallic cations of Pb(II), Cu(II) and Mn(II) are transition 

metals with incomplete d-orbital. They show Lewis-acid characteristics and their 



  

 
21 

 

electron clouds are easily deformed by the induction effect of electric field of other 

cationic or anionic species. Thus they can form stable inner sphere complexes by 

coordination with donor electrons from Lewis bases, organic and inorganic ligands in 

aqueous solution. They can act as electron acceptors and are known as ‘soft’ cations. 

However, alkali and alkali earth metals are poor Lewis acid as they have almost inert gas 

configuration. They form outer sphere complexes with ligands having oxygen donor 

atoms through coulombic force of attraction. Pearson (1968) developed HSAB principle 

to describe the strength of acid-base complexation of metals. Based on affinity towards 

different ligands, metallic species are classified as: Class A- Hard cations, Class B- Soft 

cations and Class AB- Borderline cations which are difficult to distinguish.  

 

1    

H 2 13 14 15 16 17 

Li Be B C N O F 

Na Mg 3 4 5 6 7 8 9 10 11 12 Al Si P S Cl 

K Ca Sc Ti V Cr Mn Fe(III) Co Ni Cu(II) Zn   As Se Br 
Fe(II) Cu(I) 

Rb Sr Y Zr     Rh Pd Ag Cd In Sn Sb Te I 

Cs Ba * Hf     Ir Pt Au Hg Ti Pb(IV) Bi Po At 

Pb(II) 

Fr Ra # Rf Db Sg Bh Hs Mt 

 

*Lanthanide  

 

# Actinide 

 
   Figure 2.1 Classification of metal according to Lewis acidity (IUPAC 2002) 
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Metals having electronegativities above 1.45 is known as Class A, while metals 

with electronegativities below 1.88 belongs to Class B. Figure 2.1 shows the periodic 

table classifying the different class of metals (IUPAC 2002). The sorption of metallic 

species onto different types of adsorbent is dependent on their Lewis acidity.  Thus the 

classification of metallic cations based on their Lewis acidity should be consistent for the 

preparation of adsorbents and subsequent remediation approach. However, the 

classification shown by the periodic table is empirical (Adil, 2006).  In literature, the 

same metal ion is found to belong in different classes.  

 

 Hard cations exhibit fairly strong affinity towards hard (oxygen) donor ligands to 

form ionic complexes. Soft cations prefer nitrogenous and sulphurous species which 

have lone pair of electrons. The soft cations use this lone pair of electrons to form stable 

inner sphere surface complexes. The p-block metals show strong affinity towards 

sulphide or sulphur donor atoms to form covalent complexes.  These metals are highly 

toxic for living organisms because once they enter, they form stable complexes with thiol 

(-SH) groups of protein. Thus they accumulate inside the organ. They are not readily 

excreted. The borderline metals are able to form stable surface complexes with both 

types of soft and hard donor ligands. However, the order of stability cannot be 

determined easily (Adil, 2006). The d-block transition metals in first row of the periodic 

table exhibits variable coordination chemistry. They are categorized as borderline metals. 

 

 Based on this principle, various types of chelating ion exchangers with covalently 

attached functional groups have been developed to remove heavy metals from waste 

water. The composition of functional groups in any types of ion exchange resins varies 

from hard oxygen donor atoms in carboxylate groups to soft nitrogenous donor atoms of 

bispicolylamine, -CH2-N.(CH2-C5H9N)2. Chelating exchanger with thiol group, -SH 
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shows high affinity towards Hg(II)  rather than Cu(II) and Zn(II) cations. However, the 

synthesis of polymeric chelating cation exchange resins is relatively difficult and 

expensive as organic functional groups needs to be attached covalently to the parent 

polymer beads. In addition to that, adsorption of metallic cations onto chelating ion 

exchangers exhibits slow kinetics. This is due to the slower intraparticle diffusion of 

metal ions through the rigid structure of the exchangers (SenGupta et al., 2002). 

Consequently, the present scenario of water pollution demands the replacement of the 

chelating/polymeric cation exchangers with renewable naturally occurring low-cost 

agricultural residues. These materials contain hydroxide, carboxylate, carbonyl and 

phenolic groups which show moderate to high affinity towards heavy metal ions. The 

extent and composition of these functional groups can be judiciously modified to 

improve the specific affinities towards the target cations under investigation. 

 

2.4 Adsorbent 

The solid that captures the solute (adsorbate) is known as the adsorbent. On the surface 

of the adsorbent, large number of active centers is present which provides the necessary 

binding forces. Thus at these active sites, adsorption of adsorbate can take place. In an 

equilibrium system, adsorption and desorption occur simultaneously. Desorption is the 

process in which the solute is released back from or through the surface. The 

phenomenon is opposite of either adsorption or absorption. This occurs in an equilibrium 

system depending on the concentration gradient between bulk phase (fluid, i.e. gas or 

liquid solution) and the surface of the adsorbent (solid or boundary separating two 

fluids). When the concentration (or pressure) of solute in the bulk phase is reduced, some 

of the adsorbed substance tends to return back into the bulk state. As the temperature 

increases, some weak bonds start to break. The equation expressing the rate of desorption 

is: 
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                          xrNR                                                          

where; r is the rate constant for desorption, N is the concentration of the 

adsorbed materials, and x is the kinetic order of desorption. 

The rate constant r may be expressed in the form: 

                             kTEaAer /                                                       

where; A represents the "Arrhenius Factor", the chance of the adsorbed molecule 

overcoming its potential barrier to be desorbed, Ea is the activation energy of desorption, 

k is the Boltzmann constant, and T is the temperature. Figure 2.2 shows adsorbate-

adsorbent interactions in the case of liquid phase adsorption (Henning and Degel, 1990). 

 

 

 

  

 

 

 

 

 

 

 

 
Figure 2.2  Adsorbate-Adsorbent interactions in liquid phase adsorption (Henning and   
Degel (1990) 
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2.4.1 Properties of Adsorbent 

For Commercial applications, the adsorbent should have the following properties (Seader 

and Ernest, 1998): 

 Reasonably high surface area with proper micropores mesopores distribution. 

 Appropriate surface chemistry i.e., functional groups which can form surface 

complexes with the adsorbate. 

 High selectivity to enable sharp separation. 

 The amount of adsorbent should be small for economical feasibility of the 

process. 

 Favorable kinetics i.e., rate of sorption and quick transportation properties for 

rapid sorption.  

 Adequately stable both thermally and chemically. 

 The adsorbent should have low solubility in the surrounding medium to prevent 

the weight loss of the adsorbent and retain its properties 

 The adsorbent should have sufficient hardness and mechanical strength to prevent 

crushing and erosion. 

 The aptitude of being regenerated. 

 Relatively low cost. 

 

2.4.2 Types of Adsorbent 

Adsorbent can be divided into two major classes based on their application: 

 Adsorbent used for gaseous phase applications such as solvent recovery, toxic 

gas separation or air purification. 

  Adsorbent which are used for purification of liquid solutions. Following pie 

chart (Figure 2.3) reflects that majority of carbonaceous adsorbents are used for 

waste water treatment.  
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Figure 2.3 Applications of carbonaceous adsorbents (Qurishi, 2008) 

 

The major difference between gas phase and liquid phase adsorbent is in their micro and 

meso pore size distribution. The pores are classified according to the International Union 

of Pure and Applied Chemistry (IUPAC 1972). Table 2.3 lists the classification of pores 

by their diameter (Perry and Green, 1997). 

 

Table 2.3 Classification of pores (Perry and Green, 1997) 

 

 Adsorbents used for gaseous phase application usually have more micro pores 

and macro pores in their structure whereas liquid phase adsorbents have significant 

number of mesopores or transitional range of pores which allow easy access of aqueous 

solution to internal micro porous region through the macro pores and mesopores. This 

results in the rapid attainment of equilibrium contact time showing faster kinetics of 

adsorbate-adsorbent interactions. Different types of low cost adsorbent materials have 

Type of pores      Diameter of the pore, D (°A) Characteristics of pores 

Micropore D< 2 °A Superimposed wall potential 
Mesopore 2°A< D< 50°A Capillary condensation 
Macropore D> 50°A Effectively Flat walled 

 

 

Others Solvent Recovery Gold Recovery 

Purification of Gas Food Processing Water Treatment 

    6% 
3% 

15% 

16% 

  25% 

35% 
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been reported for liquid phase applications. Table 2.4 summarizes the types of adsorbent 

used by previous researchers to remove organic and inorganic pollutants including heavy 

metals from aqueous solution. 

 

Table 2.4 List of Low cost Adsorbents (Johnson et al., 2008, Abia et al., 2003, 

Ayyappan et al., 2005) 

 

2.5 Agricultural and Industrial Wastes for Preparation of Adsorbent 

Natural materials and certain industrial wastes have the potential to be used as low cost 

adsorbent for decontaminating industrial or domestic waste water from toxic metal. 

Agricultural wastes are usually porous and lightweight and have carboxylic and hydroxyl 

functional groups on their surface. But the applicability of these materials has been found 

to be restricted  up to a certain limit owing to their small surface area and leaching of  

some organic substances into the aqueous solution. Thus these residues can be converted 

to activated adsorbent either by producing activated carbon or by simple chemical 

treatment to enhance the surface area (Saravanane et al., 2002). This improves their 

sorption performance to a greater extent which may compensate for the operating 

expense of additional processing. Many previous researchers have carried out studies to 

prepare low cost adsorbent from agricultural byproducts as listed in Table 2.5. 

Source of Adsorbents Low cost Adsorbents 

Activated carbon derived from agricultural by 
products or waste products 

Activated carbon produced from palm shell, 
coconut husk, coconut shell, hazelnut shell, pecan 
shell, cotton seed hull carbon, almond husk 
activated carbon, banana pith carbon etc. 

Modified agricultural biomass Cassava waste, pecan shell, orange peel, banana 
peel, soyabean hull, tea waste, rice husk etc. 

Industrial By products or waste products Metal hydroxide sludge, paper mill sludge, red 
mud, Bagasse fly ash 

Siliceous Materials Dolomite, perlite, zeolite, clinoptilolite etc. 
Natural Materials Clays: Bentonite, diatomite, fullers earth etc. 
Biosorbents Chitin and chitosan, peat 
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Table 2.5   Agricultural/Industrial waste used to prepare low cost activated carbons or   
chemically modified adsorbents 
 
 

Precursor  Reference 

Hazelnut Shell Cimino et al., 2000 
Maize Bran Singh et al., 2006 
Barley straw Larsen and Schierup, 1981 
Bengal gram husk Saeed et al., 2005 
Coir fiber Conrad and Hansen, 2007 
Olive  Stavropoulos and Zabaniotou, 2005; Martinez et al., 2006 

Peanut hull  Girgis et al., 2002, Johnson et al., 2002  
Sago waste Kadirvelu et al., 2004  
Candlenut shell  Turmuzi et al., 2004  
Corn cob El-Hendawy, 2005; Tseng and Tseng, 2005; Cao et al.,2006; Tseng 

et al., 2006 
Jute fibre  Senthilkumaar et al., 2005 
Pistachio shell  Yang and Lua, 2003; Wu et al., 2005  
Nutshell  Aygun et al., 2003  
Rubber wood sawdust Kalavathy et al., 2005; Karthikeyan et al., 2005  
Date pit Girgis and El-hendawy, 2002 

seed/stone/kernel  Zabaniotou et al., 2008; Spahis et al., 2008; Kula et al., 2008 

Coir pith  Kavitha and Namasivayam. 2007; Namasivayam and Sangeetha, 
2008 

Pecan shell  Guo and Rockstraw, 2007 
Chickpea husk  Hayashi et al., 2002 
Mango pit Elizalde-Gonzalez and Hernandez-Montoya, 2007  
Oil palm empty fruit bunch Alam et al.. 2007a; Alam et al..  2007b 
Rice bran  Suzuki el al., 2007  
Wheat bran  Ozer and Dursun, 2007  
Apricot shell  Karagozoglu et al., 2007  
Peach stone  Attia et al., 2008  
Sunflower oil cake  Karagoz et al., 2008  
Coconut shell  Azavedo et al., 2007  
Rice straw Yun et al., 2001; Oh and Park, 2002 
Sugarcane bagasse  Tsai et al., 2001  
Rice husk  Yalqin and Sevinc, 2000; Ahmedna et al., 2000: Guo et al.. 2005: 

Kennedy et al.. 2007, Khalid et al., 1998 
Tea Wastes Cay et al., 2004 
Sugar Beet pulp Pehlivan et al., 2006; Reddad et al., 2002 
Soybean hull Marshall et al., 1999 
Cocoa Shell Meunier et al., 2003 
Orange peel Annadurai et al., 2003 
Sewage sludge ash Pan et al., 2003 
Coal fly ash Sharma et al., 2007 
Bagasse fly ash Gupta and Ali, 2004 
Grape Seed and chest nut shell Didem et al., 2009 



  

 
29 

 

Petroleum residues of bituminous coal, lignite, peat, wood and coconut shells are 

some of the widely used precursors to produce powdered (PAC) and granular (GAC) 

activated sorbent (Ahmenda et al., 2000). The choice of starting materials is mainly 

dependent on its abundant availability and consistency in quality and purity along with 

processing cost (Girgis and El-Hendawy, 2002, Ioannidou and Zabaniotou, 2007). 

Various agricultural residues are annually generated in large quantities and considered as 

solid pollutants to the environment (El-Hendawy, 2005; Fiol et al., 2006). Thus from 

environmental point of view, innocuous disposal of these agro residues are immensely 

important. In fact any types of lignocellulosic precursors with high carbon content and 

industrial waste with elevated oxide content but less leaching tendency can be used for 

production of activated adsorbent. 

 

2.6 Activated Carbon 

Activated carbon comprises a wide range of amorphous carbonaceous materials having 

significant numbers of pores and widespread surface areas. It contains graphite like 

microcrystalline units linked together, similar to that of carbon black (Do, 1996). The 

effectiveness of activated carbon as an adsorbent is attributed to its unique properties, 

including highly developed internal surface area between 500-2000 m2/g, adequate pore 

size distribution and high degree of surface reactivity due to presence of surface active 

sites, especially oxygen functional groups (Ismadji and Bhatia, 2001).Their structure is 

complex and heterogeneous due to presence of micropores, mesopores and macro pores 

of different size and shape. It is anticipated that by restricted oxidation or activation 

technique, presence of carboxylate and phenol groups onto the surface of activated 

carbon particles can be enhanced. These groups act as essential binding groups for 

divalent metal (Sen Gupta et al., 2002). It has been observed by many researchers 

(Dastgheib and Rockstraw, 2001; Toles et al.,1999; Johns et al., 1998; Toles et al., 1998; 
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Toles et al., 1997) that ligno cellulosic agricultural residues, specially nutshells, are very 

good raw material for production of granular activated carbons having suitable surface 

active sites for the removal of metallic contaminants from waste water.   

 

From prehistoric times, the powdered charcoal has been used for medicinal 

purpose and it has been reported in an Egyptian papyrus as early as 1550 B.C. (Hassler, 

1974). A Swedish chemist Karl Wilhelm Scheele first discovered the adsorption 

properties of charcoal in 1773. The power of charcoal in removing color from solution 

was first observed by the Russian academician Lovits in 1785. In 1794, wood char was 

used for purification of cane sugar in England. Two activation processes were discovered 

and patented to produce activated carbon from cellulosic precursor in 1900 and 1901 

(Adil, 2006). These patents are the basic scheme followed until now for the production 

of activated carbon on commercial basis. Metallic chlorides and carbon dioxide were 

used as selective oxidizing agents for production of activated carbons. High 

carbonization temperature was needed for activation with carbon dioxide. Industrial scale 

powdered activated carbon was first prepared on 1909. Peat was activated by steam and a 

new kind of activated carbon was produced in 1911. Granular activated carbon was 

developed in 1915 by Germany as filtering medium in gas masks to protect the soldiers 

against chlorine gas during World War I (Yehaskel, 1978). 

 

Nowadays, different kinds of activated carbons are available. It is widely used as 

adsorbents, catalyst or support of a catalyst. Thus it is considered as one of the most 

important adsorbent materials for industrial scale application. The beginning of more 

rigorous environmental legislation worldwide has increased the demand for production 

of activated carbon. It has been observed that almost 80% of world production of 

activated carbon is utilized for purification of aqueous effluents (Dias et al., 2007). The 
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production of activated carbon is now changing from western countries to South-East 

Asia and China because the raw materials, energy and labour costs are comparatively 

lower in these countries (Roskill, 2007). Century Chemical Works Sdn Bhd. in Malaysia 

has increased its production from 3000 tonnes/year to 11000 tonnes/year after Asian 

financial crises in late 1990’s (Mohd Din, 2005). World demand for activated carbon has 

expanded from 5% per year through 2009 to 1.2 million metric tonnes in 2010 (World 

Activated Carbon forecasts to 2010 & 2015). The statistics clearly reveals the importance 

of producing activated carbon adsorbent for several applications. The adsorption 

properties of an activated carbon are highly influenced by the preparation variables of 

temperature, time and impregnation ratio (IR) will significantly amend its surface area, 

pore size distribution and surface functional groups.  

 

2.6.1 Types of Activated Carbon 

Different physical forms of activated carbons are produced depending on their 

applications (Allen and Koumanova, 2005). Liquid phase activated carbons are available 

in the following two forms: 

 

• Granular activated carbon (GAC) to be used in adsorption columns 

• Powdered activated carbon (PAC) for use in batch adsorption followed by 

filtration. 

              Commercially available PAC and GAC can be produced from different types of 

coal and have total surface area in the range from 450 to 1500 m2/g. The pore volumes of 

commercial activated carbons range from 0.5 to 1.5 cm2/g (Yehaskel, 1978). Table 2.6 

provides the list of some commercially available activated carbons. 
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Table 2.6  List and properties of some commercially available activated carbon (Lu and 
Sorial 2004, Martin et al., 2003) 

 

 

GAC has a larger particle size than the powdered one; consequently it possesses 

smaller external surface area. It is commonly used as column filter bed for gas or liquid 

treatments and can be regenerated after use. The major disadvantage of using GAC is its 

slow intra particular diffusion rate. GAC is often prepared from hard precursors of 

coconut shell, palm shell etc. 

 

On the other hand, PAC is obtained in smaller particles sizes and after treatment 

it can be disposed of (Dias et al., 2007). PAC has larger external surface and a smaller 

diffusion distance between the layers. Thus faster adsorption velocities are observed and 

it is preferred for batch adsorption in liquid phase. 

Properties Commercially available Activated Carbon obtained (Petroleum 
 Chemviron 

GW 

Witco 517 Westvaco 
Nuchar 
WV-L 

NORIT Calgon 
Filtrasorb 

300 

Calgon 
Filtrasorb 

400 
Starting Materials Bituminous Bituminous Bituminous Lignite Bituminous Bituminous 
Iodine Number 810 1000 950 650 900 - 
Apparent Density 
(g/cm3) 

- 0.48 0.48 0.43 0.48 - 

Particle 

 

- 0.92 1.40 1.40 1.30-1.40 - 

BET Surface Area 
(m2/g) 

1026 1050 1000 600-650 950-1050 1100 

Pore Volume(cm3/g) 0.49 0.60 0.85 0.95 0.85 0.84 
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2.6.2 Properties and Structures of Activated Carbon 

The surface areas of activated carbon can be up to 3000 m2g-1. The surface area of 

commonly available activated carbon is about 1000 m2g-1.These high surface area results 

from development of mainly micro- and meso pores of different size and shape.  Macro 

pores have little contribution to the development of surface area (Sudaryanto el al., 

2006) as illustrated by Figure 2.4. The adsorption capacity of an activated carbon for a 

specific adsorbate is dependent on its physico-chemical properties such as effective 

surface area, pore volume and pore size distribution and surface functional groups. The 

development of micropores and mesopores is vital as they entrap and retain various 

types of adsorbate either from gas or liquid phases (Wu et al. 2005, Eckenfelder, 2000). 

 

 

 

Figure 2.4 Schematic representation of pore structure (Azargohar, 2009) 

 

 Activated carbons along with coke and chars are often called amorphous 

carbon. X-ray diffraction and electron microscopic analysis revealed that these materials 
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have crystalline structure, although certain features of crystal angles and faces are not 

visible clearly. The microcrystal structure of activated carbon is known as crystallites. 

The amorphous carbon consists of hexagonal graphite flat plates in which each carbon 

atom, except those at the edge, is held by covalent linkages to three other neighboring 

carbon atoms. Two or more of these plate-structures with an interlayer distance of 3.6 Å 

(Hassler, 1974) are stacked together to form crystallites. Some hetero atoms including 

oxygen, hydrogen, nitrogen and others are incorporated in the carbon matrix in the form 

of single atoms and/or functional groups (El-Hendawy, 2005). The structure of activated 

carbon is almost similar like Turbostatic carbon containing micro crystallites  having 

thickness less than 100 °A (Balachandran, 2004).  

 

 

 

 

 

 

 

 

 

 
Figure 2.5 (a) Three dimensional structure of Graphite (b) Turbostatic Structure of 
Carbon 
 

The presence of delocalized π-electrons in activated carbon is almost similar to 

that of aromatic hydrocarbons. Each basal layer acts as a unique macromolecule. These 

basal layers in the lattice, having delocalized electronic structures are noticeably 

separated from one another. The comparatively large distance between layers and the 

 
(a) (b) 



  

 
35 

 

weak forces that hold the layers together make it possible for atoms, ions or molecules 

to enter into the interlayer spaces. The adsorbate makes space for diffusion and enters 

inside by forcing the sheets farther apart. 

2.6.3 Preparation of Activated carbon 

 There are two main steps involved for the production of activated carbon. The first step 

is known as carbonization of the carbonaceous precursors in the absence of oxygen to 

break down the cross-linkage between carbon matrixes. The second step is the 

activation of the carbonized product, known as char, for additional improvement of the 

porous texture of the activated carbon (Ioannidou and Zabaniotou, 2007). 

 

2.6.3.1 Carbonization 

Carbonization is carried out by pyrolysis of the precursors in an inert atmosphere. This 

will enhance the carbon content from the organic substances. The pores formed during 

the carbonization process are usually narrow and in some cases blocked by tarry 

substances. The deposition of tarry substances takes place when volatile components 

from carbon matrix diffuse out of the pore structure into the gas main stream. Some 

substances may collide with the walls of the pores resulting in hydrocracking and 

carbon deposition (Kamishita, 1977). This phenomenon was observed in preparing 

activated carbon from guava seed which yielded a poor adsorbing activated carbon due 

to the partial disintegration of organic constituents as the pores were blocked by 

carbonization byproducts (Rahman and Saad, 2003). 

 

Carbonization process is divided into four main stages, based on the temperature 

reached in each stage (Wereko-Brobby and Hagen, 1996). The steps involved in 

carbonization process are summarized in Table 2.7. 
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Table 2.7   Steps and range of temperature in carbonization process (Wereko- 
 Brobby and Hagen, 1996) 
 

 

2.6.3.1 Activation 

 The properties of activated carbons are basically dependent on the process of 

activation. Technical know how about different parameters involved for activation 

process is very important in developing suitable activated carbon adsorbent required for 

a specified application. Activation step is necessary to enhance the porosity and burning 

off the deposited tars during carbonization (Turmuzi et al., 2004). Activation process 

can be sub-divided into three major stages based on the individual activity of different 

parts of the carbon configuration. At the preliminary stage, tarry substances that cause 

pore clogging are eliminated to facilitate the surface of the elementary carbon crystal to 

come in contact with the activating agent for reaction. During the second stage 

elementary crystals of carbon will burn. The final stage involves oxidation of the carbon 

particles (Tan, 2008). This results in the reduction of the total micro pore volume due to 

the burning of the walls between the adjacent pores. The consequence of damaging the 

walls will create pores with large diameters. There are mainly two different methods for 

activation, namely physical and chemical. 

  

Stage Temperature (oC) Type of 
Reaction 

Process 

1. ≤200 Endothermic Initial drying of precursors 
2. 170<300 Endothermic Pre-carbonization stage, producing 

some pyroligneous liquids (methanol 
and acetic acid), small quantities of 
noncondensable gases (CO and CO2) 

3. 250<300 Exothermic Greater proportion of the light tars 
and pyroligneous acids produced in 
the second stage are released steadily 
from precursors to produce charcoal 

4. >300 - Increasing the carbon content of the 
charcoal by driven off the remaining 
volatile components of the charcoal 
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2.6.3.1 (a) Physical Activation 

Physical activation comprises of two-step process. After carbonization of carbonaceous 

materials, char is produced. The activation of the char is carried out in the presence of 

activating agents (oxidizing gases) such as CO2, steam, air or their mixtures at an 

elevated temperature. Physical activation is carried out by the oxidation of the raw 

precursors or char using oxidizing gas at 800-1100°C to obtain a certain percentage of 

burn-off (El-Hendawy, 2005). The porous texture of the activated carbon is observed 

due to the exclusion of volatile matters present on the char. The main purpose of 

gasification is to expand the pores, resulting in meso porosity inside the carbon 

structure. However, the temperature must be selected carefully. At lower temperature, 

the reactions are too slow. Initially at lower temperature, reactions take place at the 

interior surface of carbon. At higher temperature, reactions become diffusion controlled 

at the outside of carbon particles. The following reaction takes place between CO2 and 

carbon matrix (Qureshi, 2008): 

 

               CO2 + C           2 CO                                           ∆H= +159 kJ 

 

Activation temperature and activation time are the two important parameters in 

determining the pore structure and surface functional groups of activated carbons. 

Sentorun-Shalaby et al. (2006) has reported that the increase in activation temperature 

and activation time were inversely proportional with the solid yield but directly 

proportional with the pore volume for activated carbon prepared from apricot stones. In 

the case of preparing activated carbon from pistachio-nut shell using CO2 activation, it 

was observed that an increase in activation time or temperature increased the carbon- 

CO2 reaction, resulting in the development of new pores together with the expansion of 

previously developed pores. Nevertheless, there is a precise limit after which increasing 
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the activation time or temperature might cause the destruction of the pores by collapsing 

some of the pore walls with the formation of ash residues.  

 

Steam and air have been exhibited to react 8 times and 100 times faster 

respectively with carbon than CO2. It is comparatively difficult to use steam or air 

mixture containing oxygen for activation step. Steam and air react with carbon particles 

to produce CO and CO2 by the following reactions:  

 

    H2O + C                     CO + H2                                                                      ∆H = + 117 kJ 

    2H2O + C                   CO2 + 2H2                                                                 ∆H = + 117 kJ 

    CO + 0.5 O2               CO2                                                    ∆H =  -  285 kJ 

 

Due to the aggressive reaction of air (oxygen) with carbon, burn out occurs not 

only inside the pores but also on the external surface of the carbon resulting poor yield 

(Ullmann, 2002). Thus, from economical aspect, utilization of CO2 is more preferable. 

CO2 is the most frequently used activating gas as it is easy to handle, clean and it 

ensures overall control of the activation process due to the slow reaction rate at 

temperatures around 800°C (Ioannidou and Zabaniotou, 2007; Tseng et al., 2006). 

Some of the previous works carried out on physical activation of various agricultural 

by-products are shown in Table 2.8. 



  

 
39 

 

 

 

Table 2.8 Production of Activated Carbon by Physical activation of Agricultural Residues 

           Agricultural 
Residues 

Carbonization  
Temperature (oC) 

Carbonization 
Time (h) 

Activating agent Activation 
Temperature (oC) 

Activation 
Time (h) 

Steps of 
Production 

Referances 

Jute fiber & Coconut 
fiber 

- - CO2 950 0.5 One-stage Phan et al., 2000  

Date stone 500-800 1 Steam 500-800 0.5-9 Two-stage Bouchelta et al., 2009 

Oil palm shell 400-900 0.5-3 CO2 900 0.5 Two-stage Lua et al., 2006 

coconut shell 325 2.5 Steam 800 2 Two-stage Achaw and Afrane, 2007  

Oil palm fiber and 
oil palm shell  

600 2 CO2 500-900 0.17-1 Two-stage Gua and Lua, 2000  

Rice straw 900 1 CO2 700-900 1-6 One and Two-
stage 

Yun et al., 2001  

Pistachio-nut Shell 500 2 CO2 725-825 0.5-3 Two-stage Yang and  Lua, 2003 

Pecan Shell 700 1 Steam 850 2 Two-stage  Ng et al., 2003  

Candlenut shell 700 1 CO2 800 0.5-6 Two-stage Turmuzi et al., 2004  

Palm shell, coconut 
shell  

850 1 CO2 700-900 1 Two-stage Daud and Ali, 2004  

Corncob  550 3 Air Steam 350 0.08-1.33 Two-stage El-Hendawy, 2005  

Pistachio Shell 550 2 Steam 890 3 Two-stage Wu et al., 2005  

Apricot stone - - Steam 650-800 1-4 One-stage Sentorun-Shalaby et al , 
2006  

Oil palm empty fruit 
Bunch 

- - Steam 300-800 0.5-6 One-stage Alam et al. 2007a  
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2.6.3.1 (b) Chemical Activation 

For chemical activation, the two steps of carbonization and activation are carried out.  It 

case of first step, the carbonaceous precursors is impregnated with predefined ratio of 

chemical activating agents for dehydrating purposes. The oxidants used are phosphoric 

acid, potassium carbonate, zinc chloride, sodium hydroxide and potassium hydroxide. 

Chemical activation is usually conducted at a temperature lower than that used in 

physical activation. The reaction between the chemicals and the carbon residues degrade 

the cellulosic backbone. It can improve the pore development in the carbon structure 

due to the effect of different chemicals that is by dehydration and oxidation reactions of 

the chemicals. The carbon yields of chemical activation are relatively higher 

(Sudaryanto et al., 2006, Mohanty et al., 2005). However, one disadvantage of chemical 

activation is that further washing stage is required for complete removal of the chemical 

agent. 

 

The degree of development of surface area and porosity increased with 

increasing carbonization temperature in chemical activation (Olivares-Marin et. al., 

2006). Chemical activation by using phosphoric acid was reported to be more suitable to 

produce fibrous activated carbons from cellulose fiber compared to physical activation 

by CO2. This is because; it could create a highly porous structure, enabling a high 

adsorption capacity for micro pollutants like phenol (Phan et al., 2006). KOH was found 

to be a better activating agent compared to ZnCl2 and H3PO4 because KOH not only 

requires less energy than water vapor, but it also has the least impact on the 

environment (Cao et al., 2006). KOH activation of peanut hull produced activated 

carbon having low surface area similar to steam pyrolysis (Girgis et al., 2002). Some of 

the previous studies reported on the chemical activation of various agricultural by-

products are shown in Table 2.9. 
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       Table 2.9 Production of Activated Carbon by Chemical activation of Agricultural Residues 

 

        

Agricultural 
Residues 

Carbonization 
Temperature (oC) 

Carbonization 
Time (h) 

Activating agent Activation 
Temperature (oC) 

Activation 
Time (h) 

Steps of 
Production 

Referances 

Acorn, olive seed  400-800 1 H3PO4 - - One Stage Lafi, 2001 
Sugarcane bagasse  500 0.5 ZnCl2 - - One Stage Tsai et al., 2001  
Rice straw  700-1000 1 KOH 600-950 1 One Stage and Two 

Stage 
Oh and Park, 2001 

Chickpea husk 500-900 1 K2CO3 - - One Stage Hayashi et al.. 2002  
Date pit 300-700 2 H3PO4 - - One Stage Girgis and El-Hendawy, 

2002  
Palm shell  200-600 2 H3PO4 - - One Stage Guo and Lua, 2003 
Guava seed  200-750 1 ZnCl2 700 1 Two Stage Rahman and Saad, 2003 

Pistachio-nut shell 500 2 KOH 500-900 2 Two Stage Lua and Yang, 2004 
Sago waste 105 3 H3SO4 - 0.75 One Stage Kadirvelu et al., 2004  

Rabber wood 
sawdust  

200 0.25 H3PO4 500 - Two Stage Srinivasakannan and 
Bakar, 2004  

Rice husk 450 - KOH, NaOH 400 0.3-1 Two Stage Guo et al., 2005 
Olive-seed waste 
reduce  

800 1 KOH 800-900 1-4 Two Stage Stavropoulos and 
Zabaniotou, 2005 

Rabber wood 
sawdust  

400 1 H3PO4 - - One Stage Kalavathy et al.. 2005; 
Karthikeyan et al., 2005 

Tectona grandis 
sawdust  

300-600 1-3 ZnCl2 - - One Stage Mohanty et al., 2005  

pistachio Shell 550/2 2 KOH 780 1 Two Stage Wu et al., 2005 
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        Table 2.9 Continue 

Agricultural 
Residues 

Carbonization 
Temperature (oC) 

Carbonization 
Time (h) 

Activating agent Activation 
Temperature (oC) 

Activation 
Time (h) 

Steps of 
production 

Referances 

Corn cob 450 4 KOH 850 1.2 Two Stage Cao et al.. 2006  

Cassava peel 450-750 1-3 KOH - 1 One Stage Sudaryanto et al., 2006 

Olive stone, walnut 
shell 

600 1 KOH 900 1 Two Stage Martinez et al., 2006  

Jute Fiber,   
 

900 2 H3PO4 - - One Stage Phan et al., 2006  

Coconut fiber 600 2 KOH, NaOH, 
CaCO3, 

H3PO4,ZnCl2 

800 1 Two Stage Radhika and Palanivelu, 
2006  

Palm shell  600-1000 2 K2CO3 - - One Stage Adinata el al.. 2007 

Pecan shell 300-500 1 H3PO4 - - One Stage Gua and Rockstraw, 
2007 

 Olive kernel 270-600 - KOH 800-900 1-4 Two Stage Zabaniolou et al.. 2008  

 Olive stone 700 1 ZnCl2 - - One Stage Spahis et al., 2008 

Peach stone 500 2 H3PO4 - - One Stage Attia et al., 2008  

Sunflower oil cake 600 0 H3SO4 - - One Stage Karagoz  et al ., 2008 

Jute fiber 100 12 H3PO4 - - One Stage Senthilkumaar et al., 
2005  

Corncob 550 3 KOH 700 1 Two Stage El-Hendawy, 2005 

Corncob 450 1.5 KOH 780 1 Two Stage Tseng and Tseng, 2005 

       (-): Not Available
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Different types of activating agent are added to the raw materials to produce 

activated carbons with different specific surface area. It is observed that some times, one 

step process for producing activated carbon is not efficient. In one step process, a great 

deal of activating agent can not penetrate inside the raw materials and  break down the 

cross linkages or react with the carbon sufficiently to generate abundant pores. In this 

context, if the chemical activating agent is added with the previously carbonized 

materials or char containing a certain amount of porosity that would allow the activating 

agent to diffuse into the pores and react with the carbon easily. Therefore, it can be 

concluded that, addition of the activating agent after the raw material is carbonized 

would be better (Cao et al., 2006). From the literature, it was observed that the two-

stage chemical activation process was much more effective to obtain activated carbons 

with higher porosity and surface area (Tan, 2008).  

  

2.6.3.1 (c) Physiochemical Activation 

The majority of the research conducted by previous researchers used either physical or 

chemical activation method alone. This yielded activated carbons either having low 

surface area and/or mainly microporous in nature (Daud and Ali, 2004; Stavropoulos 

and Zabanjotou, 2005; Banerjee and Dastidar. 2005; Sudaryanto et al.. 2006; Lua et al, 

2006). In the case of physiochemical activation method, physical and chemical 

activations are performed after carbonization of precursors. The combination of the 

chemical and physical activating agent can produce activated carbon having specific 

surface properties (Khalili et al., 2000). This method has been employed by Hu and 

Srinivasan (2001) to obtain high surface area, granular, mesoporous activated carbons 

with mesopores volume above 70%.  
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Several activating agents, mainly phosphoric acid, zinc chloride and alkaline 

metal compounds have been used previously. However, the use of zinc chloride is not 

preferable because the activated carbon produced by zinc chloride cannot be used in 

pharmaceutical and food industries as it may contaminate the product due to liberation 

of toxic zinc (Srinivasakannan and Bakar, 2004). El-Hendawy (2005) had described that 

KOH is more efficient on the precursor while its effect on the char having developed 

porosity is not too prominent. Corncob fiber can strongly adsorb KOH during 

impregnation while on carbonization, KOH shows a very limited effect on the produced 

carbon. The strongly adsorbed KOH does not disappear by washing with distilled water 

and still remains on the surface, causing partial blockage of the existing pores. 

Therefore, activation with KOH may need subsequent gasification with CO2 or steam. 

The combined activation procedure will impinge on pore cavity thus leading to a well 

developed porous structure (El-Hendawy, 2005). Tseng et al. (2006) found that KOH 

activation alone could only produce micro porous type of activated carbon. However, 

the process of KOH impregnation along with CO2 gasification had produced activated 

carbon having higher ratio of macrospores and meso pores. This improves mass transfer 

within the activated carbon matrix.  

 

Table 2.10 lists some of the previous researches done on the activation of 

various agricultural by products using physiochemical activation method. 
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Table 2.10 Physiochemical Activation method to produce Activated Carbon 

 

Agricultural 
Residues 

Carbonization 
Temperature (oC) 

Carbonization 
Time (h) 

Activating agent Activation 
Temperature (oC) 

Activation 
Time (h) 

Steps of 
production 

Referances 

Pistachio Shell - - Steam 450 1.5 Two Stage Wu et al., 2005  

Coconut Shell 500 3 ZnCl2/steam 900 0.5 One Stage Azevedo et al., 2007 

 Coconut Shell & 
Palm Seed 
 

- - ZnCl2/CO2 
 

800 2-3 One Stage Hu and Srivastava, 2001  

Coir Pith - - H2SO4/CO2 900 0.5 One Stage Santhi and Silvapathi, 
2006  

Rice Husk  - - ZnCl2/CO2 
 

600 1 One Stage Yalcin and Sevnic  2000 

Corncob 450 1.5 KOH/CO2 
 

780 1 Two Stage Tseng et al., 2006 

(-): Not Available 
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2.7 Fly Ash Adsorbent 

Fly ash is a finely divided mineral residues which results from the incineration of 

ground or powdered coal, municipal or solid wastes, sugar cane bagasse, tea dust, palm 

waste, rice husk mainly at power generating plants (Iyer and Scott, 2001). Depending on 

the origin, fly ash can be categorized as two types: coal fly ash and biomass ash. 

Biomass ash is reported to have no toxic metals like coal fly ash (Ahmaruzzaman, 

2010). The biomass ash of palm is a pozzolanic material (substances with silica and 

alumina) which in the presence of Ca(OH)2 and water can produce calcium silicate 

hydrate at ambient temperature (Zainuddin et al., 2008). The waste biomass of palm tree 

namely palm shell, palm fiber, empty fruit bunch are burnt to generate electricity. The 

resultant ash residues are solidified and it is suspended in the exhaust gases. Afterwards 

it is collected by electrostatic precipitators. Since the particles coagulate while 

suspended in the exhaust gases; palm ash particles are generally very fine.  

 

2.7.1 Types of Ash Adsorbent 

Based on chemical composition, fly ash can be classified as Class F, Class C and Class 

N pozzolanic materials. Class F is obtained from burning of anthracite and bituminous 

coal and Class C fly ash originates from lignite and sub bituminous coal. The major 

constituent of palm ash is SiO2. The total amount of SiO2, Al2O3 and Fe2O3 in palm ash 

is less than 70%, loss of ignition less than 10% and SO2 is below 4% (Sata et al., 2004). 

Based on these findings, palm ash can be classified as Class N pozzolanic materials 

(Sata et al., 2007). In another literature, the sum of SiO2, Al2O3 and Fe2O3 was found to 

be lower than the minimum requirement of Class N pozzolanic materials in ASTM 

C618-08a (2008) (Saifuddin et al., 2011; Tangchirapat et al., 2009) method. Abdullah et 

al., 2006 found 4.12% of CaO in palm ash. Based on this finding, it has been classified 
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as Class F ash. The chemical constituent in palm ash reported by previous researchers is 

summarized in Table 2.11. 

 

Table 2.11 Chemical Constituent of Natural Palm Ash (Saifuddin et al., 2011) 

 

% of Chemical 
Constituent 

  Weight % Requirements by ASTM C618-08a (2008) 

Class F Class C Class N 
SiO2 44-46 - - - 
Al2O3 1.5-11.5 - - - 
Fe2O3 1.5-5.5 - - - 
SiO2+Fe2O3+ Al2O3 55-70 70 50 70 

CaO 4-8.5 - - - 
MgO 2-6.5 - - - 
K2O 2-8.5 - - - 
Na2O 0.10-3.50 1.5 1.5 1.5 
SO2 0.2-3.0 5 5 4 
Loss on Ignition 1-3 6 6 10 
(-): Not Available 

 

2.7.2 Properties and Structure of Palm Ash Adsorbent 

The chemical constituent of biomass ash varies due to temperature, types of biomass, 

soil, harvesting and duration of burning time. The ash residues have hydrophilic 

properties with porous structure. Based on the main chemical constituent, an empirical 

formula for fly ash has been proposed (Iyer and Scott, 2001): 

 

Si1.0 Al0.45Ca0.51 Na0.047Fe0.039Mg0.02K0.013 Ti0.011 

 

The major metallic elements present in oil palm ash are Ca, Na and K. Some 

biomass ash such as rice husk ash contains large proportion of silica whereas wood ash 

contains higher percentage of alumina. Previous literature revealed that palm ash 

exhibits comparable pozzolanic characteristics like coal fly ash and other biomass ash of 
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rice husk, wheat straw, sugar cane straw and wood (Martirena et al., 2006; Yu et al., 

1999). Table 2.12 summarizes some physical properties of unground and ground palm 

ash. 

 

Table 2.12 Properties of Natural Oil Palm Ash (Saifuddin et al., 2011) 

 

Physical Properties Unground Oil Palm Ash Ground Palm Ash 
Specific Surface area m2/kg 796 882-1244 
Color Light Grey/whitish Dark Grey 
Specific Gravity 1.78-1.97 2.22-2.78 
Median Particle size d50 (µm) 54.3-183 7.2-10.1 
% passing through 45 µm sieve 5.6-58.8 97-99 

 

2.7.3 Preparation of Ash Adsorbent 

The applicability of fly ash as low cost adsorbents for waste water treatment depends 

strongly on its origin, percentage of unburnt SiO2 and Al2O3. The promising approach of 

utilizing ash residues is to convert them into low grade zeolite. Zeoites are crystalline 

form of aluminium silicate incorporated with group I or Group II metallic cations 

incorporated within it. The structure contains framework of [SiO4]-4 and [AlO4]-5 

tetrahedral units which forms a three dimensional network (Figure 2.6).  

 

 

 

 

 

 

 

 

Figure 2.6 Structure of Zeolite Frame in Activated Ash (Ahmaruzzaman 2010) 
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The structure contains lots of void and open system.  The substitutions of Si (IV) 

and Al (III) in the structure for a negative charge enhance its cation exchange capacity. 

However, there are two main methods for preparing activated ash adsorbent; direct 

synthesis and indirect synthesis of zeolite. 

 

 2.7.3.1 Direct Synthesis of Zeolite from Ash 

For direct synthesis, the fly ash is treated with alkaline solution at temperature below 

100°C. The concentration of NaOH used is 2-4 M to prepare zeolite P, X and Na-P1 

whereas hydroxyl sodalite and zeolite Y are obtained by using 4-10 M NaOH. 

 

2.7.3.2 Indirect Synthesis of Zeolite from Ash 

For indirect synthesis, silica and alumina are extracted from ash with hot alkaline 

solution. To produce faujasite, the mixture of silicate and aluminate extracts are used at 

60-90°C and it takes 2-5 days to complete the reaction. The compositional similarity of 

coal fly ash or biomass fly ash with volcanic materials material to synthesize zeolite is 

the main reason to produce synthetic zeolite from ash residues. Hydrothermal treatment 

of fly ash can also give rise to synthetic zeolite. Holman et al., (1999) proposed a two 

step hydrothermal activation method to produce zeolite from coal fly ash. However, the 

reaction of hydration is very slow. Thus, to expedite the reaction, high temperature 

(125-200°C) is proposed. Shigemoto et al., (1995) has reported to improve the 

properties of Na-X zeolite by fusion of NaOH with coal fly ash prior to hydrothermal 

reaction. The conversion of ash to different types of zeolite depends on the activation 

solution/fly ash residues, hydration temperature, pressure and reaction time. The time of 

activation can be reduced by using microwave assisted digestion system. However, 

similar types of fly ash has been used with NaOH and KOH with different molarity at 

temperature 80-200 °C and 3-48 hours to produce 13 different types of zeolite having 
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different adsorptive properties. The resultant mixture contains 40-75% of active zeolite 

mixture depending on the ratio of activated solution/ash and hydration period. The main 

limitation of producing zeolite by the above mentioned two processes is the generation 

of large amount of waste water. Park et al., (2000) developed a method to overcome this 

disadvantage by using salt mixture instead of aqueous solution. However, the cation 

exchange capacities of these types of zeolites were very less. Table 2.13 summarizes the 

list of zeolite which has been synthesized from coal fly ash until now for commercial 

application. 

 

  Table 2.13 Zeolites Produced from Ash Residues 

 

 

2.8 Applications of Activated carbon  

The adsorptions of metal ions from the single, binary and multi-solute solutions onto 

mostly commercial and some noncommercial, laboratory prepared activated carbons 

have been investigated. These studies are described by the following paragraphs. 

 

 The adsorption characteristics of some heavy metals, namely Cu (II) and Pb (II) 

onto the hydrous surface of 14 different types of activated carbons obtained from 

various commercial brands were studied by Corapcioglu and Huang (1987). The 

Synthetic Zeolite Chemical Formula 
NaP1 Zeolites Na6Al6Si10O32.12H2O 
NaP Zeolites Na3.6Al3.6Si12.4 O32.12H2O 
Phillipsite K2Al2Si3O10.H2O 
Zeolite A NaAlSi1.1O4.2.2.25H2O 
Zeolite X NaAlSi1.23O4.46.3.07H2O 
Zeolite Y NaAlSi2.43O6.86.1.8H2O 
Hydroxy Sodalite Na1.08Al 2Si1.68O7.44.1.8H2O 
Hydroxy cancrinite Na14Al12Si13O51.6H2O 
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adsorption properties were evaluated based on the carbon type, pH and surface loading. 

They observed that the adsorption is favorable for the removal of metal ions for pH less 

than neutral region. The equilibrium data were calculated at varying pH, from 2.5 to 

10.5, in a single-solute solution. The initial concentrations of Cu (II) and Pb (II) were 

kept constant at 6.4, and 20.7 mg/L respectively. The amount of adsorbent was kept 

constant at 10 g/L. The highest adsorption capacity for the above mentioned metal ions 

were exhibited by the activated carbons having acidic properties because the ashes of 

these acidic carbons contain higher level of phosphorus. From the trend of sorption, 

they speculated that heavy metals were removed through the formation of 

organometallic complexes with phosphoryl groups rather than hydroxo complexes. 

Within the pH range of 3 to 5, the acid activated carbon had removed above 90% of the 

metal ions of Cu (II) and Pb (II). However, in the alkaline pH region, the metal ions 

removal capacities of all activated carbons were impossible to differentiate due to 

cumulative effect of adsorption and precipitation. With increasing surface loading, the 

removal percentages of heavy metals were decreasing. The optimum adsorption for Cu 

(II) and Pb (II) were found at a pH range of 3 to 5 and 3 to 6 respectively (Corapcioglu 

and Huang, 1987). The adsorption properties of Pb (II) onto activated carbon were 

calculated (Tan and Teo 1987). They observed that adsorption is dependent significantly 

on the pH, carbon dosage and initial cation concentration. 

 

 The single and competitive adsorption of Cu (II) and Pb(II) in single and multi-

solute solutions were studied onto various granular activated carbons (John et al.1998). 

According to their study, physically activated and controlled air oxidized activated 

carbons have higher Cu (II) adsorption capacities of 41-51 mgg-1. But the drawback of 

this study is that they determined the equilibrium adsorption data from the single point 

concentration which is not enough to comprehend the adsorption characteristics. The 
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highest adsorption of the total solutes by one of the prepared activated carbon was 

observed at 510 μmolg-1 and the selectivity order was reported as Pb > Cu > Cd > Zn 

>Ni. All granular activated carbons adsorbed Pb (II) and Cu (II) to a much higher extent 

than the other cations such as Cd, Zn and Ni. 

 

 The adsorption of Cu (II) onto commercial activated carbon was investigated as 

a function of pH, metal ion and carbon concentrations (Seco et al.,1999). They also 

observed that the removal percentage was increased with the increase of pH and carbon 

concentration. They found that an increase of initial metal ion concentration reduced the 

metal removal percentage. They successfully interpreted the stronger affinity of Cu (II) 

than Cd (II) towards carbon from their electronegativities, as 2.00 and 1.69 and the first 

hydrolysis equilibrium constants (pK values), as 8.00 and 10.08 respectively. They 

applied a mechanistic model, the Triple Layer surface complex formation (SCF) model, 

to predict the adsorption behavior of Cd (II) and Cu (II) on carbon. The experimental 

data were calculated by Langmuir and Freundlich models where the Langmuir model 

failed to estimate the parameters, demonstrating a multi-layer adsorption. 

 

The adsorption properties of Cu (II) and Pb (II) in their single and binary 

solution in a fixed-bed column were observed by (Chen and Wang 2000). They 

observed that; the breakthrough capacity increases with the increase of inlet pH and the 

lowering of flow rate. The selectivity order for the adsorption of metal ions in single 

solution was shown to be: Cu > Pb. The multi solute adsorption indicated that activated 

carbon has a higher affinity towards Cu (II). The adsorption capacity for Cu (II) was 

slightly suppressed by the presence of competing ions of Pb (II) in binary solute 

solution. Chen and Wang’s (2000) assumption of Pb (II) and Cu (II) on a same 

functional group may not be correct. Nevertheless, Pb (II) might be assumed to be 
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adsorbed onto both harder and softer active sites on carbon. Thus they anticipated 

another mechanism for sorption of ion-exchange and surface complexation of metal 

ions with oxygen- and phosphorous-containing functional groups. They did not 

illustrate any substantiation or offer any explanation for this supposition. 

 

 The HSAB theory was applied to understand the adsorption behavior of metal 

ions on activated carbon by considering surface groups of activated carbon as their hard 

sites and the surface of basal planes as soft sites (Alfarra et al., 2004). In an IUPAC 

report (2002), Pb (II) was classified as soft cation whereas some literature had identified  

Pb (II) and Cu (II) as borderline cations (Ahrland et al.,1958).  

 

 The adsorption of Pb (II) on the prepared sulphurized steam activated carbon 

with respect to contact time, initial concentration, pH, and temperature was studied 

(Krishnan and Anirudhan 2002). The kinetic data were well fitted to the pseudo-second 

order kinetic model. Carbon nanotubes-iron oxides magnetic composites were 

developed as an effective adsorbent for the removal of Pb (II) and Cu (II) (Peng et al., 

2005). They premeditated the effect of pH on the removal percentage as well as on the 

constructed isotherms. They obtained the adsorption capacities at pH 5 for Pb (II) and 

Cu (II) cations as 103 mg/g and 45 mg/g respectively. Some previous studies also 

reported to remove Mn (II) ions by using granular activated carbon (41%), lignite 

(25.84%) and palm fruit bunch (50%) (Emmanuel and Rao, 2009).  

 

2.9 Application of Ash Residues 

Ash residues have been utilized to remove divalent cations of copper. The kinetics of 

adsorption indicated diffusion controlled mechanisms (Lin and Chang, 2001). Presence 

of different quantities of carbon and mineral were used to remove the copper. It was 
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found that carbon in fly ash removed 2.2 mg/gm to 2.8 mg/g of copper and minerals 

removed 0.63 to 0.81 mg/g of copper. Pelletized fly ash removed 20.92 mg/g of copper 

(Papandreou et al., 2007). Rice husk ash was used to remove Pb (II) from waste water 

where the kinetics were controlled by Bangham’s equation (Feng et al., 2004). Raw and 

modified coal fly ashes absorb copper effectively from waste water (Hsu et al., 2008). 

The reaction was endothermic and the activation energy were 1.3 and 9.6 kJ/mol. The 

researchers have found that coal fly ash (CFA), CFA-600 and CFA-NaOH followed 

pseudo second order rate kinetics. The adsorption capability was not improved by 

changing the type of fly ash. Bagasse fly ash was used to remove lead from waste water 

(Gupta and Ali, 2004). The adsorption properties of sewage sludge ash were determined 

and maximum sorption capacity was observed to be 3.2 mg/g to 4.1 mg/g (Pan et al., 

2003). Sorption of copper onto sewage sludge ash followed Langmuir isotherm. A 

mixture of lime and fly ash had been utilized to remove lead and copper from waste 

water (Apak et al., 1998). The reactive species of calcium silicate hydrate was found to 

be responsible for enhanced removal percentage and less desorption. It was discovered 

that removal of manganese onto fly ash is exothermic and spontaneous (Sharma et al., 

2007). 

 

2.10 Optimization of Operating Conditions for Adsorbent Preparation 

The most significant properties of an adsorbent are its adsorption capacity which is 

highly subjective by the preparation variables. For producing activated carbon specially 

powdered one (PAC) on commercial basis, yield is a major concern along with removal 

percentage for economical feasibility of the entire process. In order to prepare an 

optimum activated carbon for a specific purpose, the effects of the parameters 

influencing its surface characteristics must be studied. Similarly, to prepare efficient 

adsorbent from natural palm ash, process parameters should be optimized to obtain 
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active surface with maximum removal percentage. Nevertheless, for assessing the effect 

of each preparation variables on the quality of the end product, the application of an 

adequate experimental design is predominantly essential. 

 

Response surface methodology (RSM) has been used by several researchers to 

study the interactions of two or more variables. RSM is a compilation of statistical and 

arithmetical techniques which are inevitable for developing regression model, 

improving and optimizing processes. Generally it contains three stages: (i) Process 

design and experimental lay out in different operating condition, (ii) Response surface 

analyzing through model development and regression and (iii) optimization of the 

process (Myers and Montgomery, l995). The main benefit of RSM is the application of 

the reduced number of experimental run to evaluate the effect of multiple parameters 

and their interactions (Lee et al., 2009). RSM is applied for developing models and 

analyzing problems in which a response of concern is prejudiced by numerous factors. 

By employing RSM, it is possible to study many processes systematically as it is 

considered as a single-factor-at-a-time method (Myers and Montgomery, l995). 

According to this method, it is possible to study the trend of the process by changing 

one factor while keeping other factors constant (Karacan et al., 2007). However, the 

effect of each variable does not necessarily have significant impact on the responses. 

Therefore, it is compulsory to analyze the influence of each factor and also the 

interaction between these factors which may be synergistic that is directly proportional 

or antagonistic that is inversely proportional (Karacan et al., 2007). In the case of 

standard RSM technique, a central composite design (CCD) is well appropriate for 

fitting a quadratic surface, which is commonly employed for process optimization 

(Montgomery, 2001). 
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RSM has been used by many researchers in process optimization for different 

fields, such as in biodiesel production (Vicente et al., 1998), photo degradation of dye 

(Lizaman et al., 2002), extracellular lipase production (Burkert et al., 2004) and 

removal of 2, 4-dichlorophenol by activated carbon (Alam et al., 2007b). However, its 

application in adsorbent preparation for liquid phase decontamination of waste water is 

still very rare. Some of the previous studies found in applying RSM in the preparation 

of activated carbons using rattan saw dust (Ahmad et al., 2009), olive-waste cakes 

(Bacaoui et al., 2001), Luscar char (Azargohar and Dalai, 2005), and bamboo (Ahmad 

et al., 2010a) and Turkish lignite (Karacan et al., 2007). The influence of activation 

temperature, mass ratio of steam to char and activation time on the yield and BET 

surface area of activated carbon prepared from Luscar char was studied by using RSM 

technique (Azargohar and Dalai, 2005). Bacaoui et al., (2001) found that the most 

influential factors affecting the preparation of activated carbon were activation time and 

activation temperature. Karacan et al.,(2006)  also applied RSM so study the effect of 

K2CO3 ratio and activation temperature on the carbon yield, BET surface area, total 

pore volume and micropore fraction of the activated carbon prepared from Turkish 

lignite.  

 

The surface of palm ash was activated by CaO and Ca(OH)2 by using RSM 

technique for flue gas desulfurization (Zainuddin et al., 2005).  Activated adsorbent 

from rice husk ash was prepared by CaO for gaseous phase adsorption for the removal 

of SO2 and NO gas and the process parameters were optimized by using RSM technique 

(Dahlan et al., 2010). As far as is known, no study has been conducted on activation of 

natural oil palm ash for preparing effective sorbent for heavy metals and different parts 

of kenaf crops to prepare powdered activated carbon by using RSM approach.  
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2.11 Regeneration of Adsorbent 

 The feasibility of prepared sorbent depends on several factors together with the 

expenditure of regeneration and disposal of spent sorbent. Therefore, the cation loaded 

spent adsorbent should have high regeneration efficiency for wider application of the 

process. Thermal volatilization, chemical extraction and bio-regeneration are frequently 

used for regeneration of activated carbon. However 5-l0% of the activated carbon is lost 

by attrition and burn-off during each cycle of thermal regeneration. Moreover, thermal 

regeneration needs high energy consumption (Hamdaoui et al., 2005, Lim and Okada, 

2005, Tanthapanichakoon et al., 2005).  

 

  Bio-regeneration may be considered as the most economical process but this 

method suffers from several limitations due to non-biodegradability and toxicity of the 

sorbents towards microorganisms. The entire process is time-consuming since most 

biological activities are significantly slow (Lim and Okada, 2005; Hamdaoui et al., 

2005). 

 

In this regard, solvent regeneration can be considered as the best option in which 

carbon loss by attrition is negligible. According to the surface complexation reaction, it 

was found that lowering the pH of the exhausted carbon below the zero point charge 

(PZPC) will protonate the surface. This leads to the repulsive force between adsorbed 

cation and the surface of the adsorbent (Adil, 2006). This is the basic principal for 

which mineral acids are used as eluting agent for cation loaded adsorbent. About 97.4 % 

Cu (II) was regenerated from palm shell based activated carbon by using 10% HCl 

(Adil, 2006). Dastgheib and Rockstraw (2001) recovered above 98% of adsorbed Cu 

(II) through regeneration of the exhausted carbon using 10% HCl. About 65.49% Cd 

(II) was desorbed from bagasse fly ash by using HCl (Srivastava et al., 2008) but in the 
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case of rice husk ash only 25.76% of Cd (II) was desorbed by using HCl (Srivastava et 

al., 2008). 

 

2.12 Summary 

Recently, special emphasis has been given to the preparation of adsorbent from 

renewable, abundant and low cost starting materials, especially agricultural biomass. 

However, there are limited studies carried out on the utilization of agricultural biomass 

such as by-products from kenaf (Kenaf fiber and kenaf core), mangostene fruit shell and 

oil palm ash derived from burning of oil palm residues in oxygenated atmosphere (oil 

palm fiber, shell, empty fruit bunch). 

              

Although a good number of researches have been conducted regarding 

preparation of activated adsorbent from agricultural waste, the publications concerning 

the effect of preparation variables, especially using response surface methodology and 

their application in removing metallic cations from aqueous solution are still rare. The 

literature study revealed that the characteristics of an adsorbent are depended on the 

type of starting materials and the process of activation used. So it would be our major 

focus to utilize low cost local agricultural residues for the preparation of powdered and 

granular activated adsorbents, characterize their surface morphological features and 

carry out subsequent adsorption studies for the removal of metal ions in batch as well as 

in fixed bed sorption system. 
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CHAPTER THREE 

THEORETICAL ASPECTS 
 

3.1 Introduction 

This chapter describes the basic theories involved in analyzing experimental uptakes by 

batch and fixed bed sorption studies. The first section summarizes adsorption 

equilibrium process in terms of isotherm, kinetics and thermodynamics characterization 

of a specific adsorbate-adsorbent system (Sections 3.3-3.7). The last section (Section 

3.8) describes the process parameters including the dynamics of fixed bed sorption onto 

granular adsorbent. 

 

3.2 Adsorption Equilibrium 

The design and characteristics of an adsorption system from an aqueous solution 

involves determination of the final amount of solute attached onto the surface of the 

sorbent and the residual amount left in the liquid phase.  As the adsorption process 

proceeds, some fraction of the sorbed solute tends to desorb into the liquid phase 

depending on the nature of the sorption process. When equal amounts of solute adsorb 

and desorb simultaneously, then the system attains an equilibrium state which is called 

adsorption equilibrium. It is the most indispensable part to understand the adsorption 

process. Adsorption equilibrium gives elementary physiochemical statistics for 

determining the process parameters of an adsorption process for a specific adsorbent-

adsorbate system as a unit operation under predetermined reaction condition (Vadivelan 

and Kumar, 2005).  

 

  The adsorption of a solute from the liquid phase to the surface of the sorbent 

proceeds by a thermodynamically defined allocation of that solute between the two 

phases. Eventually when the system reaches equilibrium, there is no further net 
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adsorption. This distribution is depicted as the amount of solute or sorbate adsorbed per 

unit weight of adsorbent and is denoted by qe (mg/g). The remaining adsorbate left in 

the solution phase or failed to attach itself onto the surface of the sorbent is the residual 

equilibrium concentration and is denoted by Ce (mg/l).  

 

3.3 Adsorption Isotherms 

Adsorption is the collective phenomenon of a mass transfer process of an adsorbate at 

the boundary between solid and aqueous phases. Equilibrium relationships between 

sorbent and sorbate at constant temperature are described by adsorption isotherms, i.e., 

the ratio between the amount of solute adsorbed and the residual portion left in the 

solution at equilibrium. Experimental data is fitted with different isotherm models to 

evaluate suitability of the model which can be used for designing the process (Arami et 

al., 2005). Adsorption isotherms parameters are usually evaluated to estimate the 

competence of different types of adsorbent for the adsorption of a particular adsorbate 

(Moreno-Castilla, 2004) under predefined reaction condition. 

 

  The shape of adsorption isotherms gives qualitative insight about the sorption 

process and the degree of surface coverage by the adsorbate which is useful for the 

assessment of the viability of the process for a particular application. It helps to choose 

the most suitable adsorbent and for the determination of sorbent dosage required for the 

process. Brunauer classified the shape of isotherm into five basic types for gaseous and 

liquid phase application and are given in Figure 3.1 (Brunauer et. al., 1938). 
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Figure 3.1 Brauner’s Classification of Isotherm 
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  From the literature, it is observed that different equilibrium systems show 

diverse sorption behaviors. Type I isotherm depicts the equilibrium process where 

sorption proceeds only with the formation of monolayer. This type of curve was 

exhibited by oxygen onto the surface of carbon black at -183 °C. It also indicates that 

the adsorbent contains extremely narrow micropores. Type II isotherm is characterized 

by an indefinite multilayer formation. This type of isotherm has been shown by water 

vapor onto carbon black at 30 °C. Type III isotherm is exhibited when gas sorption takes 

place without any limit. Adsorption of bromide onto silica gel at 20 °C yield this types 

of curve. Type IV is the variation of Type II isotherm which proceeds by finite 

multilayer formation. An example of this type of isotherm is sorption process of water 

vapor on the surface of activated carbon at 30 °C. Type V is another variation of Type 

III isotherm which is observed for sorption of water vapor onto the surface of activated 

carbon at 100 °C. Theoretically several types of sorption equations have been developed 

but none of them is able to generalize the sorption behaviors by all types of adsorption 

process.   

 

3.3.1 Langmuir Isotherm 

Langmuir model was initially developed for adsorption of gases onto solid adsorbent 

and is also known as the ideal localized monolayer model (Langmuir, 1918).  The basic 

assumptions underlying this model are:  

 

1. The adsorbate (molecules or ions) are adsorbed on definite sites of the 

sorbate. 

2. Each and every site can contain only one cation, anion or molecule of the 

adsorbate. 

3. The energy for sorption by each site is equal. 
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4. The area of each site is preset and determined exclusively by the geometry 

of the sorbate. 

  

The Langmuir model is expressed as: 

 

ݍ       =  ೌೣಽ
ଵାಽ

                                (3.1) 

 

The linear form of Langmuir isotherm is given by Equation 3.2  

 




=  ଵ
ೌೣಽ

+ ଵ
ೌೣ

                     (3.2)ܥ

 

  where Ce is the equilibrium concentration of the adsorbate (mg/l), qe is the 

amount of adsorbate adsorbed per unit mass of adsorbent (mg/g), qmax, (mg/g) and KL 

(L/mg) are Langmuir constants related to maximum monolayer adsorption capacity and 

rate of adsorption, respectively (Tan et al., 2007). When Ce/qe is plotted against Ce, a 

straight line with slope of 1/qmax KL and intercept of 1/qmaxKL is determined. 

   

  Langmuir equation assumes that the maximum adsorption of an adsorbate 

corresponds to a monolayer formation by the adsorbate molecules on the adsorbent 

surface that is energetically homogeneous (Namane et al., 2005; Senthilkumaar et al., 

2005). This isotherm predicts that intermolecular forces decrease rapidly with the 

distance and consequently forecast the subsistence of monolayer of adsorbate at the 

outer surface of the adsorbent. It is implicit that once the adsorbate attaches itself onto 

the site, no additional sorption can take place at that site (Wang et al., 2005). The 

different shapes of the adsorption isotherms result from the dissimilar porous structures 
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of adsorbent and the different sorbate-sorbent interactions. Isotherms containing a step 

increase in adsorption capacity in lower concentration range and an apparent plateau on 

achievement of a monolayer of molecules are related to a very high sorption affinity and 

comparatively strong adsorbent-adsorbate interactions (Martin et al., 2003). 

 

The essential characteristic of the Langmuir isotherm is defined by Weber and 

Chakkravorti (1974) as: 

 

ܴ =  ଵ
ଵାಽ

                                            (3.3) 

 

 where, KL (L/mg) is the Langmuir constant and C0 is the adsorbate initial 

concentration (mg/l). The parameter RL which is called separation factor indicates the 

nature of the adsorption process, as explained in Table 3.1. 

 

Table 3.1 Separation factor (Weber and Chakkravorti, 1974) 

 

3.3.2 Freundlich Isotherm 

Freundlich model is an empirical equation which encompasses the heterogeneity of the 

surface or surface sustaining sites of wide-ranging affinities. It is based on the 

exponential distribution of active sites and their energies.  It is implicit that the stronger 

binding sites are engaged first for sorption and the binding force decreases with the 

RL value Nature of Adsorption Process 
RL>1 

RL=1 

0<RL<1 

RL= 0 

Unfavorable 

Linear 

Favorable 

Irreversible 
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increasing degree of site occupation (Freundlich, 1906). Freundlich isotherm is 

expressed as: 

 

ݍ = ܥிܭ 
ଵ ൗ                                                                 (3.4) 

 

The well-known logarithmic form of Freundlich isotherm is given by the following 

equation: 

 

ln ݍ = lnܭி + ൫1 ݊ൗ ൯                                                                                                           (3.5) 

where Ce (mg/L) is the equilibrium concentration of the adsorbate, qe (mg/g) is the 

amount of adsorbate adsorbed per unit mass of adsorbent, KF and n are Freundlich 

constants with n giving an indication of how favorable the adsorption process is, and KF 

(mg/g (L/mg)) can be defined as the adsorption or distribution coefficient and represents 

the quantity of adsorbate adsorbed onto the adsorbent for a unit equilibrium 

concentration (Freundlich, 1906). The slope  1 nൗ   is the surface heterogeneity factor 

ranging between 0 and 1 and is a measure of adsorption intensity or surface 

heterogeneity, becoming more heterogeneous as its value gets closer to zero 

(Hagliseresht and Lu, 1998). Steep slope that is value of 1/n close to 1 reflects high 

sorption capacity at high equilibrium concentration which diminishes rapidly at lower 

equilibrium concentration. A flat slope whith 1/n<< 1 represents that the sorption 

capacity is slightly reduced at lower equilibrium concentration. A value for 1 nൗ  below 

one designates a normal Langmuir isotherm while 1 nൗ  above one is a reflection of 

cooperative adsorption (Fytianos et al., 2000). The plot of log qe versus log Ce gives a 

straight line with slope of 1 nൗ  and intercept of ln KF. Table 3.2 summarizes the list of 

sorbate-sorbent systems based on divalent cations of lead, copper and manganese for 

following different isotherm models. 
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Table 3.2 Adsorption Isotherms of lead, copper and manganese onto various adsorbents 

Adsorbate/ species      Type of Adsorbent Isotherm References 

                   Lead Pb (II) Bengal gram husk Langmuir Saeed et al., 2005 
Coir Langmuir & Freundlich Quek et al., 1998 

Coir Fiber Langmuir & Freundlich Conrad and Hansen, 2008 
Hazelnut shell Langmuir & Freundlich Cimino et al., 2000 

Maize Bran Langmuir Singh et al., 2006 
Bagasse fly ash Langmuir & Freundlich Gupta and Ali, 2004 

Lawny grass modified with 0.6mol/l 
Citric acid after saponification with 

0.1mol/l NaOH 

         Langmuir & Freundlich Lua et al., 2009 

Copper Cu(II) Banana pill Freundlich Annadurai et al., 2003 
Banana pith carbon Langmuir Low et al., 1995 
Bengal gram husk Langmuir & Freundlich Saeed et al., 2005 

Coir activated Langmuir Baes et al., 1996 
Orange peel Freundlich Annadurai et al., 2003 

 Peanut hull carbon Langmuir Periasamy et al., 1996 
Pecan shell carbon(H3PO4 activated) Freundlich Bansode et al., 2003 
Pecan shell carbon(CO2 activated) Freundlich Bansode et al., 2003 

 Pecan shell carbon(steam activated) 
 
 

Freundlich                  Bansode et al., 2003 
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Table 3.2 Continued 
 

 

 

 

                  Adsorbate/ species Type of Adsorbent Isotherm References 

Copper Cu(II) Sugar beet pulp Langmuir & Freundlich Pehlivan et al., 2006 

 Tea waste Freundlich Cay et al., 2004 

 Tea waste (Binary system) Freundlich Cay et al., 2004 

 Sawdust Langmuir & Freundlich Azmal et al., 1998 

 Rubber wood sawdust activated carbon Langmuir, Temkin & Freundlich Kalavathy et al., 2005 

 Sewage sludge ash Langmuir Pan et al., 2003 
Manganese Mn (II) Electric Arc Furnace Slag Langmuir & Freundlich Beh et al., 2010 

 Raw and acid treated corncob biomass Langmuir & Freundlich Abideen et al., 2011 

 Cow Bone Charcoal Langmuir & Freundlich Moreno et al., 2010 

 C. papaya seeds Freundlich Egila et al., 2011 

 A. Hybridus L stalk Freundlich Egila et al., 2011 
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3.3.3 Temkin Isotherm 

Temkin isotherm is based on a factor that unambiguously describes the adsorbent-

adsorbate interactions (Temkin and Pyzhev, 1940) which assumes that the heat of 

adsorption of all the molecules in the layer would decrease linearly with coverage. The 

adsorption is characterized by a standard distribution of binding energies, up to some 

maximum binding energy. The Temkin model is expressed as: 

 

ݍ =  ቀܴܶ ܾൗ ቁ݈݊(ܥ்ܭ)                                         (3.6) 

 

The linear form of Temkin Isotherm is: 

 

ݍ = ܤ ln்ܭ +                                                                                                 (3.7)ܥ ݈݊ܤ

where,  

ܤ = ோ்


                                                                                                                       (3.8) 

 

  Here R is the gas constant (8.314 J/mol K), T is the absolute temperature (K) 

and RT/b=B. A plot of qe versus Ce yields a linear line with B as the slope and B (ln KT) 

as the intercept. KT (L/g) and B are Temkin isotherm constants. 

 

3.4 Adsorption Kinetics 

 Adsorption of solutes from aqueous phase system onto the adsorbent is a time 

dependent process. In order to design an effective sorption system, investigations should 

be carried out to determine the rate of sorption. For determination of the rate of an 

adsorption process such as physical or chemical reaction, diffusion mechanism and 

mass transfer, several kinetic models are implemented to examine the experimental data 
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(Senthilkumaar et al., 2005). The kinetics of sorption illustrates the rate of adsorbate 

uptake by the adsorbent at predetermined interval and equilibrium contact time. The 

kinetic parameters are essential for the calculation of adsorption rate, providing 

significant information for designing and modeling the process (Kalavathy et al., 2005). 

Nevertheless, the characteristics of the sorption process will entirely depend on physical 

and chemical properties of the sorbate, sorbent and also on the operating variables 

(Vadivelan and Kumar, 2005).  

 

  Table 3.3 lists some of the works reported in the literature on adsorption kinetics 

of lead, copper and manganese using various adsorbents. It was observed that most of 

the equilibrium data fitted well with the pseudo-first-order or pseudo-second-order 

kinetic models. However, some other sorbent-sorbate systems were also found to follow 

intraparticle diffusion model and Elovich equation. 
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Table 3.3 Adsorption Kinetics of divalent lead, copper and manganese on different adsorbents 

 

 

 

 

 

 

 

 

 

 

Adsorbate Adsorbent Kinetic Model Reference 

 Peat Second Order Ho and McKay 1998 
 Peanut Hull Carbon First Order Periasamy and Namasivayam 1995 
 Biogas residual slurry First Order Namasivayam and Yasmuna 1995 

Lead Pb(II) Kaolinite Clay First Order Orumwense 1996 
 Biopolymers First Order Seki and Suzuki 1996 
 Immobalized biomass First Order Ramelow et al.1994 
 Bottom ash Second Order Kaur  et al., 1991 
 Peat Second Order Ho et al., 1994 
 Peanut Hull Carbon First Order Periasamy and Namasivayam 1995 

Copper Cu (II) Immobalized biomass First Order Ramelow et al.1994 
 Fly ash First Order Panday et al., 1985 
 Bottom ash Second Order Kaur  et al., 1991 
 Coir pith carbon First Order Namasivayam and Kadirvelu 1997 
 H3PO4 treated Rubber wood 

Sawdust 
First Order, Second Order and Intra Particle 

Diffusion 
Kalavathy et al., 2005 

 Raw and Acid Treated Corn cob 
mass 

First Order and Second Order Abideen et al., 2011 
           Manganese Mn (II) Fly ash First Order Sharma et al., 2007 
 Electric Arc Furnace Slag First Order and Second Order Beh et al., 2010 
 Cow bone charcoal First Order and Second Order Moreno et al., 2010 
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3. 4.1Pseudo-First-Order Kinetic Model 

The pseudo-first-order kinetic model has been widely used to predict sorption kinetics 

(Baral et al., 2009). The model is defined as (Langergren and Svenska, 1898): 

 

                           ௗ
ௗ௧

= ݇ଵ(ݍ −  ௧)                                                (3.9)ݍ

 

  Integrating Equation (3.9) with respect to boundary conditions q=0 at t=0 and 

q=qt at t=t, yields Equation (3.10). 

 

ݍ)݈݃                        − (௧ݍ = ݍ݈݃ − ݇ଵ
௧

ଶ.ଷଷ
               (3.10) 

The initial rate of sorption, h is determined by following equation: 

                     ℎ = ݇ଵݍ,                                                                                        (3.11) 

 

  where qe and qt are the amounts of adsorbate adsorbed (mg/g) at equilibrium and 

at time t (minute) respectively, h (mg/g-min) is the initial rate of sorption and k1 (l/min.) 

is the adsorption rate constant. The plot of ln (qe-qt) versus t gives the slope of k1, and 

intercept of Lnqe. However, it is observed that the pseudo-first-order equation does not 

fit well with the complete range of contact time. It is commonly relevant for the initial 

stage of the sorption processes (Ho and McKay, 1999). 

 

3.4.2 Pseudo-Second-Order Kinetic Model 

 The pseudo-second-order equation predicts the behavior over the whole range of the 

adsorption process and appears to be controlled by the chemical sorption mechanism as 

the rate controlling step. The pseudo-second-order equation based on equilibrium 

adsorption is expressed as (Ho and McKay, 1998): 
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ௗ
ௗ௧

= ݇ଶ(ݍ −  ௧)ଶ                              (3.12)ݍ

 

Separating the variables in Equation 3.12 gives the following Equation of 3.13. 

 

ௗ
(ି)మ

= ݇ଶ݀(3.13)                                                     ݐ 

 

Integrating Equation (3.13) with respect to boundary conditions q=0 at t=0 and q=qt, at 

t=t, yields Equation (3.14). 

 

௧
௧

= ଵ
మమ

+ ଵ

 (3.14)                              ݐ

ℎ = ݇ଶݍଶ                                                                                                                (3.15) 

 

  where, k2 (g/mg h) is the rate constant of second-order adsorption and h (mg/g-

min) is the initial rate of sorption. The linear plot of t/qt, versus t gives l/qe as the slope 

and 1 ݇ଶݍଶൗ  as the intercept.  

 

3.4.3 Elovich Equation 

Elovich equation is one of the most frequently used model for describing chemisorption. 

The Elovich equation is given as (Ozacar and Sengil, 2005): 

 

ௗ
ௗ௧

= ܽ݁ି                                                  (3.16) 
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The integration of the rate equation with the same boundary conditions as the pseudo 

first- and second-order equations give Elovich equation: 

 

௧ݍ = ቀଵ

ቁ ݈݊(ܾܽ) + ଵ


ln  (3.17)                                 ݐ

 

    where, a (mg/g h) is the initial sorption rate and b (g/mg) is related to the extent 

of surface coverage and activation energy for chemisorption. The parameters (1/b) and 

(1/b) ln (ab) can be obtained respectively from the slope and intercept of the linear plots 

of qt versus lnt. The value of (1/b) is indicative of the number of sites available for 

adsorption while the (l/b) ln (ab) is the adsorption quantity when lnt is equal to zero; 

i.e., the adsorption quantity when time t is 1. This value is helpful in understanding the 

adsorption behavior of the first step (Tseng, 2006; Wu and Tseng, 2006). 

 

3.5 Adsorption Mechanism 

The aforementioned models can not describe the diffusion mechanism of the solute into 

the interior of the sorbent. The experimental data is usually fitted with intra-particle 

diffusion equations to observe the diffusion process. 

 

3.5.1 Intraparticle Diffusion Model 

Intraparticle diffusion model is used to test the role of diffusion as the rate controlling 

step in the sorption process. It is an empirically found functional relationship. It is 

commonly observed for most of the sorption processes. It is anticipated that uptake 

varies almost proportionally with the square root of time, ݐଵ ଶൗ  rather than with the 

contact time t. Based on the theory proposed, intraparticle diffusion model is defined as 

(Weber and Morris, 1962): 
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௧ݍ = ݇ௗݐ
ଵ
ଶൗ + ܥ                                       (3.18) 

     

 where, kid (mg/g h), the intraparticle diffusion rate constant, is obtained from the 

slope of the straight line of qt versus ݐଵ ଶൗ  gives an idea about the thickness of ܥ ,

boundary layer, i.e., the larger the intercept, the greater the boundary layer effect (Tan et 

al., 2008). If intraparticle diffusion occurs, then qt, versus ݐଵ ଶൗ  will be linear. If the 

linear plots pass through the origin, then the rate limiting process is governed by the 

intraparticle diffusion that is particle diffusion is involved in the rate controlling step. 

Otherwise, some other mechanism along with intraparticle diffusion is also involved in 

the sorption process.  

 

    For intraparticle diffusion plots, the first, steeper region represents the 

immediate sorption or external surface sorption. The second region which is the gradual 

adsorption stage reflects that intraparticle diffusion is the rate limiting step. In few 

cases, the third region is present, which is the concluding part of sorption stage, where 

intraparticle diffusion starts to slow down due to low sorbate concentrations remaining 

in the solutions (Wu et al., 2005). 

 

    The three chronological steps in the adsorption are film diffusion, particle 

diffusion and absorption (Tan, 2008). At initial stage, the adsorbate ions travel towards 

the exterior surface of the adsorbent which is termed as film diffusion. After small 

fraction of adsorbate attaches onto the outside surface of the adsorbent, particle 

diffusion starts in which the adsorbate ions travel within the pores of the adsorbent. The 

final stage is termed as absorption where adsorbate ions attach themselves inside the 
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interior surface of the sorbent. The final stage or third step is generally very rapid thus it 

cannot be treated as rate limiting step.  

 

 

 If external transport> internal transport, rate is governed by particle diffusion. If 

external transport < internal transport, rate is governed by film diffusion and if external 

transport≈ internal transport, the transport of adsorbate ions to the boundary may not be 

promising at a noteworthy rate (Mittal et al., 2008). Overall the adsorption process can 

be depicted by following Figure 3.2 (Datchaneekul, 2005). 

 

   

   

 

 

 

    

 

 

Figure 3.2 Steps in adsorption process 

 

3.6 Validity of Kinetic Model 

The applicability of the kinetic models to describe the adsorption process can be 

validated by both the correlation coefficient, R2 value and also the normalized standard 

deviation, ∆q (%), which is defined as:  
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solute 

Film Diffusion of solute 

Chemisorbed or 
Physisorbed Solute 
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(%) ݍ∆ = 100ඨ∑ൣ൫,ೣି ೌ൯/,ೣ൧
మ

(ேିଵ)
                                              (3.19) 

 

 where, N represents the number of data points, ݍ௧,௫ and ݍ௧,, (mg/g) are the 

experimental and calculated adsorption uptake at time t, respectively (Ahmad, 2006). 

3.7 Adsorption Thermodynamics 

The thermodynamic parameters including standard enthalpy (∆H°), standard entropy 

(∆S°) and standard Gibb’s free energy (∆G°) should be evaluated. According to the 

concept of thermodynamics, in an isolated system where the energy cannot be gained or 

lost, the entropy change is the driving force (Kumar and Kumaran, 2005) for sorption. 

The value of ∆H° and ∆S° can be calculated by using the following Equation: 

 

lnܭ  =    ∆ௌ
°

ோ
− ∆ு°

ோ்
                                                                                                   (3.20) 

 

 Here, KL (l/mg) is Langmuir Isotherm constant at different temperature; R is 

universal gas constant (8.314 J/mol-K) and T is the absolute temperature in Kelvin. The 

values of ∆H° and ∆S° can be determined from the graph of ln KL versus 1/T) and T is 

the absolute temperature in Kelvin. The values of ∆H° and ∆S° can be determined from 

the slope and intercept of the graph of ln KL versus 1/T (Wu, 2007). ∆G° can be 

calculated by using following Equation: 

 

ܴܶ = °ܩ∆ lnܭ                                                                                                         (3.21) 

 

    Table 3.4 lists some previous works reporting thermodynamics of sorption of 

lead, copper and manganese on different types of adsorbent. 
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Table 3.4 Thermodynamics Characterization of lead, copper and manganese onto 
different types of adsorbent 
 

 

3.8 Fixed-Bed Adsorption 

Batch adsorption studies are often complemented by dynamic continuous flow column 

sorption studies to determine the amount of adsorbent, system size requirements and 

contact time where these parameters can be obtained from the breakthrough curves. 

Batch reactors are easy to design and operate in laboratory scale study, but less 

convenient for large scale industrial applications.  

 

Adsorbate Type of 
Adsorbent 

Temperature, 
°K 

∆H° 
(kJ/mol) 

∆G° 
(kJ/mol) 

∆S° 
(J/Kmol) References 

Lead Pb(II) 

 

 

 

 

 

 

 

 

 

 
Copper 
Cu(II) 
 

 

China Clay 

293  

-77.95 

-8.08 
 

-238.46 

 

Yadava et 
al., 1991 

303 -4.53 

313 -3.07 

 

   Wollastonite 

 

 

Bagasse fly Ash 

293  

-16.40 

 

-2.36  

-47.98 

 

 

Yadava et 
al., 1991 

303 -1.58 

313 -1.05 

303 

313 

323 

     

    +11.44 

-3.43 

 -3.18 

-3.20 

 

48.30 

Gupta and 
Ali, 2004 

SDS-modified 
montmorillonite 

Room 
Temperature 

+7.05 -9.66 +9.09 Lin and 
Juang 2002 

Kaolinite Room 
Temperature 

+39.52 -4.61 +0.117 Yavuz et al., 
2003 

 Sawdust 
303  

23.40 

+21.37  

+0.149 

Azmal et al., 
1998 313 +23.54 

323 +24.31 
Manganese 

Mn (II) 
     Kaolinite Room 

Temperature 
+36.73 -6.69 +0.101 Yavuz et al., 

2003 
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The utilization of powdered (PAC) and granular (GAC) activated carbon 

depends on price, existing equipment, usage rate of carbon and contaminants level in 

the residual slurry. If the usage rate is 250 kg/day, then recycling and reuse of granular 

activated carbon is not feasible. In that scenario, powdered activated carbons (PAC) are 

suitable as the operating cost by using PAC in batch reactor is lower (Balachandran, 

2004). For higher carbon usage rate, application of GAC with regeneration and 

recycling is effective. For different types of process industries where the flow rate, 

concentration of the contaminants and composition of the residual slurry varys 

significantly, GAC is preferable. In that case ample amount of GAC would be present to 

compensate the variations (Balachandran, 2004).  

 

In static mode batch adsorption studies, the same solution remains in contact 

with a certain quantity of the adsorbent. The adsorption process continues until 

equilibrium is established between the solute present in liquid phase and the solute 

sorbed per unit weight of the sorbent. The equilibrium established is static in nature as it 

does not change significantly with time. In fixed bed adsorption, influent solution 

continuously enters and leaves the column packed with sorbent. Consequently, complete 

equilibrium is never established at any stage between the solute present in the solution 

and the amount adsorbed. It reflects that, equilibrium has to be continuously established 

for each time as it comes into contact with the fresh concentrations. That is why, 

equilibrium system in column mode/fixed bed is termed as dynamic equilibrium of 

sorption. The performance of continuous adsorption by using fixed bed packed with 

GAC is explained in terms of breakthrough curve. The time required for breakthrough 

and the shape of the breakthrough curves are very important characteristics for 

evaluating the dynamic response of an adsorption system (Malkoc et al., 2006).  
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Figure 3.3(a) shows different steps in column sorption process whereas Figure 

3.3(b) illustrates the breakthrough curve as a function of contact time.  
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In a fixed bed column, the flow of polluted water creates a wave front through the 

adsorbent bed (Figure 3.3 (a)). The wave front near the inlet side is known as mass transfer 

zone (MTZ). The sorption process takes place in mass transfer zone. As the activated 

adsorbent becomes exhausted with time, the mass transfer zone moves forward across the 

adsorbent bed. As the mass transfer zone travel forward, it leaves behind the portion of 

adsorbent bed which is saturated by the contaminants. When the edge of the mass transfer 

zone reaches the end of the column breakthrough occurs. The graphical representation for 

the movement of MTZ zone through the column is called breakthrough curve. However, 

the breakthrough point is usually defined as the point when the ratio between influent, C0 

(mg/l) or effluent and outlet concentration, Ct (mg/l) becomes 0.05-0.1 at time tb (minutes) 

as illustrated by Figure 3.3(b).The adsorbent from the column is usually replaced when the 

ratio between the inlet and outlet concentration, Ct/C0 becomes 0.50 at time t0.5 (minutes) in 

case of industrial scale application i.e., 50% breakthrough of the column. The column 

sorption capacity is calculated at this point (Baral et al., 2009). After 50% breakthrough 

point, the column can still operate until the ratio Ct/C0 becomes 0.90. This point is termed 

as operating limit of the column (Figure 3.3 (b). The column will be completely exhausted 

when the pre-determined inlet concentration is almost equal to the outlet concentration i.e., 

C0 ≈ Ct (Figure 3.3 (a)) at time te (minutes). In this study, the column sorption capacity for 

removal of adsorbate at 50% breakthrough (mg/g) was estimated using Treybal equation 

(Treybal, 1980; Baral et al., 2009):  

 

Adsorption column capacity at 50% breakthrough  

= [Breakthrough time (at 50%) (min.) × flow rate (ml/min) × feed concentration 
(mg/l)]/mass of adsorbent in bed (g)                                     (3.22)  
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3.9 Breakthrough Curve Modeling 

3.9.1 Thomas Model 

The hypothesis of Thomas or reaction model is based on the postulation that the sorption 

process follows Langmuir kinetics of adsorption-desorption. This model presumes that no 

axial dispersion is present for sorbate-sorbent interactions. The rate of column dynamics 

obeys 2nd order reversible reaction kinetics. The sorption phenomenon will have constant 

separation factor. This model is applicable to either favorable or unfavorable isotherm.  

 

The linearized expression developed by Thomas (Thomas, 1944) model is given by: 

 

ln ቂቀబ

ቁ − 1ቃ =  ቀబ

ொ
ቁ − ቀబ

ொ
ቁ                 (3.23) 

 

where kTh, (ml/mg-min) is the Thomas rate constant q0 (mg/g) is the equilibrium adsorbate 

uptake, Q is flow rate (ml/min) and m is the amount of adsorbent in the column. 

 

3.9.2. The Yoon-Nelson Model 

Yoon and Nelson developed a relatively simple model to analyze the breakthrough 

performance of the column (Yoon and Nelson, 1984). Previous literature stated that, the 

rate of decrease in the probability of adsorption for each adsorbate molecule is proportional 

to the probability of adsorbate adsorption and the probability of adsorbate breakthrough on 

the adsorbent (Baral et al., 2009).  
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The linearized model for a single component system is expressed as: 

 

ln ቂ 
బି

ቃ = ݇ேݐ − ߬݇ே                              (3.24) 

 

where kYN (min-1) is the rate constant and τ is the time required for 50% adsorbate 

breakthrough (Baral et al., 2009). 

 

3.9.3 Bohart-Adams model 

Bohart and Adams proposed a basic equation relating the relationship between Ct/Co and t 

(minute) in the case of column dynamics studies for the sorption of chlorine on charcoal 

(Bohart and Adams, 1980). This model is developed based on the surface reaction theory.  

It predicts that equilibrium is not instantaneous. Therefore, the rate of adsorption is 

proportional to both the remaining capacity of the adsorbent and the concentration of the 

adsorbate (Goel et al., 2005). The initial part of the breakthrough curve can be analyzed by 

Bohart-Adams mode (Aksu and Gonen, 2004). The mathematical equation of the model can 

be written as: 

 

݊ܫ ቀCt
బ
ቁ =  ݇ܥݐ −  ݇ ܰ ቀ

௭
బ
ቁ                  (3.25) 

     

where, C0 and Ct are the inlet and outlet adsorbate concentrations respectively, 

z(cm) is the bed height, Uo (cm/min) is the superficial velocity. No (mg/l) is the situation 

concentration and kAB (l/mg min) is the mass transfer coefficient (Baral et al., 2009). The 
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range of time in this study was considered from the beginning to the end of the 

breakthrough curve. 

 

3.10 Summary 

Different adsorbent-adsorbate systems were reported to show divergent adsorption 

behaviors and mechanism as the performance of each adsorption system was significantly 

influenced by the physical and chemical properties of the adsorbent and the adsorbate as 

well as other operating parameters such as adsorbate initial concentration, contact time, 

solution pH and temperature. In this research attempts have been taken to prepare activated 

sorbent (Chapter 5) and consequently study their surface characteristics (Chapter 6) and 

performance (Chapter 7 and 8) for batch and fixed bed adsorption system. The theory 

explained in this chapter is used to estimate the process parameters in batch (Chapter 7) and 

fixed bed (Chapter 8) sorption system. 
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 CHAPTER FOUR 
MATERIALS AND METHODS 

 
 

4.1 Introduction 

This chapter provides the list of chemicals and reagents and the description of major 

equipments which were used to carry out the research. The chapter is subdivided into three 

sections. The first section contains the list of chemicals and reagent along with physio- 

chemical characteristics of the adsorbate; Pb (II), Cu (II) and Mn (II) ions whereas the 

second section gives the description of the structure and operational features of the major 

equipments used including the drawing of the experimental setup, surface characterization 

systems used for activated carbon and activated palm ash. The analysis systems for the 

adsorbate ions are described in section two also.  The third section contains experimental 

procedure for preparing adsorbent by using design of experiment (DOE), model 

development and ANOVA analysis, batch sorption studies, kinetics and thermodynamics 

studies. Column dynamics for fixed-bed sorption system is explained.  The process used for 

regeneration of the cations loaded sorbent in batch and fixed bed sorption system is 

described.  The chapter ends with a schematic flow chart reflecting generally the 

experimental activities undertaken to carry out the project. 

 

4.2 Materials 

The materials used are divided into three main sub categories; comprises of the agricultural 

residues to prepare adsorbent, chemicals to prepare adsorbate solution, reagents and gases. 
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4.2.1 Raw materials to prepare powdered and granular adsorbent  

The agro-based residues which were selected as the precursors for preparation of activated 

carbons were kenaf core (KC), Kenaf fibre (KF) and mangostene fruit shell (MFS). These 

residues were collected from MARDI (Malaysian Agricultural Research and Development 

Institute) and local markets in Malaysia. The above mentioned indigenous precursors were 

converted to activated carbon and their performance is compared with activated oil palm 

ash sample (AOPA).The natural oil palm ash (OPA) was collected from middle fraction of 

the flue tower from United Palm Ash Mill, Penang, Malaysia. Plate 4.1 shows the raw 

materials used in this work to prepare activated adsorbents. 

 

 

Plate 4.1 Agricultural Residues used for preparing activated adsorbent 

 

4.2.2 Reagents and Chemicals 

The list of reagents and chemicals used in this research as well as their respective suppliers, 

purity grade and applications are given in the Table 4.1. Before starting the experimental 

activities in the laboratories, the Material Safety Data Sheet (MSDS) of all the reagents and 

chemicals used in this research were examined and understood. 

 

 

Kenaf Core (KC) Kenaf Fiber (KF) Mangostene Shell (MFS) Oil Palm Ash (OPA) 
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Table 4.1 List of Reagents and Chemicals 

 

   

 

 Considering the eco toxic properties of Pb (II), Cu (II) and Mn (II) cations, these   

three cations were selected as the adsorbate in this research to evaluate the adsorption 

performance of the powdered (KCAC, KFAC and AOPA) and granular activated adsorbent 

(MFSAC).  

 

4.2.3 Gases 

In this study, nitrogen gas (N2) and carbon dioxide (CO2) gas in semi carbonization step 

and activation step were used for the preparation of powdered and granular activated 

carbon.  Table 4.2 lists the suppliers and the purities of both the gases. 

Table 4.2 List of Gases   

Chemicals/Reagent Supplier Purity Grade Application 
Anhydrous Lead Nitrate, 
Pb(NO3)2  

Merck, Germany 98-99% 
 

To prepare adsorbate 
solution 
 Copper  sulfate  penta 

hydrate,CuSO4.5H2O  
Merck, Germany 98-99% 

 
To prepare adsorbate 
solution 
 Manganese Chloride di 

hydrate,MnCl2.2H2O 
Merck, Germany 98-99% 

 
To prepare adsorbate 
solution 
 Sodium  hydroxide Merck, Germany 98-99% 

 
As an activating agent & 
for pH adjustment 

Hydrochloric  acid  BDH  Chemicals 
 

     Analytical Reagent To adjust the pH 

Potassium Hydroxide                    Merck, Germany 98-99% 
 

As an activating agent 

Gases             Supplier   Application % Purity   
Grade 

Purified Nitrogen Gas Mox Gases Berhad,  Malaysia Purging gas 99.99 

Purified Carbon di oxide    Mox Gases Berhad,  Malaysia Physical activating 
agent 

99.99 
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 4.3 Preparation of Adsorbate Solution 

Stock solution of single solute of Pb (II), Cu (II), and Mn (II) were prepared by dissolving 

requisite amount of lead nitrate, copper (II) sulfate pentahydrate, and manganese (II) 

chloride dihydrate, respectively in a 1000 ml volumetric flask followed by dilution up to 

the mark by addition of de-ionized water. The concentration of each single solute in the 

respective stock solution prepared was 1000 mg/l.  The test solutions having concentrations 

of 50 mg/l, 60 mg/l, 70 mg/l, 80 mg/l, 90 mg/l and 100 mg/l were prepared through fresh 

dilution of the stock solution prior to each adsorption study by using equation (4.1).  

 

                   2211 VMVM                                                            (4.1) 

 

4.4 Experimental set up for Adsorbent Preparation 

The equipments used for this study were generally divided into powdered (KCAC and 

KFAC) and granular activated carbon (MFSAC) preparation system and refluxing system 

to activate natural oil palm ash (OPA). The surface characterization system including 

physical and chemical analysis of the prepared adsorbent, batch and continuous flow 

adsorption and water analysis system are described in the subsequent section.  

 

4.4.1  Experimental Approach for Preparation of Activated Carbon  

The production of all the activated carbons was carried out in a tubular reactor which 

consists of the following two major parts: 

 

I. Gas transmitting section where the gas flow rates were controlled to the 

requisite levels. 
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II. The tubular reactor is made up of stainless steel with a tubular furnace placed 

outside it. 

 

  Plate 4.2 (Appendix B-1) shows the equipment used to prepare powdered (PAC) 

and granular activated carbon (GAC). At constant pressure, Nitrogen (N2) and CO2 gases 

were passed inside the furnace. The pressure of gas flow was adjusted by using pressure 

regulators and the flow rates of the gases were controlled by gas flow meters (Model 

Dwyer RMA-12-SSV, US). The two types of gas streams were combined by using a 3-way 

valve. The outlet from the valve was connected at the bottom of the reactor. The schematic 

diagram of the furnace (Figure 4.1) together with the measurement of their important parts 

is shown in Figure 4.2.  

 

Figure 4.1 Schematic representation of activated carbon preparation unit         
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            *All dimensions in cm 

Figure 4.2 Schematic flow diagram of vertical Tubular Furnace with Reactor 
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  All the connecting piping system inside and outside of the furnace was made up of 

stainless steel tubing (6.35 mm)  which were joined by stainless steel fittings to withstand 

high temperature and pressure. The char after impregnated with required amount of KOH is 

placed inside the reactor for pyrolysis. A wire mesh made of stainless steel was placed at 

the bottom of the tubular reactor to protect the sample from falling outside. The reactor was 

kept inside the vertical tubular furnace.   

 

  The furnace was equipped with programmable system (Model Watlow Series 942, 

US) to control the rate of heating, desired temperature and residence time. The furnace was 

625 mm long with 230 mm inner diameter. The reactor was kept in the centre of the furnace 

by a support of the same height and width as the reactor. A K-type thermocouple which can 

withstand maximum temperature limit of 1000 °C was placed inside the char. Another 

similar type of thermocouple was positioned outside the reactor to measure the temperature 

of the tubular furnace. The exhaust gas emitted from the reactor was condensed. After 

condensation, it is collected in a container. 

 

  It was reported earlier in the literature that soft precursor like rice husk activated 

with KOH had a surface area of more than 3000 m2/g whereas the surface area of the 

carbon became 2500 m2/g after NaOH activation (Yupeng et al., 2003). It was concluded 

by the researcher that intercalation of metallic sodium inside the carbon matrix is less 

effective than potassium due to its higher boiling point (Yupeng et al., 2003).  Activated 

carbon was produced from red oak, wall nut shell and corncob by using LiOH, NaOH and 

KOH. It was found that the mass loss for activated carbon obtained by LiOH was highest. 

This made LiOH an unfavorable activated agent when compared to KOH and NaOH 
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(Leimkuehler, 2010).  That is why in the present research KOH has been chosen as the 

chemical activating agent rather than NaOH or LiOH.   

 

4.4.2 Experimental Set up for Activated Palm Ash 

Previous literature reveals that fly ash type mineral based raw material contains a very 

small amount of carbon about 1 to 10% depending on the combustion rate (Ahmaruzzaman, 

2010). Therefore, no methodological approach has been undertaken to prepare activated 

carbon from the ash. To prepare effective sorbent from oil palm ash, alkali activation is the 

best choice. It had been reported that NaOH was more active than KOH in preparing 

prepare adsorbent from coal fly ash with high surface area under the same temperature 

(Ahmaruzzaman, 2010). It was also observed that when KOH was added as an additive 

with rice husk ash (RHA) and CaO, it could not bring sufficient dissolution of silica and 

extend the surface area of RHA by the reaction between CaO/KOH and RHA (Dahlan et 

al., 2009).  

 

Based on previous literature (Ahmad, 2006), it was concluded that sodium 

hydroxide is a better alternative to prepare activated palm ash. Consequently, refluxing 

under boiling condition was employed to ensure sufficient hydration and to reduce water 

loss by evaporation over 100 °C of the natural oil palm ash (Ahmad, 2006). However, the 

optimum condition for refluxing had been determined by varying different operating 

parameters of temperature, hydration time and ratio of OPA: NaOH by using Design of 

Experiment (DOE). Plate 4.3 (Appendix B-2) shows the apparatus used to activate natural 

oil palm ash. 
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4.5 Experimental Methodology for Adsorbent Preparation 

The experimental procedure consisted of preparation of activated carbons and activated oil 

palm ash, followed by batch adsorption studies of Pb (II), Cu (II) and Mn (II) cations on all 

the adsorbents prepared which include the equilibrium isotherm modeling and analysis of 

kinetics and thermodynamics behaviors of the adsorption processes. Fixed-bed adsorption 

studies were further carried out on the granular activated carbons derived from mangostene 

fruit shell (MFSAC). Regeneration of the spent adsorbent saturated with cations was done 

by using distilled water, organic acid (acetic acid), mineral acids (hydrochloric, sulfuric and 

nitric acid) each of 1M strength.  

 

4.5.1 Preparation of Powdered (PAC) and granular activated (GAC) carbon 

For preparation of activated carbon the following steps were undertaken. 

 

4.5.1.1   Preparation of Lignocellulosic Precursors (KC, KF and MFS) 

The selected agricultural by-products (KC, KF and MFS) were first washed thoroughly to 

eliminate dust and inorganic matters on their surfaces. The collected samples of agro 

residues were dried in an oven (Model Memmert 600, Germany) at a temperature of 105 °C 

for 24 h to remove all the moisture. The dried precursors were cut or ground into small 

pieces. They were sieved to the size of 1-2 mm. They were then stored in air-tight 

containers to avoid moisture build up and fungal infections. 

 

4.5.1.2 Semi- Carbonization 

A requisite amount of precursors (40-80 g depending on the category of the precursors) 

were placed on the metal mesh located at the bottom of the tubular reactor. Purified 
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nitrogen gas was used to evacuate oxygen and create the inert atmosphere through the 

reactor. The flow rate of nitrogen gas and the heating, rate was maintained at 150 cm3/min 

and 10 °C/min, respectively. The temperature was ramped from room temperature to 400°C 

and held for 2 hrs. The chars thus produced were allowed to cool at room temperature by 

passing nitrogen gas over it and then stored in air-tight containers for further treatment. 

 

4.5.1.3 Potassium Hydroxide Impregnation 

The chars produced were impregnated with potassium hydroxide (KOH) at various 

impregnation ratios (IR). The dimensionless impregnation ratio was calculated as: 

 

ܴܫ = ௐ಼ೀಹ
ௐೌೝ

                                         (4.2) 

 

where, WKOH is the dry weight (g) of potassium hydroxide pellets and Wchar is the dry 

weight (g) of char. 

  

 A specific amount of char and KOH pellets (depending on the IR) were mixed 

together with deionized water in a 500 ml beaker. The mixture was then stirred until the 

KOH pellets were completely dissolved. Then, the beaker was placed inside an oven 

(Model Memmert 600 Germany) overnight at temperature 105 °C. This would dehydrate 

the sample, leaving only KOH onto the samples. Based on the literature KOH has been 

chosen as the chemical activating agent as it can disrupt the graphite layer in presence of 

carbon dioxide and thereby increase the porosity of the activated carbon (Tan, 2008). 
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4.5.1.4 Carbon Dioxide Activation  

The KOH-impregnated chars were placed inside the stainless steel tubular reactor for 

activation. The condition of heating rate and nitrogen gas flow was the same as the 

carbonization step. The temperature was ramped from room temperature to the desired 

activation temperature. When the required activation temperature was reached, the nitrogen 

gas flow was turned off and carbon dioxide (CO2) gas flow at the same flow rate was 

started to initiate activation process. According to the experimental requirement preset by 

the software, the samples were kept inside for certain duration of time.  

 

 The activated products were washed with hot deionized water to recover unreacted 

KOH. Few drops of hydrochloric acid (0.1 molar) were used during washing the sample. 

The sample was washed several times with hot deionized water until the pH of the washing 

solutions reached around 6-7. The pH was measured using a pH meter. The washed 

activated carbons were then kept in an oven (Model Memmert 600, Germany) at 105°C 

until the activated carbons were totally dried. Prepared activated carbons were sieved 

through 200µm mesh size. The dried products were stored in air-tight containers for 

subsequent characterization and sorption studies. 

 

4.5.1.5 Preparation of Granular Activated Carbon from Mangostene Fruit Shell 

The fruit shell was used as the precursor to prepare granular activated carbon due to its hard 

and dense nature compared to other ligno-cellulosic precursors. The preparation condition 

was kept fixed in order to analyze and compare its performance for the different adsorbate.  

The following preparation conditions were used: 
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 Semi carbonization at 400 °C for 2 hours. 

 CO2 activation temperature: 750 °C 

 CO2 activation time: 2 hours 

 KOH: char impregnation ratio: 1:1 

 

The production conditions used to prepare this activated carbon was not optimized 

as it is known in general that powdered activated carbons (PAC) perform better than 

granular activated carbons (GAC) in liquid phase adsorption. It is reported earlier that 

utilization of powdered activated carbon (PAC) for batch adsorbtion system is less 

expensive compared to granular one (GAC) to fabricate filter bed in a column. The 

operating cost associated with the design of industrial scale column is also higher. Larger 

mass of granular activated carbon is used for the filter bed to ensure substantial removal of 

the adsorbate (Balachandran, 2004). However, this activated carbon was prepared, 

characterized and its adsorption ability was evaluated in this study for batch and fixed bed 

sorption for comparison purposes. Prepared activated carbons were sieved through 450-550 

µm mesh size to maintain a homogeneous particle size.  

  

Yield is the ratio of final activated carbon with the original precursor before 

pyrolysis.  Yield can be calculated by using Equation 4.3.                                                                                        

100
1

2 X
W
WYield                                                                                                           (4.3) 

Here,  

W2= Dry weight after activation (g) 

 W1= Dry weight of the precursor before pyrolysis (g) 
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4.5.2 Activation of Oil Palm Ash (OPA) 

For activation of natural palm ash, the following steps were undertaken. 

 

4.5.2.1 Collection of natural oil palm ash (OPA) 

The lump of natural oil palm ash (OPA) was collected from middle fraction of flue gas 

chamber and it was grounded to fine powder. It was washed with deionized water for 

several times to remove foreign particles and oven dried at 110 °C over night. The 

adsorbent thus obtained was sieved through sieve no 200µm. It was stored in desiccators 

over fresh silica gel before activation.   

  

4.5.2.2 Activation 

According to the preset condition provided by Design of experiment (DOE), the 

temperature, ratio of OPA: Caustic soda and time were varied to obtain maximum removal 

percentage. The ratio was calculated by using Equation (4.4). 

 

 
NaOH

OPA

W
W

Ratio                                                                                                                (4.4) 

    

  where, WOPA is the dry weight (g) of natural oil palm ash (OPA) and W NaOH is the    

   dry weight (g) of caustic soda. 

 

  The amount of OPA was changed with fixed amount of sodium hydroxide to obtain 

a different ratio preselected by the software as well as to maintain the pH level up to a 

certain desirable limit to develop high surface area of the adsorbent (Zainuddin et al., 



 

 
97 

 

2005). The mixture of OPA and NaOH along with water was refluxed in a round bottom 

flask with a magnetic stirrer placed inside it. The slurry was allowed to cool at room 

temperature and filtered. The filter cake was repeatedly washed with deionized water until 

neutral pH of the filtrate was observed. Then it was dried in an oven at 110 °C for 12 

hours before use and stored in desiccators over fresh silica gel for further use. 

 

4.5.3 Process Parameter Optimization 

Temperature, time and ratio between the starting material and alkali were optimized. The 

range of variables to develop the adsorbent was predetermined based on literature and 

physio-chemical characteristics of the raw materials. 

 

4.5.3.1 Application of Central Composite Design for Preparation of Adsorbent 

The parameters used for preparing powdered activated carbons (PAC) from KC and KF 

were studied by using a standard response surface methodology (RSM) based on central 

composite design (CCD). The activated carbon preparation variables studied were: 

 

i) ݔଵ −  (ܥ°) ଶ activation temperatureܱܥ 

ii) ݔଶ − ܱܥଶ activation time (ℎ) 

iii) ݔଷ −  char impregnation ratio ܪܱܭ

 

Table 4.3 and 4.4 summarizes the coded and actual levels of process variables and 

complete design matrix of the experiments required to prepare powdered activated carbon. 
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Table 4.3 Independent variables and their coded and actual levels for the central composite 
design for preparation of PAC. 

 

 

Table 4.4 Experimental Design matrix for preparation of powdered activated carbon (PAC) 

Variables    Code Units             Coded Variable Levels     
 

Temperature 

 

x1 

 

   °C 

    -α    -1    0  +1  +α     

431.82 500    600      700  768.18     

Activation Time x2   Hour 0.32     1       2       3     3.68 
Impregnation Ratio x3     - 0.32     1       2       3     3.68 

   Activated Carbon Preparation variables 
 Run No Point Type Temperature (°C) Time (Hour) Impregnation Ratio (IR) 

 1 Axial 600 3.68 2.00 

 2 Fact 500 3.00 3.00 

 3 Fact 700 3.00 3.00 

 4 Axial 431.82 2.00 2.00 

 5 Axial 600 2.00 3.68 

 6 Axial 600 2.00 0.32 

 7 Fact 500 3.00 1.00 

 8 Center 600 2.00 2.00 

 9 Fact 500 1.00 3.00 

 10 Axial 600 0.32 2.00 

 11 Center 600 2.00 2.00 

 12 Fact 700 1.00 3.00 

 13 Center 600 2.00 2.00 

 14 Axial 768.18 2.00 2.00 

 15 Center 600 2.00 2.00 

 16 Axial 600 2.00 2.00 

 17 Fact 700 1.00 1.00 

 18 Fact 700 3.00 1.00 

 19 Fact 500 1.00 1.00 

 20 Center 600 2.00 2.00 
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The activated Palm ash preparation Variables studied were: 

 

i) ݔଵ − activation temperature (°ܥ) 

ii) ݔଶ --  activation time (ℎ) 

iii) ݔଷ −  impregnation ratio ,ܪܱܽܰ:ܣܱܲ

 

Table 4.5 and 4.6 summarizes the coded and actual levels of process variables and 

complete design matrix of the experiments required to prepare activated palm ash. 

 

Table 4.5 Independent variables and their coded levels for the central composite design for 
preparation of AOPA 

 

 

 

 

 

 

 

 

Variables    Code Units             Coded Variable Levels     

 

Temperature 

 

x1 

 

   °C 

    -α -1    0    +1  +α     

52.73 80    120      160  187.27     

Ratio x2     - 2.32     3       4       5      5.68 

Time x3     Hour 2.64     4       6       8      9.36 
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Table 4.6 Experimental Design matrix for preparation of activated palm ash (AOPA) 

 

According to basic principal of DOE, 20 experimental run were required for 

studying the effects of three variables to prepare the adsorbent. Equations 4.5 and 4.6 were 

used for regression analysis and evaluation of statistical parameters involved in the process.  

 

 

 

 

             Activated Palm Ash Preparation variables 
Run No Point Type Temperature(°C)  Ratio (IR) Time (Hour) 

1 Fact 80 5.00 4.00 

2 Center 120 4.00 6.00 

3 Axial 187.27 4.00 6.00 

4 Center 120 4.00 6.00 

5 Fact 160 5.00 8.00 

6 Fact 80 5.00 8.00 

7 Fact 160 3.00 4.00 

8 Axial 120 5.68 6.00 

9 Center 120 4.00 6.00 

10 Center 120 4.00 6.00 

11 Center 120 4.00 6.00 

12 Fact 80 3.00 4.00 

13 Fact 80 3.00 8.00 

14 Axial 52.73 4.00 6.00 

15 Axial 120 2.32 6.00 

16 Center 120 4.00 6.00 

17 Axial 120 4.00                9.36 

18 Axial 120 4.00 2.64 

19 Fact 160 5.00 4.00 

20 Fact 160 3.00 8.00 
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4.5.3.2 Development of Regression Model Statistical Analysis 

For each categorical variable, a 23 full factorial CCD for the three numerical variables, 

consisting of 8 factorial points (coded as -1 and +1), 6 axial points (coded as -1.682 and 

+1.682) and 6 replicates at the center points (coded as 0,0) were employed. This indicated 

that 20 experiments were required for this procedure for each precursor, as calculated from 

Equation 4.5. 

 

  ܰ = 2 + 2݊ + ݊ = 2ଷ + 2 ∗ 3 + 6 = 20                             (4.5) 

 

  where, N is the total number of experiments required and n is the number of factors. 

The center points (nc) were used to determine the experimental error and estimate the 

reproducibility of the data. The experimental sequence was randomized. This will minimize 

the effects of the uncontrolled factors.  

 

 In the design matrix, the low and high levels were coded as -1 and + 1 values 

respectively. Figure 4.3 illustrates the layout of the design matrix used in this research. The 

factorial points are forming the box whereas the axial points are placed at the end of the 

dotted lines which are coming out from the center point. ±α represents the distance between 

axial points and center point (0, 0). The coordinates of axial points are (±α, 0, 0), (0, ±α, 0) 

and (0, 0, ±α). The center points are considered as an indicator to elucidate the variability in 

the system. 
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Figure 4.3 Design Layout of Central Composite design (CCD) to study 3-parameter process 
(Montgomery, 2001) 
 

 

 Each response of the removal percentage of lead (Y1), copper (Y2), manganese (Y3)  

and activated carbon yield (Y4) was used to develop an empirical model that correlates the 

responses to the preparation variables using a second-degree polynomial equation as given 

by Equations 4.6 and 4.7 (Zainudin et al., 2005). 

 

                    X
XXx

i

x
ii

i 




                                                                                 (4.6) 

 

Where xi is the coded value of the ith independent variable, Xi is the natural 

value of the ith independent variable, Xi
x
 denotes the natural value of the ith independent 

variable at the center point, and ∆ Xi is the value of step change. 
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ܻ = ܾ + ∑ ܾݔ
ୀ + (∑ ܾ௧ݔ௧

ୀ )ଶ + ∑ ∑ ܾݔݔ
ୀୀ

ି
ି                               (4.7) 

   

where, Y denotes the predicted response, b0 reflects the constant coefficient, bi the linear 

coefficients, bij the interaction coefficients, bii the quadratic coefficients and ݔݔ  are the 

coded values of the activated carbon preparation variables (Zainudin et al., 2005). 

 

Design Expert software version 6.0.6 (STAT-EASE Inc. Minneapolis, US) was used 

to fit the experimental data and regression analysis of the developed model. The statistical 

significance of the model was observed. CCD was used to develop the correlation between 

the three activated carbon preparation variables to the four responses for each types of 

precursor. 

 

4.6 Experimental set up for Batch Adsorption Studies 

Batch equilibrium tests were carried out for adsorption of Pb (II), Cu (II) and Mn (II) on all 

types of adsorbent prepared. Adsorption studies were carried out using Erlenmeyer flasks 

(100 ml) with glass stoppers. The freshly prepared solutions of adsorbate having different 

initial concentrations were placed in these flasks. A definite amount of adsorbents were 

placed to the flasks and were kept inside an isothermal water-bath shaker (Haake Wia 

Model, Japan) for a definite period of contact time. The water-bath shaker was equipped 

with a temperature controller which could be set from 25 to 100 ±0.1 °C and agitation 

speed could be controlled up to 250 ±1 rpm. The shaker had a cover which could prevent 

heat loss to the surroundings. The effects of initial adsorbate concentration, contact time, 

solution temperature and solution pH at constant agitation speed of 150 rpm for adsorption 
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uptake and percentage removal were investigated. 0.2 gm of prepared adsorbent was added 

with 50 ml solution of different concentrated solutions at pH 5.5 to ensure true adsorption. 

The sample solutions were withdrawn at equilibrium to determine the residual 

concentrations. The solutions were filtered using syringe filter (Model Whattman 0.45 pm, 

UK) prior to analysis. The concentrations were measured using Atomic adsorption 

Spectrophotometer (Model Perkin Elmer- 3100, Japan). The amount of adsorbate adsorbed 

at equilibrium contact time, qe (mg/g) was calculated according to Equation 4.8 whereas the 

percent removal of adsorbate was calculated using Equation 4.9. 

 

ݍ = (ି)
ௐ

                                                 (4.8) 

(%) ݈ܽݒܴ݉݁ = (ି)


 (4.9)                                   100ݔ

 

where, Co and Ce (mg/L) are the liquid-phase concentrations of adsorbate at initial and at 

equilibrium contact time, respectively. V is the volume of the solution (l) and W is the mass 

of adsorbent used (g) (Ahmad, 2006; Tan, 2008). 

 

4.6.1 Effects of Initial Adsorbate Concentration and Contact Time 

In order to study the effects of initial cation concentration and contact time on the 

adsorption uptake and percentage removal, 50 ml of adsorbate solutions with known initial 

concentrations (50-100 mg/l) were prepared in a series of 100 ml Erlenmeyer flasks. 0.2 g 

of adsorbent was placed inside the flask. The flasks were covered with stopper to prevent 

water loss by evaporation and the flasks were then placed in an isothermal water bath 

shaker at constant temperature of 30 °C, with agitation speed of 150 rpm.  
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4.6.2 Effect of Solution Temperature 

The effect of solution temperature on the adsorption process was studied by varying the 

adsorption temperature at 30, 50 and 70 °C by using the temperature control system of the 

water bath shaker (Haake Wia Model, Japan), while other process parameters such as 

adsorbent dosage, agitation speed, pH 5.5 and volume of the solution remained constant. 

 

4.6.3 Effect of Solution pH 

The effect of solution pH was monitored by changing the initial pH of the solutions from 2 

to 12. The pH was adjusted by using 0.1 M hydrochloric acid or 0.1 M sodium hydroxide 

and was measured using a pH meter (Mettles Toledo, Model: Ross FE 20, USA). The initial 

adsorbate concentration was fixed at 100 mg/l with adsorbent dosage of 0.2 g/50 ml and 

solution temperature of 30 °C. 

 

4.6.4 Adsorption Isotherms 

Adsorption isotherm study was carried out by fitting the equilibrium data to three isotherm 

models: the Langmuir, Freundlich and Temkin isotherm models. The applicability of the 

isotherm equation to the equilibrium data was explained by observing the values of the 

correlation coefficients, R2. According to the regression analysis, the higher the R2 value 

(closer to unity), the better is the model for depicting the isotherm parameters (Ahmad, 

2006; Tan, 2008). 

 

4.6.5 Batch Kinetic Studies 

The methodology for evaluation of kinetic parameters was identical to that of batch 

equilibrium experiments. The aqueous samples were taken at predetermined time intervals 
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and the concentrations of the residual solute in the solutions were similarly measured. The 

amount of uptake at any time t, qt, (mg/g), was calculated by Equation 4.10. 

 

௧ݍ = (ି)
ௐ

                                               (4.10) 

 

where C0 and Ct, (mg/’L) are the liquid-phase concentrations of adsorbate at initial and at 

any time t, respectively. V is the volume of the solution (L) and W is the mass of adsorbent 

used (g) (Tan et al., 2008). 

 

4.6.6 Adsorption Thermodynamics 

In order to study the thermodynamic behaviors of the adsorption of lead, copper and 

manganese onto the prepared adsorbent in this study, the experimental data obtained from 

the batch adsorption experiment conducted earlier were analyzed using the thermodynamic 

equations expressed by Equations 3.20-3.21, The values of ∆H° and ∆S° were calculated 

respectively from the slope and intercept of the Vant’s Hoff plot of In KL versus l/T, where 

KL (l/mg) is the Langmuir isotherm constant and T is absolute temperature in Kelvin. 

 

4.7 Experimental Set up for Fixed Bed Adsorption 

Figure 4.3 represents the schematic diagram of the fixed-bed adsorption system used for the 

granular adsorption system. Continuous flow adsorption studies were conducted in a 

column made of Pyrex glass tube of 3.5 cm inner diameter and 25 cm height.  A sieve made 

up of stainless steel was placed at the bottom of the column. Over the sieve, a layer of glass 

wool was placed to prevent loss of adsorbent. A peristaltic pump (Model Masterfiex, Cole-

Parmer Instrument Co., US) was used to pump the feed upward through the column at a 
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desired flow rate. The solution was pumped upward to avoid channeling due to gravity.  It 

will provide uniform distribution of the solutions through the column. The stock solutions 

were placed in a tank and were connected with a pipe through which the water will pass 

through the column.  

 

 Fixed bed sorption studies were conducted for lead, copper and manganese on MFS 

based GAC by varying the adsorbate inlet/influent concentration, flow rate of the feed and 

adsorbent bed height. The effect of adsorbate inlet concentration was studied by changing 

the concentration from 50mg/l, 70 mg/l and 100 mg/l by keeping the bed height constant at 

4.5 cm and feed flow rate of 1 ml/min.  

 

 

Figure 4.4 Schematic Flow diagram of Fixed Bed System onto GAC 
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 In order to study the effect of activated carbon bed height, two bed height of 3 cm 

and 4.5 cm at constant flow rate of 1 ml/min and inlet concentration of 100 mg/l were used. 

The effect of feed flow rate of 1ml/min and 3 ml/min were observed by keeping constant 

bed height of 4.5 cm and an inlet concentration of 100 mg/l.  

 

 For each sorption test, after packing the column with activated carbon, the column 

was flushed with deionized water for 5 min. to ensure that the closely packed arrangement 

of GAC has no voids and channels. After a predetermined interval of time, the outlet 

concentration, Ct mg/l was measured. The breakthrough curves of Ct/C0 were plotted 

against time.  The maximum column capacity for a given inlet concentration and feed flow 

rate was calculated by using Equation 3.22. 

 

4.8 Analysis System 

The concentrations of the adsorbate under investigation were measured using an atomic 

adsorption spectrophotometer (Model Perkin Elmer 3100, Japan). The basic principle for 

single element quantitative analysis using atomic adsorption spectrophotometer is the Beer-

Lambert or Beer’s Law.  

According to Beer – Lambert’s Law- 

A= -log (I/I◦) = -logT = abc                                                                                            (4.11) 

where A = total absorption of light  

            a = absorptive co-efficient 

            b = light path 

            c = the concentration of the absorbing species in the light path, that is analyte              

concentration. 
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           T = Transmittance 

           I◦ = Incident light intensity 

           I = transmitted light intensity 

 

The calibration curves were developed by using an Atomic Absorption 

Spectrophotometer (Perkin Elmer 3100, Japan). It was obtained by aspirating the standard 

solution into the flame; standard solutions containing known five concentrations; 1, 2, 3, 4 

and 5 mg/l of Pb(II), Cu(II) and Mn(II) cations solutions respectively. The calibration 

curves are shown in Appendix A. The absorption of each solution was determined and the 

water samples were analyzed against the calibration curve prepared by the standard 

solutions of the metals (Pb, Cu, and Mn). A blank reagent, i.e., distilled water was also run 

before the development of the calibration curve and during the interval of each sample.  

Lead specific hollow cathode lamp (wavelength 283.3 nm), Copper specific hollow cathode 

lamp (wavelength 324.8 nm), and Manganese specific hollow cathode lamp (wavelength 

279.8 nm) were used. The correlation coefficients are provided in Appendix A. Dilution of 

the samples was performed, and the results were accordingly evaluated using the 

appropriate dilution factor.  

 

4.9 Surface Characterization System 

The raw materials and the prepared adsorbents were characterized by using various 

techniques to analyze their individual physical and chemical properties. Owing to the 

different nature of the original starting material in preparing the adsorbent, some tests 

which were essential to characterize activated carbon were not at all appropriate for 

activated palm ash. Consequently the following section describes the surface 
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characterization for both the adsorbent which are necessary in order to understand its 

sorption mechanism in detail.  

 

 4.9.1    Physical Characterization 

4.9.1.1 Nitrogen Adsorption-Desorption Isotherms 

Surface area, pore volume and pore diameter of the prepared adsorbent was measured by 

Autosorb 6B, Quantachrome Autosorb Automated gas sorption system supplied by 

Quantachrome. Before performing the nitrogen gas adsorption-desorption at 77 K, the 

prepared adsorbent was outgassed under vacuum at 300°C for 4 hours to remove any 

moisture content from the solid surface. Surface area and pore volume were calculated by 

Brunauer Emmett Teller (BET). Above mentioned procedure was automatically performed 

by software (Micropore version 2.26) available within the instrument. The total pore 

volume was estimated by the liquid volume of nitrogen at a relative pressure of 0.98 cm3/g. 

The pore size distribution was determined using the Barrett, Joyner and Halenda (BJH) 

model by the software (Micropore version 2.26) of the instrument.  

 

4.9.1.2 Scanning Electron Microscopy 

The surface morphology showing surface texture, pore structure and arrangements of the 

pores of prepared adsorbent samples (powdered and granular activated carbon and activated 

oil palm ash) were taken before preparation as well as after semi carbonization and 

activation by scanning electron microscopy (SEM) (Model Leo Supra 5OVP Field 

Emission, UK) . It was carried out by the bombardment of electrons on target sample 

particle which was spread earlier over an aluminum stub with the help of a doubled edged 

tape followed by coating of the surface with platinum film by using SEM instrument.  
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4.9.1.3 Determination of Bulk Density 

1 gm of each type of adsorbent was accurately weighted. A measuring cylinder was filled 

up with water up to 500 ml. The adsorbent was placed inside it. The increased volume of 

water was measured by deducting the previous volume from the new volume after 

immersion of the adsorbent. This volume is the specific volume of 1 gm of the adsorbent 

itself. The mass is divided by the volume to get bulk density of the sorbent by using 

Equation 4.13 (Zahangir et al., 2008). 

 

ݕݐ݅ݏ݊݁ܦ ݈݇ݑܤ = ௬ ௪௧   ௧ ௗ௦௧ 
௨   ௧  ௦ 

                                                               (4.12)  

                                              

4.9.2    Chemical Characterization  

4.9.2.1 Determination of Iodine Number 

Iodine number is one of the most fundamental parameter to characterize activated 

carbon.0.1 gm of activated carbon is mixed with 25 ml of iodine solution and was shaken 

for 1 minute. After that the solution was filtered and 10 ml of filtrate was put inside a 

conical flask.  The solution is titrated with 0.04 N sodium thio-sulphate solutions until it 

becomes clear. The iodine number for both the activated carbon was determined by using 

Equation (4.13) which represents the number of milligrams of iodine adsorbed by one gram 

of activated carbon (Birbas, 2011). 

 

Iodine Number = )/()( gTMCTTV iiifi                                                                 (4.13) 

   where,  

V= Volume of iodine solution 25 ml 
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Ti = Volume of sodium thio-sulfate solution used for titration of 10 ml iodine 

solution 

Tf = Volume of sodium thio-sulfate solution used for titration of 10 ml of filtrate 

g = Weight of activated carbon= 0.1 gm 

Mi = Molar weight of Iodine = 126.9044 g/mol 

Ci= 0.045 N = Concentration of Iodine Solution 

 

4.9.2.2 Elemental Analysis of the adsorbent 

Activated carbon and activated palm ash possess different types of chemical 

constituents. The former is based on cellulosic materials enriched with carbon and the 

latter is mineral based starting material to produce effective sorbent for cations. 

Therefore the elemental analysis of both types of adsorbent is different. Elemental 

analysis of the prepared activated carbon along with the precursor was performed using 

Elemental Analyzer (PerkinElmer- Series II 2400, Japan) to investigate the presence of 

elements of carbon, hydrogen, nitrogen and others in the activated carbon sample; 

whereas X –ray fluorescence (XRF, Rigaku RIX, 3000, Japan) was used to identify the 

percentage chemical composition of the activated ash. 

 

4.9.2.3 Proximate Analysis of activated carbon 

Proximate analysis of the cellulosic agricultural biomass, semi carbonized sample and the 

finally prepared activated carbons were performed by using thermo gravimetric analyzer 

(TGA). This would help to determine the moisture content, volatile matter, fixed carbon 

and remaining ash contents of the sample. Due to the different physio-chemical features of 

activated palm ash, TGA analysis was not necessary for its surface.  Approximately 5 mg 
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of activated carbon sample was loaded into a platinum pan of the TGA equipment (Model 

Perkin Elmer TGA7, US). The chamber of the furnace was then raised and the sample was 

degassed for ten minutes. At first stage of analysis, nitrogen gas was purged through the 

furnace to evacuate oxygen and create an inert atmosphere.  The sample was heated from 

30 °C temperature to 110 °C until complete dehydration was achieved. This was done for 

the determination of moisture content. The temperature was then increased to 850 0C and 

was kept static for 7 min. Then the temperature was decreased to 800 °C, and nitrogen gas 

was switched off and CO2 gas was passed inside the chamber to obtain oxidizing 

atmosphere. After the dehydration stage, weight loss was due to the release of volatile 

matters. Fixed carbon content was obtained from the weight loss during the oxidation stage. 

Ash was the remaining mass obtained at the end of the analysis. 

 

4.9.2.3 Fourier Transform Infrared Spectroscopy 

Fourier transform infrared (FTIR) technique is an essential tool to analyze surface 

functional groups for both types of raw materials; semi carbonized sample and activated 

carbon and activated oil palm ash. The adsorbent samples were ground to very fine powder 

and dried overnight in the oven at 105 °C. For infrared analysis, potassium bromide (KBr) 

pellet was used.  

 

 The ground materials and KBr was used in 1:10 ratio and with the aid of manual 

bench press, translucent disks were prepared. These disks were directly placed in the 

middle of the paper holder inside the analysis chamber of spectrophotometer. The spectra 

were measured from 400 to 4000 cm-1 (Model Perkin Elmer FTIR-2000, US). The analysis 

was done automatically by the software (Spectrum version 6.0.2) attached to the system. 
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4.10 Regeneration of cation loaded adsorbent 

The feasibility of regenerating spent adsorbent saturated with cations was performed by 

using five types of eluting agents; namely distilled water, 1M organic and mineral acids of 

hydrochloric, sulfuric and nitric acid. Initially batch adsorption was carried out between 0.2 

g of fresh adsorbent of each type in a flask and 50 ml of adsorbate solution of 100 mg/l was 

added. The mixture were agitated in an isothermal water bath shaker at 30 °C and agitation 

speed of 150 rpm until equilibrium contact time was reached. The solution pH was kept at 

5.5. After equilibrium is attained, the residual concentration of each type of adsorbate-

adsorbent system was measured and Cad (mg/l) was calculated as the difference between 

the initial and final equilibrium concentration (C0 –Ce).  

 

 The spent adsorbent was separated from the solution and dried at 110 °C. The dried 

samples of each type of adsorbent were placed in the flask containing 50 ml of different 

eluting agents mentioned above. Flasks with stoppers were placed inside the thermal water 

bath shaker and agitated at the same agitation speed, time and temperature to identify the 

efficiency of regeneration by different eluting agents. After equilibrium time, the 

concentration of the desorbed adsorbate was measured. The percent desorption was 

calculated by using Equation 4.14: 

 

                                      100% X
C
C

Desorption
ad

de                                         (4.14) 

 

From batch sorption/desorption study, it was observed that 1M HNO3 acid acts as 

best eluting agent for activated carbon samples (KCAC, KFAC and MFSAC) whereas 1M 
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HCl was better for activated ash sample. Therefore, for column regeneration using 

MFSAC, 1M HNO3 acid solution was used to regenerate and reuse the column up to four 

cycles. After each cycle, the adsorbent was washed with hot distilled water and then 

packed inside the column. The regeneration efficiency (RE%) was calculated for highest 

bed height (cm), flow rate (ml/min) and initial concentration of (mg/l) for all the cations by 

using following Equation 4.15. 

 

(%)ܧܴ  = ೝ
ೝ

× 100                                                                                         (4.15) 

 

where, qreg is the adsorptive capacity of the regenerated column and qorg is the original 

capacity (mg/g) of the adsorbent 

 

4.11 Experimental Activities 

The overall experimental activities carried out in this study are illustrated by following 

flow chart represented by Figure 4.5. 
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Figure 4.5 Schematic Flow Chart of Experimental Activities 
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CHAPTER FIVE 
RESULTS AND DISCUSSION 

Preparation of Powdered Activated Adsorbents 

 

5.1  Introduction 

This chapter illustrates the experimental results based on the Central Composite Design 

(CCD) for the preparation of powdered activated adsorbent derived from Kenaf core 

(KC), Kenaf fibre (KF) and natural oi1 palm ash (OPA). The last part summarizes the 

optimum parameters obtained  to achieve maximum output of the entire process. 

 

5.2 Preparation of Activated Carbon 

In the first phase of this study, two sets of experimental design matrix were applied for 

preparing powdered activated carbon (PAC) from different agricultural residues of 

kenaf core (KC) and kenaf fiber (KF) by using response surface methodology (RSM). 

The preparation variables were changed according to the experimental run. However, 

the chemical and physical activating agents of CO2 and KOH together with the range of 

variables (temperature-x1, time-x2 and impregnation ratio, IR-x3) were preselected based 

on literature. The most important properties of an activated carbon is its adsorption 

capacity. Moreover, yield of powdered activated carbon is also a prime concern for 

economical viability of the process. Therefore, the responses which were considered in 

this study were : 

(i) Y1- adsorption capacity/ removal percentage of Lead, Pb (II) 

(ii) Y2- adsorption capacity/ removal percentage of Copper, Cu (II) 

(iii) Y3- adsorption capacity/ removal percentage of Manganese, Mn (II) 

(iv) Y4- activated carbon yield 
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Design Expert software version 6.0.6 (STAT-EASE Inc., Minneapolis, US) was 

used for evaluation of the statistical parameters obtained from the model regression 

analysis and also for the appraisal of the surface contour plots constructed based on 

preparation variables and responses for each adsorbete-adsorbent interction at identical 

condition. 

 

5.2.1  Preparation of Kenaf Core Activated Carbons (KCAC) using Design of 

Experiment 

The complete design matrix given by the software for preparing 20 samples of activated 

carbons are designated as sample S-1 to S-20 from Kenaf Core (KC). The results 

obtained for four responses from the experimental works are presented in Table 5.1. 

Sample S-15 to S-20 at the center point were prepared for the same set of variables to 

resolve experimental errors and reproducibiliy of the data. It is observed from Table 5.1 

that,the highest removal effeciency for Pb(II) and Cu(II) cations were shown by sample  

S-10 (temperature (x1)-768.18 °C, time (x2)- 2h and impregnation ratio (x3) -2), whereas 

highest removal effeciency for Mn(II) was obtained by S-8(temperature (x1)-700.00 °C, 

time (x2)- 3h and impregnation ratio (x3) -3). This is  expected due to different physio-

chemical properties and affinity of the selected adsorbate and adsorbate-adsorbent 

interaction under identical condition. The highest yield was observed for sample S-9 

when all the variables were at minimum range (temperature (x1)-431.82 °C, time (x2)- 

2h and impregnation ratio (x3) -2). The design matrix clearly reveals that yield and 

removal percentages are inversely related to each other. 
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Table 5.1 Experimental Design Matrix for preparation of Kenaf Core (KCAC) based activated carbon 

Sample 
ID 

Run Type 
of 

Point 

Level 
(coded Factors) 

Activated Carbon Preparation 
Variables (Actual Factors) 

Percentage 
Removal, 

Pb (II) 

Percentage 
Removal,  

Cu (II) 

Percentage 
Removal, 
Mn (II) 

Percentage 
Yield 

 
      Temperature 

x1, (°C) 
Time, 

x2,(Hour) 

Ratio 
IR,  
x3 

Y1(mg/g) Y2(mg/g) Y3(mg/g) Y4 

S-1 1 Fact -1 -1 -1 500 1 1 69.98 60.03 53.44 32.87 
S-2 2 Fact +1 -1 -1 700 1 1 85.77 77.09 90.09 21.87 
S-3 3 Fact -1 +1 -1 500 3 1 68.89 66.65 55.09 27.99 
S-4 4 Fact +1 +1 -1 700 3 1 85.76 83.59 94.04 16.54 
S-5 5 Fact -1 -1 +1 500 1 3 69.09 64.09 59.89 24.66 
S-6 6 Fact +1 -1 +1 700 1 3 89.99 84.33 96.09 16.89 
S-7 7 Fact -1 +1 +1 500 3 3 79.99 76.87 64.98 23.22 
S-8 8 Fact +1 +1 +1 700 3 3 90.43 95.09 98.99 15.98 
S-9 9 Axial -1.682 0 0 431.82 2 2 68.09 59.78 48.77 33.09 

S-10 10 Axial +1.682 0 0 768.18 2 2 94.09 97.97 97.99 13.33 
S-11 11 Axial 0 -1.682 0 600 0.32 2 74.09 69.09 67.77 26.76 
S-12 12 Axial 0 +1.682 0 600 3.68 2 85.89 95.54 97.77 18.99 
S-13 13 Axial 0 0 -1.682 600 2 0.32 75.09 75.58 60.09 24.66 
S-14 14 Axial 0 0 +1.682 600 2 3.68 90.96 92.33 98.03 17.02 
S-15 15 Center 0 0 0 600 2 2 83.09 93.08 96.99 21.09 
S-16 16 Center 0 0 0 600 2 2 85.88 94.77 95.99 22.54 
S-17 17 Center 0 0 0 600 2 2 85.09 93.99 94.56 23.01 
S-18 18 Center 0 0 0 600 2 2 82.88 93.78 96.66 21.87 
S-19 19 Center 0 0 0 600 2 2 84.65 94.09 96.87 22.88 
S-20 20 Center 0 0 0 600 2 2 84.09 94.02 94.67 22.99 
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5.2.1.1 Development of Regression Model Equations for Preparation of Kenaf Core 

Activated Carbons 

According to the sequential model sum of squares, the models were selected based on 

the highest order polynomials where the additional terms were significant and the 

models were not aliased (Montgomery, 2001). Model parameters were estimated and 

illustrated in Table 5.1. For adsorption capacity of Pb(II) and Cu (II), quadratic model 

was suggested by the software. However, for Mn(II), both linear and quadratic models 

were suggested by the software. In this case, quadratic models were selected due to the 

higher order of polynomials. On the contrary, 2FI model was selected as suggested by 

the software for yield. The final empirical models in terms of coded factors after 

excluding the insignificant terms for the above mentioned responses are represented by  

Equations 5.1, 5.2, 5.3 and 5.4 respectively. 

 

,(ܫܫ)ܾܲ ݂ ݈ܽݒ݉݁ݎ ݁݃ܽݐ݊݁ܿݎ݁ܲ ଵܻ = 84.32 + ଵݔ7.89 + ଶݔ2.20 + ଷݔ3.35 −

ଵଶݔ1.38 − ଶଶݔ1.77 − ଷଶݔ0.70 − ଶݔଵݔ1.17 − ଷݔଵݔ0.16 +     ଷ                       (5.1)ݔଶݔ1.56

                                                     

(ܫܫ)ݑܥ ݂ ݈ܽݒ݉݁ݎ ݁݃ܽݐ݊݁ܿݎ݁ܲ ଵܻ = 94.12 + ଵݔ10.01 + ଶݔ5.94 + ଷݔ4.48 −

ଵଶݔ 6.39 − ଶଶݔ5.17 − ଷଶݔ4.59 − ଶݔଵݔ 0.27 + ଷݔଵݔ0.56 +  ଷ                 (5.2)ݔଶݔ 1.30

 

,(ܫܫ)݊ܯ ݂ ݈ܽݒ݉݁ݎ ݁݃ܽݐ݊݁ܿݎ݁ܲ  ଷܻ = 95.98 + ଵݔ16.74 + ଶݔ4.69 + ଷݔ6.67 −

ଵଶݔ8.14 − ଶଶݔ4.82 − ଷଶݔ6.13 + ଶݔଵݔ0.014 − ଷݔଵݔ0.67 +   ଷ                        (5.3)ݔଶݔ0.30

                                                                      

,݈݀݁݅ݕ ܾ݊ݎܽܥ ݀݁ݐܽݒ݅ݐܿܣ ସܻ = 22.41− ଵݔ5.18 − ଶݔ1.88 − ଷݔ2.30 + ଶݔଵݔ0.0013 +

ଷݔଵݔ0.93 +  ଷ                                                               (5.4)ݔଶݔ0.98
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The coefficients with temperature (x1), time (x2) and impregnation ratio (x3) 

represent the effect of that particular factor for the preparation of activated carbon. 

Coefficients with two factors (x1x2, x2x3 and x3x1) and others with second order terms 

(x1
2
, x2

2
 and x3

2) show the interaction between the two variables and quadratic effect 

respectively. Positive sign in front of the terms indicates synergistic effect, whereas 

negative sign indicates antagonistic effect (Hameed et al., 2008; Montgomery, 2001).  

 

The quality of the model developed can be understood by the correlation 

coefficient, R2 and standard deviation values. R2 indicates the ratio between sum of 

squares (SSR) with total sum of squares (SST) and this depicts how well the models 

approximate the experimental data points. The R2 values for Equations 5.1-5.4 were 

0.95, 0.96, 0.94 and 0.97 respectively, which ensures satisfactory adjustment of 

developed models with the experimental data.  Other statistical parameters used to 

analyze the suitability of the developed models are also listed in Table 5.2. 

 

Table 5.2     Statistical parameters for ANOVA analysis for Model regression of 
removal percentage of Pb (II), Cu (II), Mn (II) and Yield for Kenaf Core based activated 
carbon (KCAC) 

 

 

 Responses 
 

Statistical Parameters 
Percentage 
Removal of  

Pb (II) 

Percentage 
Removal of  

Cu (II) 

Percentage 
Removal of 

Mn(II) 

Yield 

 Y1 Y2 Y3 Y4 
Standard Deviation, SD% 2.51 3.71 6.57 1.12 
Correlation Coefficient, R2 0.95 0.96 0.94 0.97 

Adjusted R2 0.90 0.92 0.88 0.95 
Mean 81.69 83.09 82.94 22.41 

Coefficient of Variation, 
CV 

3.07 4.46 7.92 5.00 

Adeq. Precision 15.23 15.58 12.89 30.13 
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The small values of standard deviations and co-efficient of variation, CV  reflect 

reproducibility of the model. "Adeq Precision" measures the signal to noise ratio.  A 

ratio greater than 4 is desirable (Montgomery, 2001).  The ratio obtained for all the 

responses reflects that the models can be used to navigate the design space.  

 

Diagnostic tests (residuals vs. predicted and outliers) were carried out in this 

study to determine the adequacy of the developed models. The linear plots obtained are 

shown in Appendix C (C1-C4). Figures C1 (a-b), C2 (a-b), C3 (a-b) and C4 (a-b) show 

outliers t plot and studentized residuals vs. predicted plots for removal percentage of 

Pb(II), Cu (II), Mn(II) ions and carbon yield, respectively. For successful resolution of 

designed experiments, the outliers should be carefully observed. Outlier t plots reflect a 

simple data recording error. Sometimes it shows the region of independent variables 

where the fitted model has showed poor approximation to the true response surface 

(Montgomery, 2001). From Figures C1 (a), C2(a), C3 (a) and C4 (a), it was observed 

that most of the data points lie between the intervals of ± 3.50 (Outliers t plots). This 

showed that the data approximation for the fitted models (Equations 5.1-5.4) to the 

response surface was fairly good and reflected no data recording error. However, there 

was only one data recorded below -3.50 for removal percentages of Pb(II) and over 

+3.50 for removal percentages of Cu(II). This might be due to the insignificant terms or 

nonlinear influence of the studied variables over the response. Similar observation has 

been reported for adsorption studies of Cu (II) ions onto a type of seaweed, 

Enteromorpha prolifera (Ozer et al. 2009). 

 

The data points for studentized residuals vs. predicted plots (Figures C1 (b), C2 

(b), C3 (b) and C4 (d)) were scattered. The data points in these plots should be 

randomly scattered, demonstrating that the variance of the experimental observations 
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(b) 

were constant for all the values of response depicted by Table 5.1. The data points 

obtained were between ±3.00 which implied that no response transformation was 

needed for the experimental design of this study (Myers and Montgomery, 1995).  

         

          The competence of the developed models was further justified through analysis 

of variance (ANOVA) and the results obtained are depicted in Tables 5.3-5.6. The 

significance of the empirical models was investigated by the  F-test value which is a 

statistical measure of how well the empirical model describes the variation in the data 

about the mean. The greater the F-value, the more certain it is, that the model explains 

adequately the variation in the data and the estimated significant terms of the adsorbent 

preparation variables are closer to the actual value. Based on 95% confidence level, the 

model F-value for removal percentage of lead, copper and manganese are 20.69, 25.97 

and 16.21 respectively, which implied that these models were significant. Neverthless, 

the values of Prob > F for uptake of all the adsorbate were less than 0.05 indicating that 

the model terms are significant.  

 

            For Pb (II) activation temperature (x1), activation time (x2), impregnation ratio - 

IR (x3) and quadratic terms of time (x2
2) are significant model terms whereas the 

interaction terms of x1x2, x1x3 and x2x3 and quadratic terms of x1
2 and x3

2 are all 

insignificant to the response. For  Mn(II) and Cu (II), activation temperature (x1), 

activation ratio, IR (x3) and activation time (x2) as well as their quadratic terms of  (xl
2), 

(x2
2) and (x3

2)  are significant whereas the interaction terms of x1x2, x1x3 and x2x3 are all 

insignificant to the response. 
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(b) 

 

 

 

Table 5.4     ANOVA analysis and Lack of Fit test for Response Surface Model for 
removal percentage of Cu (II) from synthetic water by using Kenaf Core based activated 
carbon (KCAC) 

 

 

 

 

 

Source Sum of 
Squares 

Degree of 
Freedom 

Mean 
Square 

F Value Prob> F Comments 

Model 1168.79 9 129.87 20.69 <0.0001 Significant 
x1 849.65 1 849.65 135.35 <0.0001  
x2 66.24 1 66.24 10.55 0.0087  
x3 153.48 1 153.48 24.45 0.0006  
x1

2 27.52 1 27.52 4.38 0.0627  
x2

2 45.18 1 45.18 7.20 0.0230  
x3

2 7.010 1 7.010 1.12 0.3154  
x1x2 10.98 1 10.98 1.75 0.2154  
x1x3 0.220 1 0.220 0.034 0.8567  
x2x3 19.37 1 19.37 3.08 0.1095  

Residuals 62.78 10 6.28    
Lack of Fit 56.01 5 11.20 8.28 0.0184 Significant 
Pure Error 6.77 5 1.35    

Source Sum of 
Squares 

 Degree of 
Freedom 

Mean 
Square 

F Value Prob> F Comments 

Model 3213.34 9 357.04 25.97 <0.0001 Significant 
x1 1368.07 1 1368.07 99.50 <0.0001  
x2 482.12 1 395.48 35.06 <0.0001  
x3 274.16 1 268.17 19.94 0.0012  
x1

2 588.03 1 559.87 42.77 <0.0001  
x2

2 385.43 1 488.32 28.03 0.0004  
x3

2 303.85 1 274.73 22.10 0.0008  
x1x2 0.570 1 0.570 0.042 0.8424  
x1x3 2.490 1 2.490 0.18 0.6797  
x2x3 13.57 1 13.57 0.99 0.3439  

Residuals 137.50 10 13.75    
Lack of Fit 136.01 5 27.20 91.64 <0.0001 Significant 
Pure Error 1.48 5 0.30    

Table 5.3     ANOVA analysis and Lack of Fit test for Response Surface Model for 
removal percentage of Pb (II) from synthetic water by using Kenaf Core based 
activated carbon (KCAC) 
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Table 5.6     ANOVA analysis and Lack of Fit test for Response Surface Model for 
activated carbon yield by using Kenaf Core based activated carbon (KCAC) 

 

 

Referring to Table 5.6 for 2FI model for yield, the model F value of 66.44 and 

probable F value less than 0.0001 indicate the significance of the model. For yeild, x1, 

Source Sum of 
Squares 

Degree of 
Freedom 

Mean 
Square 

F Value Prob> F Comments 

Model 6290.11 9 698.90 16.21 <0.0001 Significant 
x1 3826.09 1 3826.09 88.76 <0.0001  
x2 300.33 1 300.33     6.97 0.0248  
x3 607.66 1 607.66 14.10 0.0038  
x1

2 955.57 1 955.57 22.17 0.0008  
x2

2 335.23 1 335.23 7.78 0.0192  
x3

2 542.37 1 542.37 12.58 0.0053  
x1x2 0.002 1 0.002 0.00004 0.9954  
x1x3 3.63 1 3.63 0.084 0.7776  
x2x3 0.71 1 0.71 0.017 0.9001  

Residuals 431.07 10 43.11    
Lack of Fit 425.07 5 85.01 70.80 0.0001 Significant 
Pure Error 6.00 5 1.20    

Source Sum of 
Squares 

Degree of 
Freedom 

Mean 
Square 

F Value Prob> F Comments 

Model 500.71 9 83.45 66.44 <0.0001 Significant 
x1 365.93 1 365.93 291.31 <0.0001  
x2 48.09 1 48.09 38.29 <0.0001  
x3 72.05 1 72.05 57.36 <0.0001  

x1x2 0.001 1 0.001 0.001 0.9802  
x1x3 6.92 1 6.92 5.51 0.0354  
x2x3 7.72 1 7.72 6.15 0.0276  

Residuals 16.33 13 1.26    
Lack of Fit 13.36 8 1.67 2.81 0.1347 Not 

Significant 
Pure Error 2.97 5 0.59    

Table 5.5     ANOVA analysis and Lack of Fit test for Response Surface Model for 
removal percentage of Mn (II) from synthetic water by using Kenaf Core based 
activated carbon (KCAC) 
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x2, x3 and interaction terms of x2x3 and x1x3 are significant model terms whereas other 

terms are all negligible to the response.  

From the statistical results obtained, it can be seen that the above models 

(Equations 5.1-5.4) are adequate to predict the removal percentage and the carbon yield 

within the experimental range of variables selected. The performance of the model can 

be also visualized by observing the plots of predicted versus experimental percentage 

yield and removal as shown in Figures 5.1, 5.2, 5.3 and 5.4. As estimated, the predicted 

values for activated carbon yield are the closest to their experimental values as 

compared to the other three responses.  

 

Figure 5.1   Predicted versus experimental removal percentage of lead onto 
Kenaf Core Activated carbon (KCAC) 
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(b) 

 

Figure 5.2   Predicted versus experimental removal percentage of copper onto 
Kenaf Core Activated carbon (KCAC) 

 

 

Figure 5.3   Predicted versus experimental removal percentage of manganese 
onto Kenaf Core Activated carbon (KCAC) 
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(b) 

 

Figure 5.4   Predicted versus experimental Kenaf Core Activated carbon 
(KCAC) yield 

 

 

5.2.1.1 Removal Efficiency of Kenaf Core Activated Carbons 

Based on the F values as shown in Table 5.3-5.5, both the activation temperature and IR 

are found to have the greatest effects on the adsorption capacity of Pb(II) and Mn (II) 

ions onto the activated carbons prepared from KC, whereas activation temperature and 

activation time showed greatest effect on adsorption capacity of Cu(II). The interaction 

effect between the factors for Pb(II), and Cu(II) are moderate. In case of Mn(II) ions, 

interaction effect of activation temperature and activation ratio have the greatest impact. 

Figure 5.5- 5.7 depicts the three-dimensional response surfaces with contour plot which 

show the effects of the combined effects of two significant variables (activation 

temperature and IR) on the adsorption capacity of the adsorbate. In this case, the 

activation time was fixed at zero level, which was 2 h. 
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(b) 

Figure 5.5 (a) Three Dimensional Response Surface (b) Surface contour plot of removal 
percentage of lead (II) (Effect of activation temperature and IR, Time, t=2 h) onto Kenaf 
Core activated carbon (KCAC)  
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Figure 5.6 (a) Three Dimensional Response Surface (b) Surface contour plot of 
removal percentage of copper (II) (Effect of activation temperature and IR, Time, 
t=2 h) onto Kenaf Core activated carbon (KCAC)  
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Figure 5.7 (a) Three Dimensional Response Surface (b) Surface contour plot of removal 
percentage of manganese (II) (Effect of activation temperature and IR, Time, t=2 h) 
onto Kenaf Core activated carbon (KCAC)  
 

  The 2D surface contour curve represents an infinite number of combinations of 

selected variables. The maximum possible response value is indicated by the surface 

confined by the smallest ellipse in the diagram.  Elliptical contour obtained for removal 

efficiency of lead, copper and manganese demonstrate that there are interactions present 

between the independent variables. As can be seen from the surface contour plots, 

removal efficiency of the KC activated carbons generally increases with increase in 

activation temperature and IR. The highest adsorption capacity for Pb (II) ion is 

observed when both these variables are at the maximum point within the range studied. 

The results obtained are in agreement with the previous research reported by Sudaryanto 

et al., (2006) which inferred that activation time gave no significant impact on the pore 

development of activated carbon produced from cassava peel, whereas the pore 

characteristics changed considerably with the activation temperature and KOH 
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impregnation ratio. It was reported earlier that activation time did not have much effect 

on the surface area obtained for activated carbons prepared from apricot stones using 

steam activation (Sentorun -Shalaby et al., 2006). It was also observed for KOH treated 

oil palm fronds that activation time had least effect on pore development (Salman et al., 

2010).  

 

  It is observed for Cu (II) and Mn (II) ions that after certain limit of temperature 

and KOH ratio, the adsorption capacity reduced slightly. This is most probably due to 

the development of excess mesopore surface area or large pore diameter which failed to 

retain smaller cations like copper and manganese (Ahmenda et al., 2000) but made 

easier for bulky cations of lead to penetrate inside the basal planes of activated carbon 

and adsorbed onto the soft site of the activated carbon (Chen and Wang, 2000). Another 

plausible explanation for this is that there may be a disruption or lessening of the 

intensity of some surface functional groups which could readily form surface complexes 

with the cations of copper and manganese.  

 

  However, in this work all the three variables studied were found to have 

synergistic effects on the adsorption capacity of the preselected cations. This was 

expected as the progressive increase of temperature and activation time would increase 

the reaction between char and KOH and char with CO2.  This would result in enhanced 

devolatilization which would further develop the existing rudimentary pore structure of 

the char and create new pores. The increase in activation temperature and time would 

ensure sufficient contact time between carbon matrix and physical and chemical 

activating agents of CO2 and KOH for the dissolution of cellulosic structure (Baçaoui et 

al., 2001; Stavropoulos and Zabaniotou, 2005; Lua and Yang, 2004).  
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  Impregnation ratio, IR played a crucial role in the formation of pores. The 

increase in KOH would accelerate the reaction rate and therefore the quantity of the 

pores increased correspondingly (Adinata et al., 2007; Zabaniotou et al, 2008). 

However, there was a maximum range for IR and time beyond which the uptake 

capacity of the adsorbate onto KC activated carbon is reduced.  Since excessive quantity 

of KOH would cause additional reaction between KOH and carbon, it might obliterate 

the pore structure formed at previous stage (Cao et al., 2006). The excessive KOH 

molecules might also be decomposed at higher temperature leading to the following 

gasification reactions (Guo and Lua, 2000). 

 

2KOH → KଶO +  HଶO                (5.5) 

HଶO + C → CO + Hଶ                (5.6) 

 5.2.1.3 Kenaf Core Activated Carbon Yield 

For activated carbon yield, activation temperature was found to have the utmost effect 

on this response by showing the highest F value of 66.44, as shown by Table 5.6, 

whereas activation time and IR showed almost similar impact on the response, which 

were less noteworthy compared to activation temperature. The interaction effect of 

activation time and ratio was more pronounced than the other two interaction terms on 

the yield of KC activated carbon. Figures 5.8(a) and (b) show the three-dimensional 

response surfaces which were constructed to reveal the effects of the activated carbon 

preparation variables on the activated carbon yield. Figure 5.8(a) represents the 

combined effect of activation temperature and activation time on the response where IR 

was fixed at zero level (IR. = 2) whereas Figure 5.8(b) depicts the effect of activation 

temperature and IR on the same response where activation time was fixed at zero leve1 

(t = 2 h).  

 

 



 

 
133 

 

(b) 

  In general, the KC activated carbon yield was found to decrease with activation 

temperature, activation time and IR. As can be seen from both the plots (Figures 5.8 (a) 

and (b), activation temperature was more dominant on the activated carbon yield as 

compared to the other two variables.  

 
 

Figure 5.8 Three Dimensional Response Surface plot of Kenaf Core activated carbon 
(KCAC) yield (a) Effect of activation temperature and activation time, IR= 2 (b) Effect 
of activation temperature and IR, Time= 2 h) 

  Similar observation was reported for preparation of the activated carbon from 

coconut husk by using KOH (Tan, 2008). The lowest carbon yield was obtained for 

sample S-10, when temperature was at the maximum point within the range studied 

(temperature (x1)-768.18 °C, time (x2)- 2h and impregnation ratio (x3) -2). This outcome 

was also in concurrence with the previous work carried out by Sudaryanto et al. (2006) 

where activation temperature was found to play a vital role on the yield of cassava peel 

based activated carbon whereas activation time did not show much effect on the carbon 

yield. However, for KC based activated carbon, the effect of activation time was 

moderate.  The increase in temperature would release more volatile component as a 

result of intensifying dehydration and elimination reaction. This would increase the C-
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(b) 

KOH and C-CO2 reaction rate thereby resulting in decreasing carbon yield (Bacaoui et 

al., 2001, Lua and Yang, 2004; Adinata et al, 2007).   

 

  It was reported that for applying higher activation temperature, the yield of 

apricot stone became less (Sentorun-Shalaby et al., 2006). The yield of fir wood based 

activated carbon was also found to reduce steadily with increase in extent of CO2 

gasification reaction with the carbon matrix (Wu and Tseng, 2006). This was probable 

as increasing activation time favored releasing of volatile matters, consequently 

producing less amount of activated carbon. However, materials with higher carbon 

content should be volatilized to a much lesser extent and undergo less weight loss 

(Suzuki et al, 2007). 

 

  The activated carbon yield from KC is strongly affected by ratio. It is observed 

that by increasing IR, carbon yield is decreased significantly and increased the burn-off. 

Adinata et. al., 2007 reported for palm shell based activated carbon that at higher IR, the 

weight losses were due to extensive release of volatile products. KOH is a strong 

dehydrating agent which will increase the oxidation process resulting in increase in the 

weight loss of carbon (Sudaryanto et al., 2006). 

 

5.2.2 Preparation of Kenaf Fiber (KF) Activated Carbons (KFAC) using Design 

of Experiment  

Table 5.7 lists the results obtained from a complete design matrix for preparing 

activated carbons (KFAC) from kenaf fiber (KF). The results again revealed that the 

properties of activated carbons prepared from different types of precursors have 

different characteristics although the same preparations conditions were used to produce 

the carbons. 
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(b) 

 

Table 5.7 Experimental Design Matrix for preparation of Kenaf Fiber (KFAC) based activated carbon 

 

Sample 
ID 

Run Type 
of 

Point 

Level 
(coded Factors) 

Activated Carbon Preparation 
Variables (Actual Factors) 

Percentage 
Removal, 

Pb (II) 

Percentage 
Removal,  

Cu (II) 

Percentage 
Removal, 
Mn (II) 

Percentage 
Yield 

      Temperature 
x1, (°C) 

Time, 
x2,(Hour) 

Ratio 
IR,  
x3 

Y1(mg/g) Y2(mg/g) Y3(mg/g) Y4 

S-1 1 Fact -1 -1 -1 500 1 1 63.98 78.99 70.76 33.89 
S-2 2 Fact +1 -1 -1 700 1 1 87.98 81.99 70.23 23.98 
S-3 3 Fact -1 +1 -1 500 3 1 64.99 80.99 71.89 32.02 
S-4 4 Fact +1 +1 -1 700 3 1 86.89 94.99 78.99 14.99 
S-5 5 Fact -1 -1 +1 500 1 3 66.09 86.88 78.90 26.99 
S-6 6 Fact +1 -1 +1 700 1 3 89.99 82.22 89.11 19.99 
S-7 7 Fact -1 +1 +1 500 3 3 67.77 85.78 75.98 22.09 
S-8 8 Fact +1 +1 +1 700 3 3 93.99 93.99 90.95 5.77 
S-9 9 Axial -1.682 0 0 431.82 2 2 65.09 75.87 70.99 34.99 

S-10 10 Axial +1.682 0 0 768.18 2 2 94.56 91.65 82.89 9.98 
S-11 11 Axial 0 -1.682 0 600 0.32 2 74.04 74.88 70.07 26.78 
S-12 12 Axial 0 +1.682 0 600 3.68 2 72.09 86.78 74.78 14.88 
S-13 13 Axial 0 0 -1.682 600 2 0.32 71.09 80.43 72.89 27.89 
S-14 14 Axial 0 0 +1.682 600 2 3.68 78.99 95.77 91.09 13.99 
S-15 15 Center 0 0 0 600 2 2 82.78 85.43 89.90 18.65 
S-16 16 Center 0 0 0 600 2 2 85.45 88.45 88.10 17.99 
S-17 17 Center 0 0 0 600 2 2 84.34 84.99 88.43 19.88 
S-18 18 Center 0 0 0 600 2 2 86.54 86.90 87.89 17.78 
S-19 19 Center 0 0 0 600 2 2 85.87 87.88 88.34 18.98 
S-20 20 Center 0 0 0 600 2 2 83.99 87.99 90.00 16.67 
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(b) 

5.2.2.1 Development of Regression Model Equation for Preparation of Kenaf Fiber 

(KF) Activated Carbons (KFAC) 

As explained in the previous sections for preparation of activated carbons from KC, the 

same procedure was followed for the development of regression models based on the 

sequential model sum of squares and the models were selected according to the highest 

order polynomials where the additional terms were significant and the models were not 

aliased. For all the three responses of removal percentage of cations under analysis and 

activated carbon yield of KFAC, the quadratic models were suggested by the software 

to correlate the data to all the three responses. The design matrix with respective 

variables and responses are listed in Table- 5.7. It was observed that sample S-10 

(temperature (x1)-768.18 °C, time (x2)- 2h and impregnation ratio (x3) -2) for lead, and 

S-14 (temperature (x1)-600.00 °C, time (x2)- 2h and impregnation ratio (x3) -3.68) 

showed the highest removal efficiency for copper and manganese.  

 

 The final empirical models in terms of coded factors after excluding the 

insignificant terms for the adsorption uptake of Pb(II) - Y1,Cu(II) - Y2, Mn(II) - Y3 and 

carbon yield - Y4 of the KFAC are represented by Equations 5.7, 5.8, 5.9 and 5.10  

respectively. 

 

,(ܫܫ)ܾܲ ݂ ݈ܽݒ݉݁ݎ ݁݃ܽݐ݊݁ܿݎ݁ܲ ଵܻ = 84.76 + ଵݔ10.66 + ଶݔ0.17 + ଷݔ2.00 −

ଵଶݔ1.29 − ଶଶݔ3.68 − ଷଶݔ2.98 + ଶݔଵݔ0.027 + ଷݔଵݔ0.53 +    ଷ     (5.7)ݔଶݔ0.72

                                                      

(ܫܫ)ݑܥ ݂ ݈ܽݒ݉݁ݎ ݁݃ܽݐ݊݁ܿݎ݁ܲ ଶܻ = 86.89 + ଵݔ3.45 + ଶݔ3.35 + ଷݔ2.76 −

ଵଶݔ0.77 − ଶଶݔ1.81 + ଷଶݔ0.76 + ଶݔଵݔ 2.98 − ଷݔଵݔ1.68 −  ଷ                             (5.8)ݔଶݔ0.54
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(b) 

,(ܫܫ)݊ܯ ݂ ݈ܽݒ݉݁ݎ ݁݃ܽݐ݊݁ܿݎ݁ܲ  ଷܻ = 88.71 + ଵݔ3.78 + ଶݔ1.22 + ଷݔ5.40 −

ଵଶݔ3.77 − ଶଶݔ5.37 − ଷଶݔ1.99 + ଶݔଵݔ1.56  + ଷݔଵݔ2.32 −   ଷ                           (5.9)ݔଶݔ1.38

                                                                   

,݈݀݁݅ݕ ܾ݊ݎܽܥ ݀݁ݐܽݒ݅ݐܿܣ ସܻ = 18.30− ଵݔ6.76 − ଶݔ3.66 − ଷݔ3.91 + ଵଶݔ1.65 +

ଶଶݔ1.07 + ଷଶݔ1.11 − ଶݔଵݔ2.05 + ଷݔଵݔ0.45 − ଷ                                   (5.10)ݔଶݔ1.03

                          

  The R2 values for Equations 5.7, 5.8, 5.9 and 5.10 are 0.964, 0.897, 0.985 and 

0.987 respectively. As explained earlier, the quality of the model developed was 

evaluated based on the R2 and standard deviation values. In this case, the R2 values for 

all the above four models (Equations 5.7-5.10) are considered as relatively high, as they 

are all greater than 0.9. This indicated that there is a good agreement between 

experimental and predicted values for the responses obtained from these four models. 

The statistical parameters are listed below in Table 5.8. 

 

Table 5.8 Statistical parameters for ANOVA analysis for Model regression of removal 
percentage of Pb (II), Cu (II), Mn (II) and Yield for Kenaf Fiber based activated carbon  

 

 

 

 

 

 Responses 
 

Statistical Parameters 
Percentage 
Removal of  

Pb (II) 

Percentage 
Removal of  

Cu (II) 

Percentage 
Removal of 

Mn(II) 

Yield 

 Y1 Y2 Y3 Y4 
Standard Deviation, SD% 2.64 2.57 1.35 1.19 
Correlation Coefficient, R2 0.96 0.89 0.98 0.98 

Adjusted R2 0.93 0.80 0.97 0.97 
Mean 79.33 85.64 81.11 20.91 

Coefficient of Variation, 
CV 

3.33 3.00 1.67 5.68 

Adeq. Precision 19.18 10.58 23.68 34.76 

,(ܫܫ)݊ܯ ݂ ݈ܽݒ݉݁ݎ ݁݃ܽݐ݊݁ܿݎ݁ܲ  ଷܻ

= 88.71 + ଵݔ3.78 + ଶݔ1.22 + ଷݔ5.40 − ଵଶݔ3.77 − ଶଶݔ5.37

− ଷଶݔ1.99 + ଶݔଵݔ1.56  + ଷݔଵݔ2.32 −  ଷݔଶݔ1.38
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(b) 

   

 

 

 

 

 

 

 

 

 

   

  The ANOVA for response surface quadratic models for all the responses are 

given in Table 5.9-5.12. The Prob> F value was less than 0.0001for all the models 

which implies that the models are significant. For the model terms in case of Pb(II) ions, 

the activation temperature (x1), impregnation ratio IR (x3), the quadratic effect of time 

(x2
2) and ratio (x3

2) are significant model terms where as the other terms  are all 

insignificant. For Cu (II) ions, x1, x2, x3, x2
2 and interaction terms of x1x2 are significant 

model terms and for Mn(II) ions, x1, x2, x3, x1
2, x2

2, x3
2 and interaction terms of x1x2, 

x1x3, and x2x3 are significant model terms. For yield, x1, x2, x3, x1
2, x2

2, x3
2, x1x2 and x2x3 

are all significant model terms.  

 

 

 

 

 

 

     The linear plots obtained for dignostic tests are shown in Appendix C (C5-C8). 

Figures C5 (a-b), C6 (a-b), C7 (a-b) and C8 (a-b) show outliers t plot and 

studentized residuals vs. predicted plots for removal percentage of Pb(II), Cu (II), 

Mn(II) ions and carbon yield, respectively. From Figures C5 (a), C6(a), C7 (a) and 

C8 (a), it was observed, that only one data point is below -3.50 for removal 

percentage of Pb(II) and Cu(II). However the rest of the points are between ±3.50 

(outlier t plots). Like Kenaf core based activated carbon, the studentized residuals 

vs. predicted plots for removal percentage of Pb(II), Cu (II), Mn(II) ions and 

carbon yield show no response transformation was needed for the experimental 

design of this study (Myers and Montgomery 2001). 
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(b) 

Table 5.9     ANOVA analysis and Lack of Fit test for Response Surface Model for 
removal percentage of Pb (II) from Synthetic water by using Kenaf Fiber based 
activated carbon (KFAC) 
 

 

Table 5.10     ANOVA analysis and Lack of Fit test for Response Surface Model for 
removal percentage of Cu (II) from Synthetic water by using Kenaf Fiber based 
activated carbon (KFAC) 

 

 

 

 

 

Source Sum of 
Squares 

Degree of 
Freedom 

Mean 
Square 

F Value Prob> F Comments 

Model 1914.93 9 212.77 30.45 <0.0001 Significant 
x1 1551.91 1 1551.91 222.13 <0.0001  
x2 0.39 1 0.39 0.056 0.8170  
x3 54.52 1 54.52 7.80 0.0190  
x1

2 23.98 1 23.98 3.43 0.0937  
x2

2 195.15 1 195.15 27.93 0.0004  
x3

2 128.12 1 128.12 18.34 0.0016  
x1x2 0.0061 1 0.0061 0.009 0.9771  
x1x3 2.23 1 2.23 0.32 0.5849  
x2x3 4.15 1 4.15 0.59 0.4588  

Residuals 69.86 10 6.99    
Lack of Fit 60.33 5 12.07 6.32 0.0321 Significant 
Pure Error 9.54 5 1.91    

Source Sum of 
Squares 

Degree of 
Freedom 

Mean 
Square 

F Value Prob> F Comments 

Model 582.29 9 64.70 9.78 0.0007 Significant 
x1 162.36 1 162.36 24.53 0.0006  
x2 152.81 1 152.81 23.09 0.0007  
x3 104.12 1 104.12 15.73 0.0027  
x1

2 8.62 1 8.62 1.30 0.2804  
x2

2 47.17 1 47.17 7.13 0.0235  
x3

2 8.35 1 8.35 1.26 0.2876  
x1x2 71.22 1 71.22 10.76 0.0083  
x1x3 22.61 1 22.61 3.42 0.0943  
x2x3 2.34 1 2.34 0.35 0.5650  

Residuals 66.18 10 6.62    
Lack of Fit 55.83 5 11.17           5.39 0.0440 Significant 
Pure Error 10.35 5 2.07    
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(b) 

Table 5.11     ANOVA analysis and Lack of Fit test for Response Surface Model for 
removal percentage of Mn (II) from Synthetic water by using Kenaf Fiber based 
activated carbon (KFAC) 

 

 

Table 5.12     ANOVA analysis and Lack of Fit test for Response Surface Model for 
Activated carbon yield by using Kenaf Fiber based activated carbon (KFAC) 

 

 

Source Sum of 
Squares 

Degree of 
Freedom 

Mean 
Square 

F Value Prob> F Comments 

Model 1279.97 9 142.22 77.53 <0.0001 Significant 
x1 195.52 1 195.52 106.58 <0.0001  
x2 20.28 1 20.28 11.05 0.0077  
x3 398.47 1 398.47 217.22 <0.0001  
x1

2 205.16 1 205.16 111.84 <0.0001  
x2

2 415.48 1 415.48 226.50 <0.0001  
x3

2 56.94 1 56.94 31.04 0.0002  
x1x2 19.47 1 19.47 10.61 0.0086  
x1x3 42.87 1 42.87 23.37 0.0007  
x2x3 15.29 1 15.29 8.34 0.0162  

Residuals 18.34 10 1.83    
Lack of Fit 14.03 5 2.81 3.25 0.1107 Not 

Significant 
Pure Error 4.31 5 0.86    

Source Sum of 
Squares 

Degree of 
Freedom 

Mean 
Square 

F Value Prob> F Comments 

Model 1122.05 9 124.67 88.51 <0.0001 Significant 
x1 624.10 1 624.10 443.07 <0.0001  
x2 183.01 1 183.01 129.92 <0.0001  
x3 208.93 1 208.93 148.33 <0.0001  
x1

2 39.33 1 39.33 27.92 0.0004  
x2

2 16.40 1 16.40 11.65 0.0066  
x2

2 17.62 1 17.62 12.51 0.0054  
x1x2 33.78 1 33.78 23.98 0.0006  
x1x3 1.64 1 1.64 1.16 0.3062  
x2x3 8.53 1 8.53 6.05 0.0336  

Residuals 14.09 10 1.41    
Lack of Fit 7.98 5 1.60 1.31 0.3875 Not 

Significant 

Pure Error 6.10 5 1.22    
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(b) 

Figures 5.9, 5.10, 5.11 and 5.12 respectively show predicted values versus 

experimental values for the responses for KFAC. As can be seen from these plots, the 

predicted values obtained are quite close to the experimental values, indicating that the 

models developed are successful in capturing the correlation between the activated 

carbon preparation variables and the responses under investigation. As expected, the 

values predicted by the models are quite accurate with relatively small variation errors. 

However, some data points of copper show relatively large residual values, due to the 

lower R2 values campared to the other three models. (Equations 5.7 - 5.10). 

  

 

Figure 5.9   Predicted versus experimental removal percentage of lead onto 
Kenaf Fiber Activated carbon (KFAC) 
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(b) 

 

Figure 5.10   Predicted versus experimental removal percentage of copper onto 
Kenaf Fiber Activated carbon (KFAC) 

 

Figure 5.11   Predicted versus experimental removal percentage of manganese 
onto Kenaf Fiber Activated carbon (KFAC) 
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(b) 

 

Figure 5.12   Predicted versus experimental Kenaf Fiber Activated carbon 
(KFAC) Yield 

 

5.2.2.2  Removal Effeciency of Kenaf fiber based Activated Carbons 

Based on the F values from Tables 5.9-5.12, both CO2 activation temperature and IR are 

found to have significant effects on the adsorption uptake of Pb(II) cations with 

activation temperature showing the greater effect between these two factors. The effect 

of activation time on the other hand is not significant to the response, following the 

same trend for activated carbons prepared from KC. The quadratic effect of time and IR 

(x2x3) are as well significant whereas the other two quadratic effects of activation 

temperature and ratio (x1x3, x1x2) are considered moderate. For Mn(II) ions also, both 

CO2 activation temperature (x1) and IR (x3) are found to have significant effects rather 

than activation time (x2). Similar observation had been reported for H3PO4 treated rattan 

sawdust where activation temperature and ratio played vital role for development of 

surface area (Ahmad et al., 2009). For adsorption of Cu(II) ions activation temperature 

(x1)  and time (x2) showed almost similar impact.  
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(b) 

  Figures 5.13- 5.16 show three dimensional response surfaces  with contour plot 

which was constructed to show the most important two variables (activation 

temperature and IR) on the  adsorption uptake of KFAC based activated carbons. For 

this plot, the activation time was fixed at zero level (t = 2 h). As can be seen from 

Figure 5.13,5.14 and 5.15, the uptake of Pb(II), Cu(II) and Mn(II)  cations increases 

with increase in activation temperature and IR. However, after a certain limit of 

activation time and ratio, the removal percentage is reduced slightly. This phenomena is 

explained earlier in terms of destruction of pore walls and degradation of surface 

functional groups.  

                       

 Figure 5.13 (a) Three Dimensional Response Surface (b) Surface contour plot of 
removal percentage of lead (II) (Effect of activation temperature and IR, Time, t=2 h) 
onto Kenaf Fiber activated carbon (KFAC)  
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  Figures 5.13- 5.16 show three dimensional response surfaces  with contour 

plot which was constructed to show the most important two variables (activation 

temperature and IR) on the  adsorption uptake of KFAC based activated carbons. For 

this plot, the activation time was fixed at zero level (t = 2 h). As can be seen from 

Figure 5.13,5.14 and 5.15, the uptake of Pb(II), Cu(II) and Mn(II)  cations increases 

with increase in activation temperature and IR. However, after a certain limit of 

activation time and ratio, the removal percentage is reduced slightly. This phenomena 

is explained earlier in terms of destruction of pore walls and degradation of surface 

functional groups.  
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(b) 

 

Figure 5.14 (a) Three Dimensional Response Surface (b) Surface contour plot of 
removal percentage of copper (II) (Effect of activation temperature and IR, Time, t=2 h) 
onto Kenaf Fiber activated carbon (KFAC)  
 

Figure 5.15 (a) Three Dimensional Response Surface (b) Surface contour plot of 
removal percentage of manganese (II) (Effect of activation temperature and IR, Time, 
t=2 h) onto Kenaf Fiber activated carbon (KFAC)  
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(b) 

   

  It was reported in the literature that too long or too short activation time and/or 

too high or too low activation temperature could reduce the surface area  and the 

adsorption capacity of activated carbon. This is because longer activation time and/or 

higher activation temperature might destroy the pore structure formed previously 

whereas shorter activation time and/or lower activation temperature could not enhance 

the formation of porosity (Cao et al., 2006). At very high temperatures, thermal 

annealing causes the walls of the micropore to collapse and form more mesopores 

which are helpful for carrying the adsorbate towards the interior of micropores for 

liquid phase adsorption but in some cases, inspite of high surface area,  if the pore 

distribution is not suitable or pore diameter of those mesopores are larger, then they 

faile to capture and retain the smaller cations resulting in smaller removal effeciency. It 

was observed for these two adsorbates (copper and manganese) that after certain limit of 

temperature and KOH ratio, the adsorption capacity reduced slightly. This phenomenon 

had been explained earlier in terms of porosity and intensity or disruption of surface 

functional groups.  

 

However, for preparing activated carbon from oil palm frond for the removal of 

zinc from aqueous solution by RSM technique similar observation was reported. 

Another pausible explanation for this observation may be due to the formation of more 

ash residues which can sinter and block the pores resulting in smaller removal 

effeciency (Zahangir et al., 2005). However, it is well documented that ash residues 

which are regarded as impurities for activated carbon preparation may take part in 

sorption process of heavy metals due to the presence of oxide content (Ahmad, 2006).  

 

  It was reported in the literature that too long or too short activation time and/or 

too high or too low activation temperature could reduce the surface area  and the 

adsorption capacity of activated carbon. This is because longer activation time and/or 

higher activation temperature might destroy the pore structure formed previously 

whereas shorter activation time and/or lower activation temperature could not enhance 

the formation of porosity (Cao et al., 2006). At very high temperatures, thermal 

annealing causes the walls of the micropore to collapse and form more mesopores which 

are helpful for carrying the adsorbate towards the interior of micropores for liquid phase 

adsorption but in some cases, inspite of high surface area,  if the pore distribution is not 

suitable or pore diameter of those mesopores are larger, then they faile to capture and 

retain the smaller cations resulting in smaller removal effeciency. It was observed for 

these two adsorbates (copper and manganese) that after certain limit of temperature and 

KOH ratio, the adsorption capacity reduced slightly. This phenomenon had been 

explained earlier in terms of porosity and intensity or disruption of surface functional 

groups.  
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(b) 

5.2.2.3  Kenaf Fiber (KF) Activated Carbon Yield 

For activated carbon yield, all the three variables are found to be significant on the 

response. However, activation temperature is found to have the greatest effect on it. The 

quadratic effect of activation temperature is the highest among all the factors being 

considered in this study whereas the interaction effect between activation temperature 

and ratio is insignificant to the response. Figure 5.16 (a) demonstrates the effect of 

activation temperature and activation time on the KF activated carbon yield, with IR 

fixed at zero level (IR = 2), and Figure 5.16(b) shows the effect of activation 

temperature and IR on the same response, with activation time fixed at zero level (t = 2 

h). 

  

Figure 5.16 Three Dimensional Response Surface plot of Kenaf Core activated carbon 
(KCAC) yield (a) Effect of activation temperature and activation time, IR= 2 (b) Effect 
of activation temperature and IR, Time= 2 h) 
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(b) 

Basically, the activated carbon yield was found to decrease with increasing 

activation temperature activation time and IR, following the same trend as the KC and 

KF activated carbon yields. As expected, the increase in activation temperature, time 

and IR would decrease the activated carbon yield due to higher carbon burn off 

(Bacaoui et al., 2001; Yan and Lua, 2003; Lua and Yang 2004; Sentorun-Shalaby et al., 

2006; Wu and Tseng, 2006; Adinata et al., 2007). 

 

5.3 Preparation of Activated Ash 

Activated ash was prepared by using three variables of activation temperature, (x1), ratio 

between OPA and NaOH (x2) and  time, (x3)   based on the central composite design 

(CCD). The preparation variables were changed according to the experimental run and 

20 sample of activated ash was prepared. However, the chemical activating agent  

together with the range of process variables (Temperature, time and ratio) were 

preselected based on the literature.  The responses considered in this study are : 

(i) Y1 - adsorption capacity/ removal percentage of Lead (II) 

(ii) Y2 - adsorption capacity/ removal percentage of Copper (II) 

(iii) Y3 - adsorption capacity/ removal percentage of Manganese (II) 

 

Model regression analysis of the experimental data was performed by using 

Design Expert software version 6.0.6 (STAT-EASE Inc., Minneapolis, US). 

5.3.1 Preparation of Activated Oil Palm Ash (AOPA) using Design of Experiment 

The complete design matrix for preparing activated palm ash is presented in Table 5.13 

20 samples prepared at different experimental condition are designated as S-1 to S-20.  
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(b) 

 

Table 5.13 Experimental Design Matrix for preparation of Activated palm ash (AOPA) from natural palm ash (OPA) 

 

Sample 
ID 

Run Type 
of 

Point 

Level 
(coded Factors) 

Activated oil palm ash preparation 
Variables (Actual Factors) 

Percentage 
Removal, 

Pb (II) 

Percentage 
Removal,  

Cu (II) 

Percentage 
Removal, 
Mn (II) 

      Temperature 
x1, (°C) 

Ratio, x2 
OPA:NaOH, 

  Time, 
x3,(Hour)  

Y1(mg/g) Y2(mg/g) Y3(mg/g) 

S-1 1 Fact -1 -1 -1 80.00 3.00 4.00 32.99 38.38 36.77 
S-2 2 Fact +1 -1 -1 160.00 3.00 4.00 48.89 59.09 46.67 
S-3 3 Fact -1 +1 -1 80.00 5.00 4.00 39.87 56.09 35.56 
S-4 4 Fact +1 +1 -1 160.00 5.00 4.00 53.45 60.22 51.09 
S-5 5 Fact -1 -1 +1        80.00 3.00 8.00 40.99 50.06 38.09 
S-6 6 Fact +1 -1 +1 160.00 3.00 8.00 46.66 69.09 52.06 
S-7 7 Fact -1 +1 +1 80.00 5.00 8.00 58.88 64.98 39.99 
S-8 8 Fact +1 +1 +1 160.00 5.00 8.00 63.33 71.99 53.22 
S-9 9 Axial -1.682 0 0 52.73 4.00 6.00 41.09 49.99 30.99 

S-10 10 Axial +1.682 0 0 187.27 4.00 6.00 60.32 64.55 49.99 
S-11 11 Axial 0 -1.682 0 120.00 2.32 6.00 36.89 51.22 44.88 
S-12 12 Axial 0 +1.682 0 120.00 5.68 6.00 42.88 66.55 52.78 
S-13 13 Axial 0 0 -1.682 120.00 4.00 2.64 38.88 49.56 44.87 
S-14 14 Axial 0 0 +1.682 120.00 4.00 9.34 62.09 65.09 49.89 
S-15 15 Center 0 0 0 120.00 4.00 6.00 44.98 57.99 43.09 
S-16 16 Center 0 0 0 120.00 4.00 6.00 45.44 54.09 47.09 
S-17 17 Center 0 0 0 120.00 4.00 6.00 43.99 61.44 43.09 
S-18 18 Center 0 0 0 120.00 4.00 6.00 45.48 58.88 48.77 
S-19 19 Center 0 0 0 120.00 4.00 6.00 43.44 55.78 40.44 
S-20 20 Center 0 0 0 120.00 4.00 6.00 44.77 55.03 45.09 
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(b) 

      As before, samples S-15 to S-20 at the center point were prepared under the same 

set of variables to determine experimental errors and reproducibiliy of data. S-8 

prepared at factorial point (temperature x1-160 °C, ratio x2-5 and time x3- 8 h) showed 

highest removal effeciency for all the cations. 

 

5.3.1(a) Development of Regression Model Equations for Preparation of Activated 

Ash (AOPA) 

The result obtained in Table 5.13 were correlated with the three preparation variables 

studied using second degree polynomial equation. The final empirical models in terms 

of coded factors after excluding the insignificant terms are presented by Equations 5.11-

5.13. 

 

,(ܫܫ)ܾܲ ݂ ݈ܽݒ݉݁ݎ ݁݃ܽݐ݊݁ܿݎ݁ܲ ଵܻ = 44.65 + ଵݔ5.27 + ଶݔ4.11 + ଷݔ5.40 −

ଵଶݔ  2.33 − ଶଶݔ1.49 + ଷଶݔ2.26 − ଶݔଵݔ0.44 − ଷݔଵݔ2.42 +   ଷ             (5.11)ݔଶݔ2.89

                                                       

(ܫܫ)ݑܥ ݂ ݈ܽݒ݉݁ݎ ݁݃ܽݐ݊݁ܿݎ݁ܲ ଶܻ = 58.00 + ଵݔ5.52 + ଶݔ4.57 + ଷݔ5.01 −

ଶݔଵݔ 3.57 + ଷݔଵݔ0.15 −  ଷ                                                                            (5.12)ݔଶݔ0.13

 

,(ܫܫ)݊ܯ ݂ ݈ܽݒ݉݁ݎ ݁݃ܽݐ݊݁ܿݎ݁ܲ  ଷܻ = 44.64 + 6. ଵݔ19 + ଶݔ1.43 + ଷݔ1.59 −

ଵଶݔ1.76 + ଶଶݔ1.19 + ଷଶݔ0.68 + ଶݔଵݔ0.61  + ଷݔଵݔ0.22 −                                            ଷ                        (5.13)ݔଶݔ0.019

 

The empirical models shown by equation 5.11-5.13 indicate that duration of 

reaction represented by hydration period, temperature and ratio have significant effect 

on the removal efficiency.  For lead and copper, quadratic and 2FI models respectively, 
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(b) 

had been suggested by the software. Apart from terms  x1, x2 and x3, quadratic terms of 

temperature x1
2 and ratio x3

2  and interaction terms of x1x3 and x2x3 are significant model 

terms for removal percentage of lead.  For copper,  x1, x2 and x3, and interaction terms of  

temperature and time xlx2 are significant model terms. However, for manganese uptake 

onto AOPA, both linear and quadratic models were suggested. Due to higher order 

polynomial, the data has been analyzed by using quadratic model. For manganese, x1 

and x3 and quadratic term of temperature, x1
2 is significant. The R2 value for Equations 

5.1-5.4 are 0.94, 0.95 and 0.91 respectively which ensures satisfactory adjustment of the 

developed models with the experimental data. The other statistical parameters used to 

analyze the suitability of the developed models are listed in Table 5.14. 

 

Table 5.14     Statistical parameters for ANOVA analysis for Model regression of 
removal percentage of Pb (II), Cu (II) and Mn (II) for activated oil palm ash (AOPA) 

 

 

 

 

 

 

Statistical Parameters 

Percentage 
Removal of  

Pb (II) 

Percentage 
Removal of  

Cu (II) 

Percentage 
Removal of 

Mn(II) 

 Y1 Y2 Y3 

Standard Deviation, SD% 2.86 2.28 2.62 

Correlation Coefficient, R2 0.94 0.95 0.91 

Adjusted R2 0.89 0.92 0.82 

Mean 46.76 58.00 44.72 

Coefficient of Variation, CV 6.14 3.92 5.85 

Adeq. Precision 14.55 22.42 13.79 

 x1x3  
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(b) 

   The small values of standard deviations and co-efficient of variation, CV  reflected 

reproducibility of the model.  

 

   The values for "Adeq Precision" obtained for all the responses reflected that the 

models can be used to navigate the design space. 

 

  The linear plots obtained for diagnostic tests are shown in Appendix C (C9-

C11). Figures C9 (a-b), C10 (a-b) and C11 (a-b) show outliers t plot and studentized 

residuals vs. predicted plots for removal percentage of Pb(II), Cu (II) and Mn(II) ions 

respectively. From Figures C9 (a), C10 (a) and C11 (a), it was observed, that all the data 

points are between ±3.50 (outlier t plots). Like Kenaf core and kenaf fiber based 

activated carbon (KCAC and KFAC), the studentized residuals vs. predicted plots for 

removal percentage of Pb(II), Cu (II) and Mn(II) ions show no response transformation 

was needed for the experimental design of this study (Myers and Montgomery, 1995). 

   

The adequacy of the developed models were further justified through analysis of 

variance (ANOVA) and the results obtained are depicted in Tables 5.15-5.17. The 

model F-value for removal percentage of lead, copper and manganese are 17.69, 36.92 

and 10.86 respectively which implied that these models are significant. Based on 99% 

confidence level, the model F- value indicated that the  models are reliable in predicting 

the removal percentage of the divalent cations.  
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(b) 

Table 5.15     ANOVA analysis and Lack of Fit test for Response Surface Model for 
removal percentage of lead, Pb (II) by using activated palm ash (AOPA) 

 

Table 5.16     ANOVA analysis and Lack of Fit test for Response Surface Model for 
removal percentage of copper, Cu (II) by using activated palm ash (AOPA) 

 

 

 

 

 

 

Source Sum of 
Squares 

Degree of 
Freedom 

Mean 
Square 

F Value Prob> F Comments 

Model 1313.21 9 145.91 17.69 <0.0001 Significant 
x1 378.86 1 378.86 45.94 <0.0001  
x2 230.15 1 230.15 27.91   0.0004  
x3 397.56 1 397.56 48.21  <0.0001  
x1

2 78.44 1 78.44 9.51   0.0116  
x2

2 32.10 1 32.10 3.89   0.0768  
x3

3 73.30 1 73.30 8.89   0.0138  
x1x2 1.58 1 1.58 0.19   0.6714  
x1x3 46.90 1 46.90 5.69   0.0383  
x2x3 66.76 1 66.76 8.09   0.0174  

Residuals 82.47 10 8.25    
Lack of Fit 79.12 5 15.82 23.59   0.0017 Significant 
Pure Error 3.35 5 0.67    

Source Sum of 
Squares 

Degree of 
Freedom 

Mean 
Square 

F Value Prob> F Comments 

Model 1147.14 6 191.19 36.92 <0.0001 Significant 
x1 415.92 1 415.92 80.31 <0.0001  
x2 285.50 1 285.50 55.13 <0.0001  
x3 343.16 1 343.16 66.26 <0.0001  

x1x2 102.24 1 102.24 19.74   0.0007  
x1x3 0.18 1 0.18 0.035   0.8550  
x2x3 0.13 1 0.13 0.025   0.8765  

Residuals 67.33 13 5.18    
Lack of Fit 29.50 8 3.69 0.49   0.8251 Not 

Significant 
Pure Error 37.82 5 7.56    
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(b) 

Table 5.17     ANOVA analysis and Lack of Fit test for Response Surface Model for 
removal percentage of manganese, Mn (II) by using activated palm ash (AOPA) 

 

Referring to Table 5.15, it is observed that hydration temperature, x1 and 

hydration period, x3 have more impact on adsorbent development for the removal 

percentage of lead.  The effect of OPA to NaOH ratio is less pronounced in this case. 

Similar trend has been observed for uptake of manganese.  

 

From the statistical results obtained, it is shown that the above models 

(Equations 5.11-5.13) are adequate to predict the removal percentage within the 

experimental range of variables selected. The performance of the model can also be 

visualized by observing the linear plots of predicted versus experimental percentage 

removal as shown in Figures 5.17, 5.18,  and 5.19 respectively.  

 

Source Sum of 
Squares 

Degree of 
Freedom 

Mean 
Square 

F Value Prob> F Comments 

Model 669.26 9 74.36 10.86 0.0004 Significant 
x1 523.87 1 523.87 76.47 <0.0001  
x2 28.00 1 28.00 4.09 0.0708  
x3 34.52 1 34.52 5.04 0.0486  
x1

2 44.44 1 44.44 6.49 0.0290  
x2

2 20.49 1 20.49 2.99 0.1144  
x3

3 6.66 1 6.66 0.97 0.3474  
x1x2 2.99 1 2.99 0.44 0.5238  
x1x3 0.39 1 0.39 0.057 0.8159  
x2x3 0.003 1 0.003 0.0004 0.9842  

Residuals 68.50 10 6.85    
Lack of Fit 22.81 5 4.56 0.50 0.7680 Not 

Significant 
Pure Error 45.69 5 9.14    
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(b) 

 

Figure 5.17   Predicted versus experimental removal percentage of lead onto 
AOPA 

 

 

Figure 5.18   Predicted versus experimental removal percentage of copper onto 
AOPA 
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(b) 

 

Figure 5.19 Predicted versus experimental removal percentage of manganese 
onto AOPA 

 

 

5.3.1(b) Removal Efficiency of Activated Ash 

Figures 5.20, 5.21 and 5.22 were constructed to depict the three-dimensional response 

surfaces which show the combined effects of activation temperature (x1) and ratio (x2) 

on the adsorption capacity of the adsorbate. In this case, the activation time was fixed at 

zero level, which was 4 h. As can be seen from the design matrix, removal efficiency of 

AOPA towards the cations increases successively with the increasing ratio between oil 

palm ash and NaOH. This is expected as at higher ratio, more ash would be available to 

react with sodium hydroxide to form active species (Zainudin et al., 2005). However, 

applying too high ratio is not feasible as there will be a decrease in converted alkali per 

unit weight of sorbent (Davini et al., 1994). 

 

 The plots showed that, maximum removal percentage is observed when all the 

preparation variables were set at maximum point. It is observed that increasing contact 
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(b) 

time increases the removal efficiency. This is most probably due to the increase in 

surface area. However, it was reported earlier that dissolution of silica in presence of 

alkali-water is a time-consuming process (Zainudin et al., 2005). Therefore, sufficient 

contact time should be given for the activation process to be completed. It was observed 

in the case of coal fly ash activated with NaOH that, prolonged contact time caused 

dissolution of more silica or alumina from ash particles to react with the activating agent 

resulting in extended surface area (Pretorius et al., 2003).    

 

                                                                                 

 

Figure 5.20 (a) Three Dimensional Response Surface (b) Surface contour plot of 
removal percentage of lead(II) (Effect of activation temperature and Time, IR=4 ) onto 
AOPA 
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time increases the removal efficiency. This is most probably due to the increase in 

surface area. However, it was reported earlier that dissolution of silica in presence of 

alkali-water is a time-consuming process (Zainudin et al., 2005). Therefore, sufficient 

contact time should be given for the activation process to be completed. It was observed 

in the case of coal fly ash activated with NaOH that, prolonged contact time caused 

dissolution of more silica or alumina from ash particles to react with the activating 

agent resulting in extended surface area (Pretorius et al., 2003).    
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(b) 

 

Figure 5.21 (a) Three Dimensional Response Surface (b) Surface contour plot of 
removal percentage of copper (II) (Effect of activation temperature and Time, IR=4) 
onto AOPA 
 
 

 
 
Figure 5.22 (a) Three Dimensional Response Surface (b) Surface contour plot of 
removal percentage of manganese (II) (Effect of activation temperature and Time, 
IR=4) onto AOPA 
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(b) 

 Present study shows that increasing temperature increases removal efficiency. 

Similar observation was reported for activation of coal fly ash by using CaOH, where it 

was observed that by changing reaction condition preset at 40 °C for 4 hours to 90 °C  

for 6 h, the  BET surface area became almost double (Davini et al., 1994). It was 

observed that Amaga coal based ash after treated with NaOH of different concentration, 

time and temperature produced an activated adsorbent having adsorptive capacity equal 

to 70-80% of the commercially available zeolite (Mehta, 1989).  However, bagasse fly 

ash treated with hydrogen peroxide was reported to remove 95% to 96% of lead and 

chromium from waste water (Gupta et al., 2004).  

 

5.4  Optimization of Process Parameters 

To produce  powdered form of commercial activated carbons, relatively high product 

yields are expected. At the same time,  the most important property of an activated 

carbon is its adsorption performance. Therefore, in a practical manufacturing process, a 

compromise should be made between the activated carbon yield and the adsorption 

performance of the prepared activated carbon. However, to optimize both these 

responses under the same condition is difficult because for the  region of interest the 

factors are different.  As observed from the basic design matrix for all the precursors, 

when adsorption performace was increasing, carbon yield  was decreasing and vice 

versa.   

In order to compromise between these two responses, the numerical 

optimization menu was selected using Design Expert software version 6.0.6 (STAT-

EASE Inc., Minneapolis, LTS). In order to optimize the preparation conditions for all 

types of powdered activated carbons used for adsorption of Pb(II), Cu(II) and Mn(II) 

ions from aqueous solution, the targeted criteria were set as maximum values for all the 

 
 Present study shows that increasing temperature increases removal efficiency. 

Similar observation was reported for activation of coal fly ash by using CaOH, where it 

was observed that by changing reaction condition preset at 40 °C for 4 hours to 90 °C  

for 6 h, the  BET surface area became almost double (Davini et al., 1994). It was 

observed that Amaga coal based ash after treated with NaOH of different concentration, 

time and temperature produced an activated adsorbent having adsorptive capacity equal 

to 70-80% of the commercially available zeolite (Mehta, 1989).  However, bagasse fly 

ash treated with hydrogen peroxide was reported to remove 95% to 96% of lead and 

chromium from waste water (Gupta et al., 2004).  
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(b) 

three responses along with yield and the values of the  three variables (CO2 activation 

temperature, CO2 activation time and IR) were set in the ranges being studied. However, 

after model simulation, different operating conditions were suggested for different 

adsorbate-adsorbent system. The optimization ramp for KCAC and KFAC including 

exact design points estimated by the software is provided in Appendix D. Therefore, 

three optimum operating conditions must be determined for each adsorbate for 

powdered activated carbon (KCAC and KFAC). Since same sets of variables were 

preselected for adsorption studies of all the cations onto AOPA, sample-8 was 

considered for further surface charecterization and adsorption studies. Based on 

optimization ramp for KCAC and KFAC, the summary of the results including AOPA 

are tabulated in Tables 5.18, 5.19 and 5.20. 

 

The experimental condition listed in Table 5.18-5.20 were applied to prepare the 

optimum activated adsorbent from KC, KF and AOPA for the adsorption of Pb(II), 

Cu(II) and Mn(II) ions. The predicted and experimental values for the responses 

obtained for each activited carbon prepared are also presented in the same Tables 5.18 -

5.20. The result revealed a trend showing that higher activation tempeature is needed to 

prepare activated carbon for lead compared to other two cations. This is due to the 

different characteristics and affinity of the three adsorbate towards the prepared 

adsorbents. However, for activation time and ratio, no consistent trend is observed on 

the responses. This could be explained based on the observation obtained earlier where 

the effect of these two variables on the uptake capacity are comparatively minor 

compared to temperature. 
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(b) 

 

 

Table 5.18 Process Parameters optimization for adsorption of Lead Pb (II) 

 

Activated 
Adsorbent 

Activation 
Temperature 

Activation 
Ratio 

Activation 
Time 

Lead Adsorption Capacity 
(%) 

Activated Carbon Yield 
(%) 

(°C) - (Hour) Predicted Experimental Error Predicted Experimental Error 
KCAC   651.53 1.00 1.00 82.24 93.59 12.14 24.42 22.59 8.05 

KFAC 700.00 1.35 1.00 87.84 93.23 5.78 21.99 22.22 1.03 

AOPA 160.00 5.00 8.00        - 63.22    -    -    -    - 
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(b) 

                                                               

 

Table 5.19 Process Parameters optimization for adsorption of Copper Cu (II) 

 

Activated 
Adsorbent 

Activation 
Temperature 

Activation 
Ratio 

Activation 
Time 

Copper Adsorption Capacity 
(%) 

Activated Carbon Yield 
(%) 

(°C) - (Hour) Predicted Experimental Error Predicted Experimental Error 
KCAC 568.00 1.75 2.02 89.02 97.24 8.45 24.66 27.55 0.10 
KFAC 500.00 3.00 1.25 86.99 96.54 9.89 26.02 26.99 3.59 
AOPA 160.00 5.00 8.00         - 71.99    -    -    -    - 

 

                                                             

Table 5.20 Process Parameters optimization for adsorption of Manganese Mn (II) 

 

Activated 
Adsorbent 

Activation 
Temperature 

Activation 
Ratio 

Activation 
Time 

Manganese Adsorption Capacity 
(%) 

Activated Carbon Yield 
(%) 

(°C) - (Hour) Predicted Experimental Error Predicted Experimental Error 
KCAC 584.27 1.74 1.68 88.99 90.01 1.13 24.54 23.51        4.38 
KFAC 573.96 3.00 1.31 88.12 86.23 2.19 20.62 20.06 2.79 
AOPA 160.00 5.00 8.00     - 53.22    -    -    -    - 
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It can be seen from the tabulated results in Tables 5.18-5.20 that the 

experimental and predicted values obtained for yield showed deviation errors less than 

removal percentage. However, the predicted result for removal effeciency deviated less 

than 10% except for lead using kenaf core activated carbon (KCAC). This indicates that 

the models are suitable and sufficient to determine the responses from the operating 

variables. 

 

Process parameter optimization to produce activated adsorbent from oil palm ash 

(OPA) is less complicated compared to the production of powdered activated carbon 

because there is no need to consider two opposing responses. However, for preparing 

activated ash from natural oil palm ash, sample S-8 prepared at 160 °C, contact time 8 h 

and OPA to NaOH ratio of 5 is taken as the optimum  as it  shows maximum removal 

effeciency for all the adsorbates under investigation.  

 

5.5 Summary 

Based on this study, the effects of the operating variables are optimized for preparing 

powdered activated adsorbent from lignocellosic materials such as KC and KF together 

with a silaceous starting material of OPA. Although these two types of starting materials 

originate from agricultural biomass, they contain different, even zero proportion of 

carbon (OPA) as depicted earlier. In view of this, different range of process variables 

were preset to get maximum removal effeciency from oil palm ash (OPA) so as to 

compare it’s performance with other powdered activated carbon obtained from KC and 

KF  and commercial activated carbon.  
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The experimental design results for preparing activated carbon revealed that CO2 

activation temperature is the most important factor influencing the adsorption 

performance of the activated carbons prepared from KC and KF regardless of different 

adsorbates. However, all the three variables showed significant effects on the activated 

carbon yields, in spite of the different types of precursors used. It could be concluded 

that the variables investigated are important factors which must be taken into 

consideration in activated carbon production. The process optimization resulted in 

activated carbons with maximum possible yield and adsorption performance within the 

experimental ranges studied. This would help in minimizing the activated carbon 

production costs  industrially. The experimental design matrix for activation of palm ash 

demonstrated that hydration temperature, time and ratio are important parameters in 

extending the sorption capacity.  

 

It is well known that production of powdered activated carbon (PAC) suffers 

from some major drawbacks of weight loss during preparation and handling steps. On 

the contrary, granular activated carbons (GAC) have attrition resistance i.e., least 

tendency of mass loss depending on the precursors. That’s why in this study all the 

powdered activated adsorbent (KCAC, KFAC and AOPA) were prepared under 

optimum condition to ensure maximum output of the process. 

 

However, all the powdered activated adsorbent prepared under optimum 

conditions need to be further characterized in order to study their physio-chemical 

features which influence the removal effeciency (Chapter 6). The effects of parameters 

affacting the adsorption performance of the prepared activated adsorbents such as 

adsorbate initial concentration, contact time, solution temperature, solution pH as well 
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as the adsorption isotherms, kinetics and thermodynamic behaviors are further evaluated 

and the results are discussed in the following Chapter 7. The regeneration effeciency of 

the spent adsorbents is also presented. 
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CHAPTER SIX 
RESULTS AND DISCUSSION 

Activated Adsorbent Characterization 
 
 

6.1  Introduction 

This chapter presents the experimental results and discussion on the characterization of 

the prepared activated adsorbent (KCAC, KFAC, AOPA and MFSAC). The physical 

and chemical properties of the prepared adsorbent are determined. This gives insight 

about the sorption mechanism of metallic cations (lead, copper and manganese) onto 

their surface. A summary is presented in the last part of this chapter. 

 

6.2 Physical Characterization of Prepared Activated Adsorbent 

The adsorption performance of the activated adsorbent is highly influenced by the 

physical properties. In this study, all the adsorbents prepared were characterized for 

their physical characteristics by determining the BET surface area, micropore-mesopore 

surface area, total pore volume and avarage pore diameter including bulk density and 

iodine number measurement. SEM analysis of the prepared sorbent was done to study 

their surface morphology. Table 6.l lists the operating canditions applied to prepare the 

powdered activated adsorbent (KCAC, KFAC and AOPA) from different starting 

materials which were optimized for the adsorption of divalent cations of lead, copper 

and manganese from synthetic water in Chapter Five (Section-5.4).  The preparation 

variables used for granular activated sorbent (MFSAC) derived from mangostene fruit 

shell (MFS) are also provided in the same Table. 

. 
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Table 6.1 Powdered and Granular Activated Adsorbent preparation under Optimum 
condition 

 

 
Starting 
Material 

Carbonaceous 

Activated 
Adsorbent Activation Condition  

Yield 
Powdered 
Activated 

Activation 
Temperature 

Activation 
Time 

KOH: Char, 
Ratio 

 

Carbon (PAC) ( °C) (Hour) - - 

 
Kenaf Core (KC) 

KCAC (Pb) 651.53 1.00 1.00 22.59 

KCAC(Cu) 568.00 2.02 1.75 27.55 

KCAC(Mn) 584.27 1.68 1.74 23.51 

Kenaf Fiber 
(KF) 

KFAC (Pb) 700.00 1.00 1.35 22.22 

KFAC (Cu) 500.00 1.25 3.00 26.99 

KFAC(Mn) 573.96 1.31 3.00 20.06 

Starting 
Material 

Carbonaceous 

Granular 
Activated 

Carbon (GAC) 

 
Activation 

Temperature 
Activation 

Time 

 
KOH: Char, 

Ratio 

 
Yield 

 ( °C) (Hour) - - 
 

Mangostene 
Fruit Shell(MFS) 

 

 
MFSAC 

 
750.00 

 

 
2.00 

 
1.00 

 
32.57 

 
Starting 
Material 

Mineral Based 

 
Powdered 
Adsorbent 

 
Activation 

Temperature 
 

( °C) 

 
Activation 

Time 
 

(Hour) 

 
OPA: NaOH 

Ratio 
 
- 

 
Yield 

 
 
- 

Natural Palm ash 
(OPA) AOPA 

 
160.00 

 
8.00 5.00 

 
       N/A 

N/A- Not applicable 

 

6.2.1 Surface Area and Pore Characteristics 

The surface area and pore characteristics of the prepared sorbent including the pore 

volume and pore size distribution were analyzed using Quantachrome Autosorb 6B, an 

automated gas sorption system through nitrogen adsorption isotherm at 77 °K and the 

results obtained for each sample were calculated by the software provided with the 

system. The surface area and pore characteristics determined by the software 

(Micropore version 2.26) are presented in Table 6.2(a).  



 

 
168 

 

 
 
 
 

Table 6.2(a) Surface area and pore characteristics of prepared activated adsorbents 

        Starting 
Material 

Carbonaceous 

Type of 
Activated 
Carbon 

 

BET 
Surface 

area 
 
 
 

(m2/g) 

Cumulative 
Adsorption 

Surface 
area(BJH) 

 
 

(m2/g) 

Micropore 
Surface area 

 
 
 
 

(m2/g) 

Meso pore  
Volume 

 
 
 
 

(cc/g) 
 

Micro pore 
Volume 

 
 
 
 

(cc/g) 
 

Total Pore 
Volume 

 
 
 
 

(cc/g) 
 

Average 
pore 

Diameter 
 
 
 

°A 

Bulk 
Density 

Iodine 
Number 

(PAC) 

 
 

(g/mL) 

 
 

(mg/g) 

Kenaf Core 
(KC) 

KCAC (Pb) 1532.02 974.87 1043.00 0.2129 0.6194 0.8323 23.79 0.304 955.43 

KCAC(Cu) 1020.03 545.45 815.04 0.1612 0.4177 0.5789 22.70 0.312 802.00 

KCAC(Mn) 1062.04 657.82 1004.30 0.1687 0.4378 0.6065 23.02 0.349 789.00 

Kenaf Fiber 
(KF) 

KFAC (Pb) 525.50 504.10 610.23 0.1051 0.2169 0.3220 24.91 0.353 510.67 

KFAC (Cu) 330.40 178.33 361.30 0.0540 0.1350 0.1890 22.90 0.332 310.22 

KFAC(Mn) 386.03 219.80 278.60 0.0725 0.1605 0.2330 24.10 0.339      333.87 

 
Starting 
Material 

Carbonaceous 

 
Activated 
Carbon 

 

BET 
Surface 

area 
 
 

(m2/g) 

Cumulative 
Adsorption 

Surface 
area(BJH) 

 
(m2/g) 

Micropore 
Surface area 

 
 
 

(m2/g) 

Meso pore 
Volume 

 
 
 

(cc/g) 
 

Micro pore 
Volume 

 
 
 

(cc/g) 
 

Total Pore 
Volume 

 
 
 

(cc/g) 
 

Average 
pore 

Diameter 
 
 

°A 

Bulk 
Density 

Iodine 
Number 

 
(GAC) 

 
    (g/mL) 

 
(mg/g) 

Mangostene 
Fruit Shell(MFS) MFSAC 312.03 178.03 261.32 0.1177 0.1280 0.2457 28.90 

 
0.435 

 
298.78 

 
Starting 
Material 

Mineral Based     Activated  
Ash 

BET 
Surface 

area 
 
 

(m2/g) 

Cumulative 
Adsorption 

Surface 
area(BJH) 

 
(m2/g) 

Micropore 
Surface area 

 
 
 

(m2/g) 

Meso pore 
Volume 

 
 
 

(cc/g) 
 

Micro pore 
Volume 

 
 
 

(cc/g) 
 

Total Pore 
Volume 

 
 
 

(cc/g) 
 

Average 
pore 

Diameter 
 
 

°A 

Bulk 
Density 

 
 
 

(g/mL) 

Iodine 
Number 

 
 
 

(mg/g) 

Natural Palm 
Ash (OPA) AOPA 467.10 334.65 561.9 0.349 0.199 0.548 46.91 

 
0.154 

 
192.22 
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The high BET surface areas and favourable pore size distribution of the prepared 

activated adsorbents are due to the preparation conditions applied for the activation 

process. For preparing activated adsorbent, pore size distribution plays a vital role. It 

was reported that, small pore size would fail to capture larger adsorbates where as large 

pore size might take the smaller adsorbate instantly but are unable to retain them 

permanently resulting in overall lower removal effeciency (Ahmenda et al., 2000). If 

larger proportion of lignin is present inside the precursors, it will produce macroporous 

activated carbon, while high content of cellulose will yield microporous activated 

carbon (Savova et al., 2003). It is well documented in the literature that, micropores are 

characterized by large surface area but they constitute lower fraction of pore volume 

compared to mesopores (Grigis et al., 2002). For preparing activated carbon, semi 

carbonization step is important to disrupt the cellulosic backbone. Neverthless, this can 

enhance the BET surface areas and pore volumes by increasing the diffusion of KOH 

and CO2 molecules into the pores and thereby increasing the KOH-carbon and CO2-

carbon reactions.  

KOH can react with carbonaceous precursors to form micropores which can 

provide effective activation path for steam or any types of activating gases. However, 

the micropores present inside the carbon matrix can recombine leading to macropres 

and mesopores after heat treatment. Macropores acts as tunnels which enables the  

adsorbate to enter inside the smaller pores at the interior side of the carbon matrix where 

they can be adsorbed and retained. Presence of macropores does not contribute to the 

overall sorption process since they have low surface area but they affect significantly 

the admission of the adsorbate into the meso and micro pores (Qureshi, 2008). 

Therefore, an optimal addition of KOH with the precursor is necessary to ensure the 

proper pore size distribution. Stavropouios and Zabaniotou (2005) described the 
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reaction mechanism of KOH with carbon. Their findings revealed that, at first stage of 

activation, KOH would  dehydrate to produce K2O. K2O would react further with CO2  

by the water-shift reaction to yield K2CO3 during the second phase of activation. Thus, 

intercalation of metalic potassium is reported for the drastic expansion of the 

carbonaceous precursors. This would finally provide enlarged specific surface area with 

high pore volume (Salman et al., 2010, Tseng and Tseng, 2005). Oh and Park (2002) 

observed a drastic increment of BET surface area between 700 and 800 °C, which was 

mainly due to the remarkable increment of mesopores inside the carbon matrix of rice 

straw. The results obtained in this study are in concurrence with the activation 

mechanism established in the literature where Tseng et al. (2006) stated that CO2 

gasification could enhance the formation of mesopores resulting an increase in the 

surface area of corncob-based activated carbon. Hayashi et al. (2002) also revealed that, 

the total pore volume of chickpea husk-based activated carbons increased with an 

increase in activation temperature and the micropore volume was slightly decreased 

between 800 and 900 °C, but mesopore volume was increased rapidly.  

As can be seen from Table 6.2(a), the BET surface areas and total pore volumes 

of the activated carbons prepared for adsorption of lead, Pb(II) cations are slightly 

higher than that derived for the other two cations’ adsorption for the same precursor 

used. This trend is expected as higher activation temperature and IR are applied for 

preparing these activated carbons due to the larger cationic size of lead which needed 

activated carbons with larger pore size to effectively adsorb it, as compared to the other 

two cations. Overall the activated adsorbent prepared in this study showed 

characteristics which are comparable with other adsorbent derived from agro residues. 

Table 6.2(b) summarizes the physical properties determined by previous researchers for 

preparing activated adsorbent from agricultural residues for comparison. 
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Table 6.2(b) Physical characteristics of activated carbons from various agricultural residues 

Precursors BET 
Surface 

area (m2/g) 

Micropore 
volume 
(cm3/g) 

Mesopore 
Volume 
(cm3/g) 

Average 
pore 

Diameter, 

Yield (%) Adsorbate 
Treated 

    Reference 

Rice husk  168-480 0.597-1.365 - 1.90-4.40 - - Yalcin and Sevinc, 2000 

Corncob  54-722 0.062-0.417 - 1.102-2.529 - MB, phenol, Pb2+ El-Hendawy, 2005 

Coconut Shell  1017-2634 0.494-1.913 - 1.99-3.49 14.50-38.90 Phenol, MB, 
Erythrosine red 

Hu and Srinivasan, 2001 

Corncob  309-2595 0.20-1.43 0.14-1.12 2.10-2.90 15.00-22.30 MB, basic brown l, 
acid blue 74, 2,4-

Tseng and Tseng 2005 

Rice straw 280-790 - - 2.13-2.69 - - Yun et al., 2001 

Jute Fiber Coconut 
fiber 

912-1303 0.605-0.726 0.381-0.536 0.56-0.68 - Acid red 27, Cu2+ Phan et al., 2006  

 Apricot stone 225-1092 0.15-0.63 - - 5.20-25.70 Iodine Sentorun-Shalaby et al.,2006 

Oil palm shell 400-1300 0.21-0.69 - 1.90-2.40 - NH3, NO2 Guo and Lua, 2002 

Coconut shell 524.50 0.226 0.21 - - - Achaw and Afrane. 2007 

Oil palm fiber and oil 
palm Shell 

400-1100 - - - - SO2 

2

Guo and Lua, 2000  

Rice straw  370-2410 0.25-1.39 0.12-0.56 - - MB, iodine Oh and Park, 2002 

Chickpea  500-1750 0.20-1.00 0.18-0.75 - - - Hayashi et al., 2002 

Euphorbia rigida 741.2 0.301 0.273 1.06 - MB Gercel et al., 2007  

Rice husk 345-439 0.335-0.387 0.111-0.118 3.53-3.94 37.69-40.66 Phenol Kennedy et al., 2007  
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Table 6.2(b) Continued 

- Not  Calculated 

Precursors BET 
Surface 

area (m2/g) 

Micropore 
volume 
(cm3/g) 

Mesopore 
Volume 
(cm3/g) 

Average 
pore 

Diameter, 

Yield (%) Adsorbate 
Treated 

    Reference 

Date pit 28-945 0.017-0.545 0.012-0.358 - - MB Girgis and EI-Hendawy, 2002 

Pistachio-nut Shell 800-1946 - - - 12.35-21.14 SO2 Lua and Yang, 2004 

Peanut hull 80.8-1177 0.053-0.597 0.043-0.570 - 22.00-36.00 MB Girgis et at., 2002 

Palm shell 248-1170 - - - 11.85-27.84 CO2 Adinata et al., 2007 

Sago waste 625 0.67 - - 78.00 Mercury (II) Kadirvelu et al., 2004  

CaOH modified Palm 
Ash 

134.20 - - - - SO2 Zainuddin et al., 2005 

NaOH modified Coal fly 
ash (21 h, room 
temperature) 

49.00 - - - - Cu and Cd Pretorius et al., 2006 

NaOH modified Coal fly 
ash (72 h, room 
temperature) 

62.00 - - - - Cu and Cd Pretorius et al., 2006 

NaOH modified Coal fly 
ash (21 h, room 
temperature) and 
refluxed with 3 M HCl 

210.00 - - - - Cu and Cd Pretorius et al., 2006 
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The results also reveal that, all the activated adsorbents prepared in this study are 

mesoporous as their average pore diameters are larger than 2.2 °A . Thus the activated 

adsorbents are in the mesopores region according to the IUPAC classification (IUPAC, 

1972). The activated carbons prepared from KC have relatively high BET surface areas 

rather than KF, MFS and AOPA. Overall the BET surface area obtained here are 

comparable with the commercial activated carbons such as lignite, F100, BPL from 

Calgon, US and BDH from Merck, which were reported to have BET surface areas of 

600-650, 957, 972 and 1118 m2/g respectively (Martin et al., 2003). 

 

The granular activated carbon, MFSAC prepared in this work has less surface 

area than the powdered activated carbon. This might be due to its slightly hard texture 

than the other two soft precursors of KC and KF or its granular particle size which can 

not ensure sufficient contact time or effective surface area for CO2 and KOH to 

penetrate inside the carbon matrix and participate in the reaction mechanisms. 

Mangostene fryit shell based activated carbon (MFSAC) is used for batch and fixed bed 

adsorption studies in this work.  

 

A significant increase in surface area is observed for NaOH treated oil palm ash 

(OPA) at high temperature. This might be due to the pozzolanic reaction carried out 

between alkali and SiO2 and Al2O3 to form reactive species of hydrated silicate or 

hydrated aluminate. Similar trend was followed by Ca(OH)2 treated palm ash and coal 

ash for sorption studies of SO2 (Zainuddin et al., 2005; Davini et al., 1996). Fly ash 

from amaga coal was treated with NaOH at various temperature, time and concentration 

to produce highly reactive zeolite having adsorptive properties equal to 70-80% of 

commercial zeolite (Iyer and Scott, 2001). This reaction was also defined as hydration 
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reaction in previous literature (Zainuddin et al., 2005). The subsequent section of XRF 

analysis also supports this phenomenon. 

6.2.2 Determination of Bulk Density 

For producing activated adsorbent, determination of bulk density is important as it 

ensures sufficient mechanical strength, thereby reducing weight losses during treatment 

process. It depends not only on the characteristics of the starting materials but also the 

activation method (Zahangir et al., 2008). 

   

  It is observed from Table 6.2 (a) that, the bulk density of MFSAC is higher than 

KCAC and KFAC. This is due to its hard texture as compared to soft precursors of KC 

and KF. Similar phenomena have been reported for producing activated carbon from 

almond nutshell and rice husk by H3PO4 acid treatment (Qureshi, 2008). The previous 

one due to its hard texture showed bulk density of 0.52 g/ml whereas the later one had 

bulk density 0.25 g/ml (Qureshi, 2008).  In the case of KCAC and KFAC, the activated 

sample prepared for Pb (II) cations have iodine number slightly higher than the other 

two cations. This might be due to the application of relatively higher temperature for 

preparation of these types of activated carbon. It was depicted earlier in ANOVA 

analysis also that, temperature had showed greatest impact for producing activated 

adsorbent here rather than the other two factors of ratio and time.  

 

6.2.3 Determination of Iodine Number 

Iodine number is one of the most fundamental parameter to characterize the activated 

adsorbents chemically. It provides the idea about the surface area of the prepared 

sorbent. The iodine number obtained in this work is reported in Table 6.2 (a). It is 

observed that KC based activated carbon showed highest iodine number. The result 
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obtained here further supports the BET surface area of the prepared sample. The high 

values of iodine number reflect a high surface area with significant amount of pores in 

the micro porous region (Gergova et al., 1993). It was reported that, steam activated 

bagasse based activated carbon had iodine number 533.4 mg/g whereas rice husk based 

activated carbon showed iodine number of 228.6 mg/g (Qureshi, 2008). Physical 

activation of Acacia Arabica produced activated carbon having iodine number 780 mg/g 

whereas coconut shell showed high iodine number of 1082 mg/g (Usmani, 2001). 

 

6.2.4 Surface Morphology 

The surface morphology of the KC, KF and MFS precursors together with their 

respective chars and activated carbons, natural oil palm ash (OPA) and activated oil 

palm ash (AOPA) were examined using scanning electron microscopy (SEM). From the 

SEM micrographs obtained, the change in surface texture and pore development are 

clearly visible.  

 

  Plates 6.1(a)-(e) respectively show the SEM micrographs of the KC precursor, 

semi carbonized char of KC, and the activated samples prepared for lead, copper and 

manganese. Plates 6.2(a)-(e) and Plates 6.3(a)-(e) correspondingly show the SEM of 

micrographs of those obtained for KF and MFS. The SEM pictures of OPA and AOPA 

are illustrated in Plates 6.4(a)-(b).  

 

  As can be observed from SEM micrographs of the precursors (Plates 6.1(a) and 

6.2(a)), the surface textures of the lignocellulosic precursors of KC and KF are 

comparatively rough and uneven with some minor pores observed on their surface. 

After semi carbonization process, some pores are developed and found on the surfaces 

of the chars, as shown in Plates 6.1(b), and 6.2(b). 
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(a) (b) 

(c) (d) 

(e) 

Plate 6.1 SEM Micrographs (x 12000) of (a) Raw Kenaf Core (b) Semi carbonized 
Kenaf Core (c) KCAC for Pb (d) KCAC for Cu (e) KCAC for Mn 

 Mag- 12000x       Auriga= 39-22   1 µm           WD-4.7 nm  EHT- 1.00KV   
 Signal –SE 2         sample KC-1          Date- 30 Dec 2010     Time: 12:19 

 Mag- 12000x       Auriga= 39-22   1 µm           WD-4.7 nm  EHT- 1.00KV   
 Signal –SE 2                 sample KC-2        Date- 30 Dec 2010     Time: 2:20 

 Mag- 12000x       Auriga= 39-22   1 µm           WD-4.7 nm  EHT- 1.00KV   
 Signal –SE 2         sample KC-3          Date- 30 Dec 2010     Time: 3:10 

 Mag- 12000x       Auriga= 39-22   1 µm           WD-4.7 nm  EHT- 1.00KV   
 Signal –SE 2                 sample KC-4          Date- 30 Dec 2010     Time: 3:19 

 Mag- 12000x       Auriga= 39-22   1 µm           WD-4.7 nm  EHT- 1.00KV   
 Signal –SE 2         sample KC-5                 Date- 30 Dec 2010     Time: 4:15 

Shiny Deposits Mesopore
s 

Micropore

Semicircular pores 
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Plate 6.2 SEM Micrographs (x 12000) of (a) Raw Kenaf Fiber (b) Semi carbonized 
Kenaf Fiber (c) KFAC for Pb (d) KFAC for Cu (e) KFAC for Mn 

(a) (b) 

(c) (d) 

(e) 

 Mag- 12000x       Auriga= 39-22   1 µm           WD-4.7 nm  EHT- 1.00KV   
 Signal –SE 2         sample KF-1          Date- 17 June  2010     Time: 9:30 

 Mag- 12000x       Auriga= 39-22   1 µm           WD-4.7 nm  EHT- 1.00KV   
 Signal –SE 2                sample KF-2        Date- 17 June 2010     Time: 10:22 

 Mag- 12000x       Auriga= 39-22   1 µm           WD-4.7 nm  EHT- 1.00KV   
 Signal –SE 2                 sample KF-3          Date- 15  June 2010     Time: 9:19  Mag- 12000x       Auriga= 39-22   1 µm           WD-4.7 nm  EHT- 1.00KV   

 Signal –SE 2               sample KF-4   Date- 15 June  2010     Time: 102:19 

 Mag- 12000x       Auriga= 39-22   1 µm           WD-4.7 nm  EHT- 1.00KV   
 Signal –SE 2                 sample KF-5          Date- 30 June 2010     Time: 12:30 
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  The pores formed after semi carbonization stage are narrow, tapered and some 

of them are even blocked by tarry substances. The deposition of tarry substances 

occurred when the volatile materials were diffusing out of the carbon matrix into the gas 

main stream during the semi carbonization step. Some of the substances might have a 

collision with the pore walls, which leads to hydro cracking and eventually resulted in 

carbon deposition (Kamishita, 1977). For preparing guava seed based activated carbon, 

it was observed that semi carbonization alone did not create sufficient porosities due to 

the incomplete decomposition of organic constituents present in the carbonaceous 

precursors. In that case, the pores were significantly blocked by the residues of 

carbonization products (Rahman and Saad, 2003). 

  

  All the activated carbons produced from KC demonstrate homogeneous pore 

size distributions with uniform pore arrangements. As shown in Plates 6.1(c)-(e) and 6.2 

(c)-(e), the pores available on the surfaces of the activated carbons prepared from KC 

are well pronounced with distinct pore walls. They are arranged in a group of honey-

combed structures. In addition to that, the matters which are blocking the pores on the 

chars are gasified by the activation process. Thus they are carried away with the exhaust 

gas leaving most of the pores clear and easily absorbable by the cations. Inside the walls 

of the large pores, small amount of minute pores are visible for activated carbon 

prepared from KC for lead. Some shiny tarry deposition was observed on the right side 

of KCAC prepared for copper. However, at higher temperature some pore walls were 

broken leading to half circular pores on the surface of KCAC prepared for manganese.  

It was observed that after CO2 activation at higher temperature, clear and well-

developed pore structure was obtained on the pistachio-nut shell-based activated carbon 

(Yang and Lua, 2003).  
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  Cylinder-like tubes are observed in the SEM micrographs of KFAC indicating 

that the activated carbons prepared from this precursor are made up of cylinder-like 

tubes. The pores are mainly developed by the side of the axis parallel to the cylindrical 

structure of the samples. Similar types of pore arrangement were observed in the 

activated carbon prepared from palm fiber, jute and coconut fibers (Tan, 2008, Phan et 

al., 2006).The rough texture of KF changes due to the cross linking of the reactive 

points of the cylinders caused by the disruption of the original polymeric arrangement 

of the precursor material (i.e. the cellulose and lignin units of the precursor) (Phan et al., 

2006). Consequently, the reconstitution of the new matrix structure during the 

carbonization and the subsequent activation processes in the presence of different 

activating agent results in the formation of well developed pores (Achaw and Afrane, 

2007) in KF based activated carbon.  

 

  Figure 6.3 (a) shows the surface morphology of raw mangostene fruit shell 

(MFS) with some occasional pores over its surface. After the semi-carbonization step, 

the surface becomes rough and uneven like KC and KF with some irregular shaped 

pores. Some anonymous fragments are observed on the surface of char which might be 

due to the residues of tarry substances formed during the semi-carbonization stage. The 

activated carbons produced from MFS demonstrate homogeneous pore size distributions 

with uniform pore arrangements having circular or elliptical shape. As shown by Figure 

6.3(c), the pores available on the surfaces of the activated carbons are visible, well 

pronounced with distinct and smooth pore walls. The results showed that, KOH and 

CO2 are effective in creating well developed pores on the surfaces of the precursors 

leading to the activated carbons with large surface areas and pore volume.  
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  The pore size of the activated carbons prepared for adsorption of lead were 

comparatively larger with relatively thin pore walls for KC and KF based activated 

carbon as high temperature has been used to prepare the sample. These results are 

further supported by total pore volume and average pore diameter demonstrated by KC 

and KF activated carbon prepared for sorption of lead in section 6.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    

(a) (b) 

(c) 

Plate 6.3 SEM Micrographs (x 10000) of (a) Raw Mangostene Fruit Shell (MFS) (b) 
Semi carbonized Mangostene Fruit Shell (MFS) (c) Granular Activated Carbon MFSAC 
 

 Mag- 12000x       Auriga= 39-22   1 µm           WD-4.7 nm  EHT- 1.00KV   
 Signal –SE 2                 sample M-1          Date- 5 Jan 2011     Time: 12:20 

 Mag- 12000x       Auriga= 39-22   1 µm           WD-4.7 nm  EHT- 1.00KV   
 Signal –SE 2              sample M-2            Date- - 5 Jan 2011    Time: 12:30 

 Mag- 12000x       Auriga= 39-22   1 µm           WD-4.7 nm  EHT- 1.00KV   
 Signal –SE 2                 sample M-3          Date- - 5 Jan 2011     Time: 2:30 
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Figures 6.4 (a)-(b) show the surface texture of natural and activated oil palm ash. 

Compared to the ligno cellulosic precursors, the surface texture of natural oil palm ash 

is smooth, dense without any cracks and crevices due to grinding and several times 

washing with distilled water. However, substantial number of shallow pores with 

different structure is observed after activation of the sample. Due to this well developed 

porosities created by sodium hydroxide, activated oil palm ash has extended surface 

area and adsorption capacity than the natural oil palm ash. After activation, the structure 

looks like amorphous silica which is a highly reactive species and can form surface 

complexes with the cations under investigation.  

 

 

 

 

 

 

 

Similar morphological feature has been shown by base modified acid etched 

South African coal fly ash after Na-P1 zeolite synthesis by previous researchers 

(Pretorius and Woolard, 2003). The result obtained for activated ash is further supported 

by FTIR analysis in the subsequent section of 6.2.4. 

 

 

(a) (b) 

Plate 6.4 SEM Micrographs (x 10000) of (a) Natural Oil palm ash (NOPA) (b) Activated 
Oil palm ash (AOPA) 
 

 Mag- 10000x       Auriga= 39-22   1 µm           WD-4.7 nm  EHT- 1.00KV   
 Signal –SE 2                Ash  sample S-1     Date- 3 Dec 2009     Time: 24:19 

 Mag- 10000x       Auriga= 39-22   1 µm           WD-4.7 nm  EHT- 1.00KV   
 Signal –SE 2             Ash  sample S-2       Date- 3 Dec 2009     Time: 24:150 
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6.3 Chemical Analysis of prepared Activated Adsorbent 

The chemical properties of the prepared adsorbent were determined in terms of 

elemental composition analysis including proximate (TGA) and ultimate (C, H, N and 

others) analysis for activated carbons (KCAC, KFAC and MFSAC) and XRF analysis 

for natural and activated ash (OPA and AOPA) samples. FTIR analysis was carried out 

to determine surface chemistry of the prepared sorbent. 

 

6.3.1 Elemental Composition Analysis of Activated Carbon 

Proximate and ultimate analysis of the prepared powdered (PAC) and granular activated    

carbon (GAC) derived from lignocellulosic precursors of KC, KF and MFS were carried   

out. 

 

6.3.1.1  Proximate Analysis of Activated Carbon  

The proximate analysis of carbon samples gives moisture content, volatile content, the 

fixed carbon (i.e., bio-char) and the ash residues (mineral) content based on the 

complete combustion of the sample. For proximate analysis, the KC, KF and MFS 

precursors as well as their respective semi-carbonized and activated carbons prepared 

under different conditions were analyzed using thermogravimetric (TGA) analysis. It is 

observed that, the percentage of volatile matter of the precursors decreased significantly 

by carbonization and activation processes. The results obtained from thermogravimetric 

analysis for this work and previous researches based on lignocellulosic precursors are 

listed in Table 6.3 (a) and 6.3 (b). 
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Table 6.3 (a) Proximate Analysis of precursors and Powdered (PAC) and Granular (GAC) Activated carbon 
 

 

 
 
 

 

Starting 
Material 

Carbonaceous 

Activated Carbon 
(PAC)  

Proximate Analysis  

(%) References 

Moisture Volatile Matter Fixed Carbon Ash  

Kenaf Core Activated 
Carbon KCAC 

Raw Kenaf Core (KC) 5.90 76.87 12.33 4.90 This Work 

Semi-carbonized 
Kenaf Core 5.05 57.19 32.54 5.22 This Work 

KCAC (Pb) 3.55 16.35 71.22 8.88 This Work 

KCAC(Cu) 4.33 22.76 65.28 6.63 This Work 

KCAC(Mn) 3.09 19.51 69.96 7.04 This Work 

Kenaf Fiber Activated 
Carbon 
KFAC 

Raw Kenaf Fiber (KF) 9.87 69.14 11.45 9.54 This Work 

Semi-carbonized 
Kenaf Fiber 7.99 52.80 28.89 10.32 This Work 

KFAC (Pb) 5.43 13.03 69.66 11.88 This Work 

KFAC (Cu) 6.89 19.11 63.11 10.89 This Work 

KFAC(Mn) 6.33 19.47 62.77 11.43 This Work 

           Starting 
Material 

Carbonaceous 

 
Activated Carbon 

(GAC) 

Proximate Analysis 
References 

(%) 
Moisture Volatile Matter Fixed Carbon Ash  

Mangostene 
Fruit Shell(MFS) 

Raw Fruit Shell 
(MFS) 

4.78 72.88 18.80 3.54 This Work 

Semi-carbonized Fruit 
Shell 

3.98 60.17 29.87 5.98 This Work 

MFSAC 3.33 32.66 54.02 9.92 This Work 
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Table 6.3 (b) Proximate Analysis of Powdered (PAC) and Granular (GAC) Activated carbon derived from other lignocellulosic precursors 
 

Starting 
Material 

 

Activated Carbon 
(PAC)  

Proximate Analysis  

(%) References 

Moisture Volatile Matter Fixed Carbon Ash  

Ligno cellulosic 
Carbonaceous 

Precursors 

Apricot Stone 
2.10-2.40 4.30-6.40 86-89 2.20-7.00 

Sentorum-Shalaby et al., 
2006 

Rice Husk 9.58 12.83 72.12 5.46 Mohd Din, 2005 

Coconut Shell 7.92 8.95 81.63 1.49 Mohd Din, 2005 

Rice Straw 5.52 17.93 52.14 24.40 Mohd Din, 2005 

Bagasse 
16.30 46.15 26.00 11.54 

Satyawali and 
Balakrishnan, 2007 

Coffee Residue 
5.36-12.64 26.04-37.78 38.49-60.28 5.15-11.49 

Boonamnuayvitaya et 
al., 2005 

Pistachio-nut shell - 11.32-19.80 74.12-83.51 - Yang and Lua 2003 

Coconut husk  9.50 27.53 35.13 27.84 Tan 2008 

Palm Fiber 6.01 14.26 58.75 20.98 Tan 2008 

Empty Fruit Bunch 10.30 21.65 54.15 18.90 Tan 2008 

Palm Shell 6.21 15.37 71.48 6.94 Tan 2008 
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  Table 6.3 (a) and (b) show that the proximate content of each activated carbon is 

different based on the original structure, preparation condition and properties of the 

precursors. The fixed carbon content has shown opposite trend of increasing pattern in 

the activated carbons rather than the raw and semi carbonized samples. This is because 

at high temperature, the organic substances present inside the carbon matrix become 

unstable. Their bonding is broken. The volatile substances are discharged both as gas 

and liquid products. KCAC has exhibited the highest fixed carbon value of 71.22-69.96 

%. These results are analogous with the commercial activated carbon, F200 from 

Calgon, US having 76.11% of fixed carbon. Nevertheless, the ash contents of the 

activated carbons prepared from KF are comparatively higher than KC and MFS. This is 

attributed to its soft texture. It is observed that all the precursors contain less amount of 

ash before activation. After semi-carbonization and activation, the ash content has 

increased significantly The high ash contents of the activated carbons prepared from KF 

is due to it’s soft texture compared to MFS and KC. Bituminous coal based activated 

carbon was also reported to have high ash content of about 26.1% (El Qada et al., 

2006). H2S04  acid activated sludge-based activated carbon and rice straw-based 

activated carbon prepared by CO2 activation were found to contain 39.2% and 30.4-

73.3% of ash content respectively (Martin et al., 2003; Yun et. al., 2001).  

 

6.3.1.2 Ultimate Analysis of Activated Carbon  

The ultimate analysis gives the composition of the biomass as well as the prepared 

activated carbon in wt% of carbon, hydrogen and nitrogen (the major components) and 

others (sulfur and oxygen). The results obtained for ultimate analysis in this study 

and from previous researches conducted on lignocellulosic precursors are listed in 

Table 6.4 (a) and 6.4 (b) respectively.  
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Table 6.4 (a) Ultimate Analysis of precursors and Powdered (PAC) and Granular (GAC) Activated carbon 

 

 

Starting 
Material 

Carbonaceous 

Activated Carbon 
(PAC)  

Ultimate Analysis  

(%) References 

Carbon Hydrogen Nitrogen Others  

Kenaf Core Activated 
Carbon KCAC 

Raw Kenaf Core (KC) 51.22 15.79 5.56 27.43 This Work 

Semi-carbonized 
Kenaf Core 57.05 13.49 5.04 24.42 This Work 

KCAC (Pb) 72.66 6.25 1.43 19.66 This Work 

KCAC(Cu) 66.32 7.79 1.56 24.33 This Work 

KCAC(Mn) 70.09 7.51 1.03 21.37 This Work 

Kenaf Fiber Activated 
Carbon 
KFAC 

Raw Kenaf Fiber (KF) 42.85 5.33 0.33 51.49 This Work 

Semi-carbonized 
Kenaf Fiber 47.26 7.34 0.34 44.98 This Work 

KFAC (Pb) 71.67 3.03 1.66 23.64 This Work 

KFAC (Cu) 68.87 5.17 1.10 24.86 This Work 

KFAC(Mn) 69.91 3.29 0.80 26.0 This Work 

           Starting 
Material 

Carbonaceous 

 
Activated Carbon 

(GAC) 

Ultimate  Analysis  

(%) References 

Carbon Hydrogen Nitrogen Others  

Mangostene 
Fruit Shell(MFS) 

Raw Fruit Shell 
(MFS) 

48.98 7.34 6.32 37.36 This Work 

Semi-carbonized Fruit 
Shell 

52.33 6.76 5.44 35.47 This Work 

MFSAC 62.66 6.43 3.22 27.69 This Work 
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Table 6.4 (b) Ultimate Analysis of Powdered (PAC) and Granular (GAC) Activated carbon 
 

 

 

 

 

Starting 
Material 

 

Activated Carbon 
(PAC)  

Ultimate Analysis  

(%) References 

Carbon Hydrogen Nitrogen  Others  

Ligno cellulosic 
&Carbonaceous 

Precursors 
 
 
 
 
 
 
 
 
 
 

Elbistan Lignite 53.0 5.8 1.8 39.4 Cetinkaya et al., 2003 

Activated Sewage 
Sludge 

89.8 1.2 3.1 5.9 Wen  et al.,  2011 

Commercial Activated 
carbon from wood 

92.1 1.6 3.3 3.0 Wen  et al., 2011 

Activated carbon from 
coconut shell 

90.7 1.3 3.7 4.3 Wen  et al., 2011 

Activated carbon from 
coconut shell 

87.2 2.1 5.3 5.4 Wen  et al., 2011 

ZnCl2 activated 
Bamboo 

75.31 3.01 0.73 20.95 Alothman et al., 2011 
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All the samples have moderate nitrogen content. It is observed that the 

carbon content increased significantly after activation of the raw precursors 

revealing that physiochemical activation method used here is suitable to develop 

activated carbon from the selected precursors which can subsequently enhance the 

uptake capacity for divalent cations from contaminated water. From ultimate 

analysis, it is observed that, elemental carbon content is slightly higher than fixed 

carbon determined by proximate analysis. With the increase of temperature and 

impregnation ratio, hydrogen content is decreasing. It was observed that, hydrogen 

content of ZnCl2 activated bamboo based activated carbon was decreasing with 

increase of temperature and impregnation ratio (Alothman et al., 2011). 

 

6.3.2 Elemental Composition Analysis of Natural and Activated Palm Ash 

The results obtained for chemical composition analysis of natural oil palm ash and 

activated oil palm ash is listed in Table 6.5. It is observed that after activation, there is 

less amount of SiO2, Fe2O3 and Al2O3 present inside the sample. This might be due to 

dissolution and reaction of these oxide components with NaOH to form reactive species 

(Pretorius et al., 2003). A similar phenomenon has been observed for NaOH activated 

coal fly ash where the base activation has selectively removed Si from ash producing an 

active sorbent with high cation exchange capacity (Pretorius et al., 2003). However, it is 

reported earlier in the literature also silanolic groups in neutral, protonated or 

deprotonated forms are able to promote specific interactions with cations (Fiore and 

Zanetti, 2009). Table 6.5 (a) and (b) summarizes the percentage composition of natural 

and activated palm ash with other types of ash obtained from literature. 
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Table  6.5 (a)  Elemental (Mineral oxide) composition of powdered adsorbent prepared  from natural oil palm ash (OPA) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Starting 
Material 

Mineral Based 

  
     Mineral Oxide (Weight %)  composition 

 
 

 
Natural Oil Palm Ash (NOPA) 

 

SiO2 K2O Na2O CaO MgO P2O5 TiO2 Fe2O3 Al2O3 SO3 MnO           References 
70.45 2.99 1.09 1.19 2.78 1.99 1.22 9.54 7.34 0.22 0.40              This Work 

Activated 
Oil Palm Ash(AOPA) 

51.70 5.69  2.00 10.90 11.20 5.95 0.41 5.77 5.50 0.10 0.44              This Work 
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Table  6.5 (b)  Elemental (Mineral oxide) composition of powdered adsorbent prepared  from different types of ash 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Starting 
Material 

Mineral Based 

                             Mineral Oxide (Weight %)  composition 
 
 

 
Unmodified Coal Fly Ash  

 

Na Mg Al Si Ca Cr Fe Ni Si/Al  References 

0.24 0.42 14.93 19.76 2.40 5.01 1.68 2.75 1.32  Pretorius et al., 2003 

1M NaOH activated Coal 
Fly Ash 6.39 0.55 15.89 17.95 2.08 5.02 1.93 1.41 1.14  Pretorius et al., 2003 

2 M NaOH activated Coal 
Fly Ash 7.14 0.73 16.91 16.63 2.67 0.03 1.85 0.01 0.98  Pretorius et al., 2003 

1M NaOH & 3M HCl 
activated Coal Fly Ash 6.37 0.00 13.68 26.82 0.03 5.89 0.27 0.11 1.96  Pretorius et al., 2003 
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6.3.3 Surface Functional Groups Analysis 

The adsorption characteristics of an adsorbent are predominantly influenced by the 

surface functional groups which were determined from the Fourier Transform 

spectroscopy analysis and presented by the FTIR spectrums (Figures 6.1-6.4). Analysis 

of FTIR spectrum provides information about the molecular structure of the functional 

groups present on the samples under investigation. Usually simple spectra are obtained 

from samples with few IR active covalent bonds whereas a complex spectrum gives 

more adsorption bands (Dinesh, 2011).  

 

  The functional groups present onto the surface of the powdered and granular 

activated carbons (KCAC, KFAC and MFSAC) are similar up to a certain extent. This 

is because the same activating agents are applied to get the activated carbons. Overall, 

noteworthy differences in the intensities of the peaks are observed due to the different 

nature of the original precursors and the activating conditions applied to prepare the 

carbons. However, the presence of carboxyls, hydroxyls, phenols, lactones and ketonic 

groups have been observed over the surface of lignocellulosic precursors as well as their 

semi-carbonized and activated sample.  

 

 The trend of the FTIR spectrum for all the lignocellulosic precursors contains 

some main peaks which are almost similar. Some major peaks around 2800-2900cm-1, 

1500-1650 cm-1 and 1000-1200 cm-1 are related to C-H stretching of alkane, C=C 

stretching of aromatics, C-O-C stretching vibration of esters, ether and phenol groups. 

The O-H stretching vibrations at bandwidth of 3400-3800 cm-1 are present in the raw 

precursors, semi carbonized sample and activated carbons prepared from all the three 

precursors. However, the peaks are shifted to a lower or higher frequency level 

compared to those observed in the FTIR spectrums of the original precursors. It was 
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reported by Gerçel et al., (2007) that during activation stage, the chemical activating 

agent broke many bonds comprises of aliphatic and aromatic species in the 

lignocellulosic precursor. This results in volatilization and liberation of many light and 

volatile organic components causing incomplete aromatization over the carbon surface. 

O-H functional group has been found on the surface of most of the activated carbons, 

including the commercial grade activated carbons (Jung et al., 2001). The broad peaks 

at 2300-2400 cm-1 is found on the spectrums of the activated carbons prepared from KF 

which shows the presence of carboxylic acid, -COOH functional group. The peaks 

detected at 1000-1100 cm-1 in the spectrums of all the activated carbons prepared 

represents the presence of C-O-C stretching vibrations of esters, ether or phenol groups 

whereas the weak to medium peaks located at 450-900 cm-1 is assigned for C-H out-of 

plane bending of benzene derivatives, O-H stretching vibrations of C-O-H band. The 

results obtained agreed with the previous research where C-H out-of plane bending 

vibration for benzene derivatives were found on the surface of various activated carbons 

(Guo and Lua, 2003). The weak peak detected at 1400-1550 cm-1 on the spectrum of 

KCAC, KFAC and MFSAC are due to C=O stretching vibration of carboxylate anions. 

As can be observed from the spectrum obtained here, that some functional groups 

intensity becomes less, more or shifted to a higher or lower frequency level, even 

disappeared after carbonization and activation process. This is due to the thermal 

degradation which has destroyed some intra molecular bonding of the functional groups 

with the carbon matrix.  

 

Yang and Lua (2003) reported that, different oxygen groups were present in the 

raw pistachio-nut shell, which were decreased after the heat treatment causing 

aromatization of the carbon structure. It was reported also, that after carbonization the 
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chemical structure of the raw date pit was changed significantly. Some aliphatic C-H 

groups were lost where as some aromatic C=C and oxygen groups were developed after 

activation process (El-Hendawy, 2005). When the activation temperature was increased, 

some poly aromatic structures were formed due to destruction of C=O and C-O groups. 

After KOH treatment of rice straw, the peak intensities of ester groups and phenolic 

ether groups were decreased significantly. The researchers described that, KOH had 

destroyed the lignin structure containing ester and ether linkage after activation of rice 

straw (Oh et al., 2003). 

 

The dissociation of surface functional groups to obtain specific surface electrical 

charge significantly affects the sorption or desorption properties of targeted 

contaminants from waste water. If adsorbate species and the adsorbent surface have 

similar charge, then repulsion occurs resulting less removal efficiency (Aygun et al., 

2003). Overall the surface functional groups observed onto the prepared samples have 

high affinity towards the positive cations chosen here as sorbate. 

 

Following Figures 6.1, 6.2 and 6.3 demonstrated the FTIR spectrum of KC, KF 

and MFS precursors along with their respective semi-carbonized sample with activated 

carbon prepared under different optimum condition. The results obtained from the 

spectrum are summarized in Tables 6.6, 6.7 and 6.8. On the contrary, the FTIR 

spectrum of natural oil palm ash and activated oil palm ash are illustrated by Figure 6.4 

and Table 6.9. Like activated carbon, it is quite clear from the spectra of natural and 

activated oil palm ash that some peaks have shifted by the activation and some peaks 

have disappeared after the treatment with sodium hydroxide. 
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Figure 6.1 FTIR Spectrum of Kenaf Core (KC), semi-carbonized Kenaf Core (KC) and Activated Carbon (KCAC) 

4000.0 3600 3200 2800 2400 2000 1800 1600 1400 1200 1000 800 600 400.0 
cm-1 

%T 

 

(A) Raw Kenaf Core 

(B) Semi carbonized Kenaf Core 

(C) KCAC for Pb (II)  

(D) KCAC for Cu (II)  

(E) KCAC for Mn 
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Table 6.6 FTIR Spectrum of Kenaf Core (KC), semi-carbonized Kenaf Core (KC) and Activated Carbon (KCAC) 

 

 

 

 

 

 

 

 

 

 

IR Peak Precursors            Frequency(cm-1) Peak  
Number Raw Kenaf  Core (KC) Semi 

carbonized 
Kenaf Core 

Activated Kenaf 
Core 
(Pb) 

Activated 
Kenaf Core 

(Cu) 

Activated 
Kenaf Core 

(Mn) 

Assignment 

1 - - - 498.66 474.53 C-H out-of-plane bending of benzene 
derivatives 

2 - - - 507.79 502.03 C-H bending 

3 604.01 603.24  658.78 678.79 C-O-H 

4 - - - 788.87 790.12 C-H 

5 837.10 839.68 841.71 866.40 - C-H 

6 907.89 - - - - O-H bending 

7 - - 1087.88,1054.03 1068.78 - C-O-C stretching of esters, ethyl or phenyl 
group  

9 1108.71,1158.88 1110.82 - - 1195.95 -C-N stretching 

10 1257.76 - - - - C-O stretching 

11 1377.65 1376.77 1398.87 - - CH3 deformation 

13 1411.00,1432.45,1457.76 1422.06 - - 1498.33 in-plane OH bending and C-O stretch of 
dimmers 

14 1507.32 1593.99 - 1572.66 - C=C ring stretching of benzene derivatives 

15 1603.53 1656.45 - 1668.86,1610.99 - C=O stretching 
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Table 6.6 Continued 

 

 

        IR Peak Precursors           Frequency(cm-1) Peak  

Number Raw Kenaf  
Core (KC) 

Semi carbonized 
Kenaf Core (KC) 

Activated Kenaf 
Core 

(Pb) 

Activated 
Kenaf Core 

(Cu) 

Activated 
Kenaf Core  

(Mn) 

Assignment 

16 1755.97 1793.98 - - - C=O stretching 
17 2403.45 - - 2409.86 2428.16 C=C stretching vibration of ketones, aldehydes or carboxylic 

group 
18 - 2677.68 - 2609.86 - C=C stretching vibration of ketones, aldehydes or carboxylic 

group 
19 2828.98 2852.90 2840.77,2849.87 - - C-H stretching 
20 3403.56 3556.44 3574.95 3692.53 3690.07 O-H stretching vibration of hydroxyl functional groups  
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4000.0 3600 3200 2800 2400 2000 1800 1600 1400 1200 1000 800 600 400.0

cm-1

%T 

 

(A) Raw Kenaf Fiber

(B) Semi carbonized Kenaf Fiber

(C) KFAC for Pb (II) 

(D) KFAC for Cu (II) 

(E) KFAC for Mn (II)
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2345.15 1596.58 
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1111.11 

1437.32 

1697.95 2923.87 
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Figures 6.2 FTIR Spectrum of Kenaf Fiber (KF), semi-carbonized Kenaf Fiber (KF) and Activated Carbon (KFAC) 
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Table 6.7 FTIR Spectrum of Kenaf Fiber (KF), semi-carbonized Kenaf Fiber (KF) and Activated Carbon (KFAC) 

IR Peak Precursors           Frequency(cm-1) Peak  
Number Raw Kenaf  

Fiber (KF) 
Semi carbonized 
Kenaf Fiber(KF) 

Activated 
Kenaf Fiber 

(Pb) 

Activated 
Kenaf Fiber 

(Cu) 

Activated 
Kenaf Fiber 

(Mn) 

Assignment 

1 470.02 - 480.59 - 484.03 C-H out-of-plane bending of benzene derivatives 

2 536.47 539.24 - - - C-H bending 

3 657.01 -  615.74 618.19 C-O-H 

4 752.10 720.82 780.71 - - C-H 

5 - 897.68 -  876.63 840.12 C-H 

6 910.89 - - - - O-H bending 

7 1007.55 - 1024.71 - - C-O-C stretching of esters, ethyl or phenyl group  

8 1032.70 - - - - C-O-C stretching of esters, ethyl or phenyl group 

9 1111.11 1159.82 - 1116.45 1115.95 -C-N stretching 

10 1202.86 1252.90 - - - C-O stretching 

11 1373.46 - - 1384.82 1389.69 CH3 deformation 

12 - 1377.27 - - - -NO2 aromatic nitro compound 

13 1425.24 1461.06 - - 1497.73 in-plane OH bending and C-O stretch of dimmers 

14 1596.58 1503.99 1560.75 - 1573.67 C=C ring stretching of benzene derivatives 

15 1697.95 1646.92 - 1627.53 - C=O stretching 
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Table 6.7 Continued 

 

 

 

 

 

 

 

 

 

        IR Peak Precursors           Frequency(cm-1) Peak  

Number Raw Kenaf  
Fiber (KF) 

Semi carbonized 
Kenaf Fiber(KF) 

Activated 
Kenaf Fiber 

(Pb) 

Activated 
Kenaf Fiber 

(Cu) 

Activated 
Kenaf Fiber 

(Mn) 

Assignment 

16 - 1743.94 - - - C=O stretching 
17 2345.15 - 2342.25 - - C=C stretching vibration of ketones, aldehydes or carboxylic group 

18 2368.36 2363.29 2362.91 2359.86 2377.16 C=C stretching vibration of ketones, aldehydes or carboxylic group 

19 - 2854.91 - - - C-H stretching 
20 2923.87 2924.77 - - - C-H stretching  
21 3391.00 3356.44 3017.95 3414.53 3349.07 O-H stretching vibration of hydroxyl functional groups  
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4000.0 3600 3200 2800 2400 2000 1800 1600 1400 1200 1000 800 600 400.0 
cm-1

%T 

 

(A) Raw Mangostene Fruit Shell

(B) Semi Carbonized Mangostene Fruit Shell 

(C) Mangostene Fruit Shell Activated carbon 
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Figure 6.3 FTIR Spectrum of raw mangostene fruit shell, semicarbonized and activated carbon 
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Table6.8FTIR Spectrum of Mangostene Fruit shell (MFS), semi-carbonized Mangostene Fruit Shell (MFS) and Activated Carbon (MFSAC) 

  

 

 

 

 

 

 

 

 

 

 

        IR Peak  Precursors            Peak  
Number Raw Mangostene  Shell  (MFS)  Semi carbonized 

Mangostene  Shell  (MFS) 

 Activated  

Mangostene  Shell  (MFS) 

Assignment 

1 - 502.50  - C-H bending 

2 603.77,610.74 602.70  - C-O-H bending 

3 788.77 762.70  711.77, 768.66 C-H 

4 805.77 801.70  804.77 C-H 

5 - 998.50  - O-H bending 

6 1110.77,1189.77 -  1108.96 -C-N stretching 

7 1310.11, -  1301.79 -NO2 aromatic nitro compound 

8. 1398.77 1356.70  1396.99 CH3 deformation 

8 1437.77 1401.50,1438.70  - In plane O-H bending and C-O stretch of dimers 

9 - 1503.99,1597.66  - C=C ring stretching of benzene derivatives 

10 1603.70 -  1610.53 C=C ring stretching 
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Table 6.8 Continued 

 

 

 

        IR Peak  Precursors           
Number Raw 

Mangostene  
Shell  (MFS) 

Semi Carbonized 
Mangostene  
Shell  (MFS) 

Activated  

Mangostene  
Shell  (MFS) 

Peak Assignment 

11 1756.77 - 1720.75 C=O  stretching 
12 - 2120.79 - C-H bending 

13 - 2834.91 2830.77,2855.74 C-H stretching 

14 2902.91 2933.68 - C-H stretching 
              15 - 3056.44 - O-H stretching vibration of hydroxyl functional groups 

16 3323.77 3350.70 3321.66 O-H stretching vibration of hydroxyl functional groups 
17 - 3756.44 - O-H stretching vibration of hydroxyl functional groups 

     



 

 
203 

 

  
4000.0 3600 3200 2800 2400 2000 1800 1600 1400 1200 1000 800 600 400.0 

cm-1 

%T 

 

(A) Activated   Palm Ash

(B) Natural Palm Ash  

 

 

 

2375.43 2346.23 

 1638.68 

1030.20 

 
    474.02 

793.99 

3449.52 

2366.31 

1651.52 

3394.21 

2901.88 

2976.41 

 

 

 

 

 

1050.17 

    880.78 

    797.97 

    468.16        1394.17 

Figure 6.4 FTIR spectrum of Natural oil Palm Ash (OPA) and Activated Oil Palm Ash (AOPA) 
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Table 6.9 FTIR Spectrum of Natural (OPA) and Activated Oil Palm Ash (AOPA) 

 

 

 

 

 

 

 

 

 

 

IR Peak Number Natural Oil Palm Ash (NOPA) Activated Oil Palm Ash (AOPA) Peak Assignment 
1 468.16 474.02 Bending Vibration of Si-O group 
2 797.79 793.99 C-H out of plane deformation 

3 880.78 - Si-H Deformation 

4 1050.17 1030.20 Si-O-Si Stretching Vibration 

5 1394.17 - Aliphatic CH3 Deformation 

6 1651.52 1638.68 C=C Stretching Vibration 

7 2366.31 2346.23, 2375.43 CΞC Stretching Vibration of Alkyne 

8 2901.88 - Aliphatic CH2 Vibration 

9 2976.41 - Aliphatic CH2 Vibration 

                              10  3394.21 3449.52 O-H Stretching Vibration of Hydroxyl 
group 
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   The broad peak for natural and activated samples of palm ash between 3000-3600 cm-1 

reflects the presence of –OH group which might be due to stretching vibration of Si-OH 

group. Both the spectra contains band around 1600 cm-1 showing the existence of CO 

groups of aldehydes and ketones. Similar types of peak assignment were observed for 

bagasse fly ash and rice husk ash adsorbent prepared for Ni (II), Cd (II) and Zn (II) sorption 

from waste water (Srivastava et al., 2007). 

 

6.4 Summary 

The outcome of this study is the establishment of suitability of different indigenous raw 

materials to be converted as value added products of powdered and granular adsorbent. 

Apart from the processing steps mentioned earlier (Chapter 5), the prepared sorbent must 

undergo several steps of surface characterization (Chapter 6) to ensure the sorption 

performance prior to commercial production. The physio-chemical characteristics 

determined here reflects that the prepared sorbent has got sufficient potential to be used for 

waste water treatment. In this context the sorption performance of the prepared sorbent has 

been further evaluated by batch (Chapter 7) and fixed bed adsorption (Chapter 8) system. 
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CHAPTER SEVEN 

RESULTS AND DISCUSSION 
Batch Adsorption Studies 

 
7.1  Introduction 

Adsorption studies for divalent cations of lead Pb(II), copper Cu(II) and manganese 

Mn(II) are carried out to delineate the effect of contact time, temperature, pH and initial 

metal ion concentration on equilibrium adsorption capacity. Batch sorption process 

gives the experimental results for equilibrium isotherms, kinetics as well as the 

thermodynamics of sorption process onto the prepared sorbent. The mechanism of 

adsorbate adsorbent interaction is discussed through intra particle diffusion. The last 

section provides  the regeneration of the prepared sorbent. A summary is presented in 

the last part of this chapter. 

 

7.2 Effect of Contact Time and Initial Concentration of Adsorbate  

Batch equilibrium experiments are performed by using 50 ml of the adsorbate (lead, 

Pb(II) copper, Cu(II)  and manganese, Mn(II)) solutions of known initial concentrations 

ranging from 50 to 100 mg/l with equivalent mass of 0.2 g of the prepared adsorbent 

(KCAC, KFAC, MFSAC and AOPA).  Figures 7.1(a)-(d), 7.2(a)-(d) and 7.3 (a)-(d) 

illustrate the adsorption uptake of Pb(II), Cu(II) and Mn (II) cations versus the contact 

time, t (minutes)  at various initial concentrations (50-100 mg/l) onto KCAC, KFAC, 

MFSAC and AOPA respectively at 30 °C.  

 

  The extent of dispersion of the solute within equilibrium contact time in the case 

of batch sorption process is a crucial factor as it affects the process of overall mass 

transfer. Thus the residual equilibrium concentration, Ce (mg/l) with respective sorption 
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amount, qt (mg/g) was measured at predetermined interval of time.  

 
 

  

 

 

(a) KCAC (b) KFAC 

(c) MFSAC (d) AOPA 

Figure 7.1   Effect of contact time at various initial concentrations of Pb (II) cations 
onto (a) KCAC (b) KFAC (c) MFSAC (d) AOPA at (30±1) °C 
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          (a) KCAC               (b) KFAC 

         (c) MFSAC               (d) AOPA 

Figure 7.2   Effect of contact time at various initial concentrations of Cu (II) 
cations onto (a) KCAC (b) KFAC (c) MFSAC (d) AOPA at (30 ±1) °C 
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       (a) KCAC     (b) KFAC 

   (c) MFSAC            (d) AOPA 

Figure 7.3   Effect of contact time at various initial concentrations of Mn (II) 
cations onto (a) KCAC (b) KFAC (c) MFSAC (d) AOPA at (30±1) °C 
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  Agitation time influences the formation of the external film which creates a 

boundary layer over the surface of the sorbent. During preliminary investigation, it was 

observed that activated carbon is much more reactive as compared to the ash residues 

(Chapter 5). Thus, the experimental uptake, qt (mg/g) with respect to time, t (minutes) 

was taken more frequently for powdered and granular activated carbon. It is clear from 

the plots (Figures 7.1(a-d), 7.2(a-d) and 7.3(a-d)) that for all the four activated 

adsorbents, the amount of equilibrium uptake, qt (mg/g) increased with time. However, 

there is a maximum point after which the system has reached a constant value; beyond 

this no significant amount of solute is removed from the solutions. This particular point 

is known as the ‘equilibrium point’. At this equilibrium point, the cations desorbing 

from the activated sorbents are in a state of dynamic equilibrium with the amount of the 

cations adsorbed onto the prepared sorbents. The amount of cations adsorbed at the 

equilibrium time reflects the maximum capacity of that sorbent under the applied 

working conditions.  

 

  The plots obtained here show two distinct regions of sorption. The initial region 

is quite fast and rapid. The steepness of this initial stage is larger in the case of 

powdered activated adsorbents (KCAC, KFAC and AOPA) compared to the granular 

adsorbent (MFSAC). The second stage is almost parallel to the x- axis and relatively 

slow near the equilibrium. Almost all the sorption curves are single and smooth with 

few exceptions reflecting that the saturation or exhaustion point of the sorbent has been 

reached by the preselected adsorbate. At initial stage, there are a large number of vacant 

surface sites which can readily absorb the cations.  After a lapse of time, the active 

surface sites had been exhausted. Thus, it becomes difficult to be occupied by the 

remaining cations. This happens due to repulsive forces between the solute (cations 

attached onto the solid surface) and the free ions (cations dispersed in the liquid phases) 
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remaining in the solution. Similar observation was reported earlier for the sorption of 

divalent cations of Pb(II), Cd(II) and Ni(II) cations onto sawdust (Bulut and TEZ Zeki, 

2006). 

 

 The adsorption uptake at equilibrium is found to increase with increasing initial 

cation concentrations. This is because at higher initial concentration, the driving force 

for mass transfer becomes larger. Consequently, there will be more equilibrium uptake. 

On the contrary, opposite trend is observed for removal percentage. It is observed that 

when initial concentrations are increased from 50 mg/l to 100 mg/l, the percentage 

removal of the cations is decreasing. This happens because at lower concentration, the 

ratio between the initial number of cations present inside the solution relative to the 

number of active sites is low. At higher initial concentrations, more cations are available 

in the solutions, yet the provided quantity of the sorbent is kept fixed. Thus, the ratio 

between sorbate-cations and the active vacant sites of the sorbent becomes larger 

leading to lower removal percentage. This trend is evident and agreed well with the 

previous literature depicting sorption of Methylene Blue cations onto fly ash (Basava 

Rao and Ram Mohan Rao, 2006).  

 

 About 94.89%, 93.23%, 71.44% and 63.32% of Pb(II) cations are removed by 

KCAC, KFAC, MFSAC and AOPA respectively from 100 mg/l of solution. Higher 

percentage of copper is removed by the prepared sorbent which might be due to its 

smaller cationic size and highest position in the reactivity chain based on Irving William 

series. It is observed that approximately 97.24%, 96.54%, 73.23% and 71.99% of Cu(II) 

cations are removed by KCAC, KFAC, MFSAC and AOPA respectively from 100 mg/l.  

Relatively less removal percentage is observed for sorption of manganese onto the 

prepared sorbent. This might be due to its less stable surface complex formation 
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tendency.  Approximately 89.00%, 86.23%, 69.02% and 53.22% of Mn(II) cations are 

removed by KCAC, KFAC, MFSAC and AOPA respectively from 100 mg/l solution.   

 

  It can be seen from the graphs above that, longer contact times of 80 minutes are 

required by Pb(II) cations for higher initial concentrations of 80, 90 and 100 mg/l 

solution while 60 minutes is required for 50, 60 and 70 mg/l solution to reach 

equilibrium for KCAC. In the case of adsorption, initially the adsorbate species needs to 

overcome first the boundary layer. In the second phase, it has to diffuse through the 

boundary layer and adsorb onto the adsorbent surface. Eventually at the last stage, they 

need to diffuse into the porous structure of the adsorbent. This phenomenon takes a 

relatively extended contact time. Therefore, adsorbate solutions with higher initial 

concentrations might take relatively longer contact time to attain equilibrium due to the 

presence of a higher amount of adsorbate species. For KFAC, all the concentrations 

have reached equilibrium within 80 minutes and for MFSAC, it takes 80 to 100 minutes 

based on the concentration ranges. Approximately 60 to 90 minutes are required for 

sorption of Pb(II) onto AOPA. Adsorption of Pb(II) onto MFSAC overall takes 

relatively less time to reach equilibrium due to the different characteristics of the 

adsorbent. This may be due to the larger cationic size of Pb (II) cations for which the 

granular adsorbent surface of MFSAC becomes exhausted quickly. It had been 

described by previous researchers where approximately 5 hours were required for Pb(II) 

cations to reach equilibrium (Anirudhan et al., 2001) using polyacrylamide grafted tin 

oxide gel whereas modified cellulosic materials and modified bark took only 20 minutes 

and 2 hours respectively (Okieimen et al.,1987 ; Gaballah et al., 1998). 

 

  In the case of Cu(II) cations, approximately 100 minutes and 120 minutes are 

required by KCAC and MFSAC respectively. It takes 80 minutes for AOPA sample to 



 

 
213 

 

attain equilibrium for Cu(II) cations. Around 60 to 100 minutes contact time are 

required for the sorption of Cu (II) cations onto KFAC depending on the initial 

concentration ranges. However, sawdust needed 90 minutes to accomplish the 

equilibrium state for sorption of copper (Azmal et al., 1998) whereas pine bark showed 

relative slower reaction kinetics and took 24 hours to reach equilibrium (Duvnjak and 

Al-Asheh, 1998). 

   

  For lower concentrations of 50, 60 and 70 mg/l, around 40 minutes are required 

and a higher concentration range of 80, 90 and 100 mg/l take 80 minutes to reach 

equilibrium for the sorption of Mn(II) cations onto KCAC. Within 50 to 100 minutes, 

the system attains equilibrium for Mn(II) sorption onto KFAC. However, it takes 150 

minutes and 80 minutes respectively for sorption equilibrium of Mn(II) cations onto 

MFSAC and AOPA. It is reported earlier that sorption of Mn (II) cations onto raw and 

acid treated corncob biomass took around 80 minutes to reach equilibrium (Abideen et 

al., 2011). It was reported that, sorption of Mn(II) cations onto electric arc furnace slag 

took 180 minutes when the initial concentration was 10 mg/l and it took 240 minutes for 

100 mg/l solution to reach equilibrium (Beh et al., 2010). 

   

  Relatively longer contact time is required for Cu(II) and Mn(II) ions to reach 

equilibrium upon the granular adsorbent of MFSAC. Similar trend is also observed for 

continuous flow sorption system by using fixed bed column in this study and this will 

be discussed afterwards in Chapter 8 (Fixed Bed Adsorption Study). This phenomenon 

is attributed to the smaller cationic size of Cu(II) and Mn(II)  which can provide larger 

vacant sites for monolayer formation and unstable surface complexes leading to 

successive adsorption-desorption steps for Mn(II) cations. The results also revealed that, 

comparatively longer contact time is needed for adsorption of Cu(II) and Mn(II) cations 
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onto the granular adsorbent of MFSAC compared to the powdered form of activated 

adsorbent (KCAC, KFAC and AOPA). It is reported earlier also that, the rate of 

reaction varies reciprocally with the square of the particle size (Eckenfelder, 2000). 

Similar trend has been observed for the sorption process of Methylene blue cations onto 

coconut husk and palm shell based activated carbon (Tan, 2008).  

 

 In general, the sorption performance of an adsorption system varies with the 

category and physio-chemical properties of the sorbent and sorbate used. In this study, 

KCAC shows the highest equilibrium uptake and removal percentage, followed by 

KFAC, MFSAC and AOPA. The relatively high adsorption uptakes of KCAC and 

KFAC compared to MFSAC are due to their relatively high surface areas and pore 

volumes (Table 6.2-a). BET surface area and pore volume of an activated carbon is one 

of the most important characteristics needed for liquid phase applications. It is observed 

that AOPA showed less removal percentage compared to MFSAC despite its larger 

surface area.  

 

It has been reported that, sometimes adsorbent with higher surface area takes the 

adsorbate very quickly from the solution but cannot retain them due to its lower affinity 

towards the adsorbate which is chiefly contributed by the intensity of various functional 

groups or pore size distribution (Ahmenda et al., 2000; Qureshi, 2008; Patrick, 1995). 

Similar observation has been reported for adsorption uptake of Methylene Blue cations 

onto KOH activated coconut husk and oil palm empty fruit bunch activated carbon 

where the latter possesses a higher surface area than the former one. Despite its high 

surface area, oil palm empty fruit bunch based activated carbon failed to retain 

Methylene Blue cations permanently resulting in lower removal efficiency (Tan, 2008). 
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  Besides physical characteristics, the adsorption performance of an activated 

adsorbent is also influenced by its surface chemistry. The functional groups on the 

surfaces of the activated adsorbent act as chemical binding agents. From the FTIR 

spectrums obtained (Figures 6.1-6.4), the high adsorption capacity of the activated 

adsorbent prepared in this study are due to the presence of functional groups such as 

hydroxyl, carbonyl and alkyl groups (Habib et al., 2007). These groups can easily 

dissociate and create negatively charged sites over the solid surface of the sorbent.  This 

causes electrostatic attraction between the surface of the activated sorbent and the 

positively charged cations under investigation (El Qada et al., 2008).  

 

7.3 Effect of Solution Temperature 

The consequence of solution temperature on the removal percentage of Pb (II), Cu (II) 

and Mn (II) ions by the activated adsorbent prepared were studied by changing the 

solution temperature from 30 °C, 50 °C and 70 °C, while keeping the other process 

parameters such as adsorbate volume (50 ml), pH (5.5) and initial metal ion 

concentration constant (100 mg/l). To observe the removal efficiency, highest metal ion 

concentration (100 mg/l) was chosen for all types of sorbent to maintain consistency 

with the results depicted earlier in Chapter 5 (section 5.5).The effect of temperature on 

collective sorption performances for all the concentration ranges (50-100 mg/l) studied 

here will be discussed further in terms of thermodynamic characterization of each 

adsorbate-adsorbent system in the subsequent section of this study. Figures 7.4, 7.5 and 

7.6 show the removal percentages versus the solution temperature for different 

adsorbent for lead, copper and manganese respectively.  
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Figure 7.5 Effect of solution temperature on removal percentages of Cu (II) 
cations onto KCAC, KFAC, MFSAC and AOPA 

Figure 7.4 Effect of solution temperature on removal percentages of Pb (II) cations 
onto KCAC, KFAC, MFSAC and AOPA 

KCAC KFAC MFSAC AOPA 



 

 
217 

 

 

 

Temperature 0C

20 30 40 50 60 70 80

R
em

ov
al

 p
er

ce
nt

ag
e 

of
 M

an
ga

ne
se

, M
n(

II
)

0

20

40

60

80

100

120

 

 

 

   

  It is evident from these three bar charts (7.4-7.6) that, the effects of solution 

temperature on the adsorption capacity of the activated adsorbents were found to depend 

on the type of adsorbent-adsorbate system. Adsorption capacity of lead has decreased 

for increasing temperature in the case of KCAC and this reflects the exothermic nature 

of sorption. For lead, the sorption capacity is found to increase with increase in solution 

temperature of 30 °C, 50 °C and 70 °C, indicating the endothermic sorption reactions for 

other sorbents (KFAC, MFSAC and AOPA). It had been observed for adsorption of 

divalent cations of  Pb(II) cations onto kaolinite, montmorillonite, poly (oxo-zirconium) 

kaolinite, poly(oxo-zirconium) montmorillonite, TBA–kaolinite and TBA–

montmorillonite that increasing temperature has resulted in decreased removal 

Figure 7.6 Effect of solution temperature on removal percentages of Mn (II) 
cations onto KCAC, KFAC, MFSAC and AOPA 

KCAC KFAC MFSAC AOPA 



 

 
218 

 

efficiency (Sen-Gupta et al., 2005). Similar trend of exothermic nature of sorption was 

reported for adsorption of Pb(II) onto bagasse fly ash (Gupta and Ali, 2004) also. All 

the adsorbent prepared here has shown an endothermic nature of sorption for Cu(II), 

while for Mn(II) except palm ash, other adsorbent of KCAC, KFAC and MFSAC 

showed endothermic nature of sorption. These findings are consistent with previous 

literature where rubber wood activated adsorbent showed exothermic nature of sorption 

in case of Cu(II) cations (Kalavathy et al., 2005). On the contrary, raw and acid treated 

corncob biomass showed an endothermic reaction pattern (Abideen et al., 2011) and fly 

ash showed exothermic tendency towards divalent cations of Mn(II) (Sharma et al., 

2007). 

 

Increasing the temperature increases the velocity of adsorbate species towards 

the interior of the adsorbent. This results in a greater diffusion of the adsorbate 

molecules across the exterior of the boundary layer as well as into the pores of the 

adsorbent.  This takes place due to the decrease in surface tension and viscosity of the 

solution (Wang and Zhu, 2007) also. Karthikeyan et al., (2005) stated that the 

improvement in the removal percentage might be due to the chemical interaction 

between adsorbents and adsorbate, construction of some new adsorption sites or the 

amplified rate of intraparticle diffusion of adsorbate species into the pores of the 

activated adsorbents at higher temperatures. Senthilkumaar et al., (2006) also illustrated 

analogous explanation and they attributed the increase in adsorption with the increase in 

temperature to the possibility of an increase in the porosity and in the total pore volume 

of the adsorbent. On the contrary, decrease in adsorption affinity with the increase in 

temperature is due to the involvement of the desorption step in the sorption mechanism. 

It might also take place due to the weakening of Van der wall  forces between the active 

sites of the activated sorbent and the cationic species.  
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7.4 Effect of initial pH of the solution 

In order to study the effect of initial pH on the removal percentage of divalent cations of 

Pb(II), Cu(II) and Mn(II) onto the prepared activated adsorbent, the solution pH was 

adjusted from pH 2 to 12 while other parameters were kept constant. The initial 

concentrations of the investigated cations were fixed at 100 mg/L.  

 

In general, initial pH value may enhance or depress the adsorbate uptake. This is 

attributed to the change of the charge of the adsorbent surface with the change in pH 

value. Besides, the solution pH also governs the degree of ionization of the adsorbate 

species (El Qada et al, 2006). Figures 7.7, 7.8 and 7.9 display the effect of initial pH on 

the removal percentage of Pb(II), Cu(II) and Mn(II) cations respectively.  

pH

0 2 4 6 8 10 12 14

R
em

ov
al

 p
er

ce
nt

ag
e 

of
 le

ad
, P

b(
II

)

0

20

40

60

80

100

120

KCAC
KFAC
MFSAC
AOPA

 

 

 

 

Figure 7.7   Effect of solution initial pH on the removal percentage of Pb (II) cations 
onto KCAC, KFAC, MFSAC and AOPA 
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Figure 7.8   Effect of solution initial pH on the removal percentage of Cu (II) cations 
onto KCAC, KFAC, MFSAC and AOPA 

Figure 7.9   Effect of solution initial pH on the removal percentage of Mn (II) cations 
onto KCAC, KFAC, MFSAC and AOPA 
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At lower pH values, a higher concentration of H+ and H3O+ ions in the solution 

compete with positive M2+ cations for the adsorption sites resulting in a smaller removal 

percentage. Thus adsorption is reasonably low below pH 4 for all the cations under 

investigations. At around pH 6, there are three main species of divalent cations present 

in their respective solution. These species can interact with the surface hydroxide (-OH) 

groups and gets adsorbed by the ion exchange and hydrogen bonding mechanisms 

resulting in greater removal efficiency. Similar observation has been reported for Cd(II) 

and Zn(II) adsorption on rice husk ash (Srivastava et al., 2008).  

 

(a) Ion Exchange: 

(-RO+H2) + M2+                           (RO) M + 2H+                                                                  (I) 

(-RO+H2) + M (OH) +                        (- RO) MOH + 2H+                                                   (II) 

     

 It is also reported in the literature that, divalent cations can attach themselves to 

two adjacent –OH groups by the following reaction scheme: 

 

 S 

 

Two oxyl groups present in the structure can donate two pairs of electrons to form four 

coordination number compounds with the release of two hydrogen ions (Doris et al., 

2000). 

 

(b) Hydrogen Bonding: 

 2(--R-OH) + M (OH)2                         (-R-OH)2 ----- M(OH)2                                   (IV) 

 

OH 

OH 

+  M2+ 

 
 
    S 
 

O 

O 
M   +2H+                                  (III) 
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Similar observation has been reported for Cu(II)  adsorption onto orange peel, 

saw dust and bagasse (Habib et al., 2007) and Pb(II) onto activated periwinkle shell and 

commercial activated carbon (Badmus et al., 2007). It is also observed that for sorption 

of Mn (II) ions, basic medium favors the removal percentage to a greater extent. 

However after pH 8, the removal percentage is almost the same except for AOPA and 

MFSAC. Similar trend was reported for sorption of Mn(II) ions onto Bombax 

malabaricum and Peltophorum ferrugineum (Emmanuel et al., 2009). 

 

In addition to that, carboxylic groups (-COOH) also take part in the adsorption 

process. It is well known that the carboxylic groups present on the surface of the 

activated carbon have pKa values from 3 to 5. Therefore, at a higher pH of 6, the acidic 

groups of -COOH starts to dissociate. Thus more interaction between the negatively 

charged carboxylate ions and positively charged M2+ ions takes place which resulted in 

a higher removal efficiency. This process is illustrated by the equation below- 

 

(c) nR-COOH + M2+                               (R- COO)n M + nH+                                 (V) 

 

Where, R represents the carbon matrix. M2+ is a transition metal having empty 

d-orbital that can be occupied easily by the lone electron pair of oxygen in –COOH and 

–OH of the activated carbon surface to form stable complexes. Thus it can be postulated 

that the adsorption process of M2+ can occur by ion exchange, hydrogen bonding and 

surface complexation.  

 

 From the FTIR spectrum, methoxy (-OCH3) group has also been identified. 

Divalent cations like Pb (II), Cu(II) and Mn(II)  can readily form surface complexes by 

the following scheme: 
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(d) M 2+ + 2O-CH3                        H3C-O        M         O-CH3                                      (VI) 

      M2+ + O-H + 2O-CH3              H-O            M          O-CH3                                    (VII) 

   

 Similar trend has been observed for the sorption of Cd(II) cations onto coir pith 

adsorbent (Bharathi et al., 2011). However, it is well known that at basic pH heavy 

metals like Pb(II), Cu (II) and Mn(II) will start to precipitate. Therefore, to avoid 

cooperative effects of adsorption and precipitation, all the batch experiments were 

conducted in slightly acidic medium of pH 5.5.  

 

The results from the experiments described in this study show that Pb (II), Cu(II) 

and Mn(II) ions can be absorbed efficiently onto activated oil palm ash. The ability of 

activated oil palm ash to remove the cations is the result of a number of mechanisms, 

including surface adsorption, chemisorptions, complexation, ion exchange, 

microprecipititation and metal hydroxide complexation. However, after pH 8, there is a 

sharp decrease in adsorption observed for Cu(II) ions onto MFSAC and AOPA. This 

decrease is probably due to formation of soluble hydroxyl complexes or hydrolysis of 

metallic cations (Badmus et al., 2007). It is reported earlier that hydrolysis of metallic 

cations takes place by the substitution of metallic ligands in the inner coordination 

sphere with the –OH group (Badmus et al., 2007). The overall phenomenon takes place 

after the removal of the outer hydration sphere of metallic cations. After pH 8, there is 

again an increase in the removal percentage which results in an S-like adsorption curve. 

This S-like curve reflects the cumulative effect of adsorption and precipitation (Inbaraj 

and Sulochana, 2002).  
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In order to understand the detailed mechanism by which the cations have been 

removed from the solution by adsorption, it is essential to identify the chemical 

constituent present on the adsorbent. The high percentage of SiO2 may also be involved 

in the adsorption phenomena through SiO- bond with the cations, as presented by 

following scheme: 

 

-SiO2   + H2O = -SiO- + H3O+                                                                                        (I) 

-SiO-    + M2+  = -SiO-M2+                                                                                               (II) 

-SiOH + M2+  = -SiO-M2+                                                                                              (III)                             

 

Overall it can be concluded that, the removal of the studied metallic cations from 

waste water samples by adsorption involves complex mechanisms which are partly 

predominated by adsorption and surface complexation. It can also proceed via chemical 

precipitation and pore filling mechanisms which will be explained further by the intra-

particle diffusion mechanism. 

 

7.5 Batch Adsorption Studies 

The adsorption isotherm gives a picture of the distribution of adsorbate species between 

aqueous and solid phase - over the adsorbent surface at an equilibrium state. To design a 

batch sorption process, the experimental data should be fitted to different types of 

isotherm models. This is important to establish the most appropriate correlation for the 

isotherm curves (El-Guendi, 1991). Adsorption isotherm basically gives an idea about 

the interaction between the solutes and the adsorbents. It is used for optimizing solvent 

solute ratio at specific operating condition. In this work, the adsorption isotherm study 

was carried out by using three isotherm models namely Langmuir, Freundlich and 

Temkin isotherm models. 
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For two parameter models of Langmuir, Freundlich and Temkin, the linearized 

forms of the mathematical equations were applied to fit the equilibrium data as they are 

simpler and more commonly used by previous researchers compared to the non-

linearized form. Therefore, a comparison could be made for the parameters and constant 

values obtained from the present study with those reported earlier in the literature. The 

applicability of the isotherm models to fit the adsorption data was compared by 

observing the correlation coefficients, R2 values. The closer the R2 values are to unity, 

the better is the fit. However, the existing models may deviate from the experimental 

data depending on the specific properties of adsorbate-adsorbent system and the shape 

of the isotherm curve depicted earlier in Section 3.3. 

 

7.5.1 Batch Adsorption Isotherms for sorption of Lead 

Figures 7.10 (a)-(d), 7.11 (a)-(d) and 7.12 (a)-(d), show the plots of the linearized 

equations for Langmuir, Freundlich and Temkin isotherms respectively for the 

adsorption of divalent cations of lead, Pb(II) at 30, 50 and 70 °C onto KCAC, KFAC, 

MFSAC and AOPA.  

 

Based on the hypothesis proposed by Langmuir, the sorption energy is invariable 

and self-governing and does not depend on surface loading. It depicts that, adsorption 

takes place on restricted sites with no interaction between sorbate species.  Maximum 

adsorption occurs when the surface is covered by a monolayer of adsorbate (Langmuir, 

1918). The Langmuir approach is expressed by Equation 3.1 whereas its linearized form 

is given earlier by Equation 3.2. When Celqe is plotted against Ce, for the adsorption of 

Pb(II) onto the prepared sorbent, a straight line with a slope of 1/qmax and intercept of  

l/ qmaxKL is obtained.  
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Figure 7.10 Linear Regression Analysis of Langmuir Isotherm of Lead, Pb (II) onto (a) 
KCAC (b) KFAC (C) MFSAC (d) AOPA at different Temperature  

(a)  KCAC (b)  KFAC 

(c) MFSAC (d) AOPA 
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In this work KCAC, KFAC, MFSAC and AOPA show relatively better linearity 

for the Langmuir model at room temperature with correlation coefficients between 

0.888 to 0.995. This confirms that each of Pb(II) cations has an equal adsorption 

activation energy. The results also demonstrate that the formation of monolayer surface 

loading of divalent cations of lead are at the outer surfaces of the prepared sorbent. This 

phenomenon has been further confirmed by observing the non linear isotherm curve 

between Ce and qe   afterwards in Section 7.5.4 for all the prepared activated adsorbent.   

 

At higher temperatures, the experimental data deviate slightly from the 

Langmuir model, especially for KFAC and MFSAC (Appendix E). This might be due to 

the different shapes of isotherm curves depicted earlier in Section 3.3 or the 

involvement of successive adsorption-desorption step under predefined sorption 

condition or the disruption of surface functional groups at higher temperature.  

 

The logarithmic form of Freundlich isotherm is given by Equation 3.5. The plots 

of log qe versus log Ce gives a straight line with a slope of 1/n and an intercept of log KF 

. Freundlich constants, KF and n are calculated where n gives an indication of how 

favorable the adsorption process is at different temperature and KF (mg/g (L/mg)1/n) 

depicts the adsorption or distribution coefficient of Pb(II) onto the adsorbent for a unit 

equilibrium concentration. Temkin isotherm presumes that the heat of sorption involved 

for all the adsorbate in the layer would decline linearly with the extent of surface 

exposure due to adsorbent-adsorbate interactions. Temkin model is expressed by 

Equation 3.6 .The linear plot of qe versus ln Ce gives a straight line with B as the slope 

and (In KT) as the intercept, where KT (L/g) and B are Temkin constants. Figure 7.11 

and 7.12 show the linear regression analysis for Freundlich and Temkin isotherm model 

at different temperature. 
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(a)  KCAC (b)  KFAC 

(c) MFSAC (d) AOPA 

Figure 7.11 Linear Regression Analysis of Freundlich Isotherm of Lead, Pb (II) onto (a) 
KCAC (b) KFAC (C) MFSAC (d) AOPA at different Temperature 
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(a) KCAC (b) KFAC 

(c) MFSAC (d) AOPA 

Figure 7.12  Linear Regression Analysis of Temkin Isotherm of Lead, Pb (II) 
onto (a) KCAC (b) KFAC (C) MFSAC (d) AOPA at different Temperature 
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It is observed that, the equilibrium data fits the Freundlich and Temkin model 

well compared to the Langmuir model at room temperature for KCAC and KFAC while 

sorption onto MFSAC and AOPA follow the Langmuir model rather than the 

Freundlich model. The results obtained for higher temperature of 50 °C and 70 °C is 

tabulated in Appendix E. If the experimental data follows Freundlich isotherm, it 

exhibits non cooperative, non specific sorption characteristics of the surface of the 

prepared sorbents (KCAC and KFAC). 

 

Adsorption of divalent cations of Pb(II) on various adsorbents was found to 

follow the Langmuir and Freundlich isotherm models. The adsorption of Pb(II) ions 

onto bagasse fly ash (Gupta and Ali, 2004), coke (Lopez-Delgado et al., 1996), illite 

(Farrah et al.,1980),  olive mill by products (Gharaibeh et al., 1998), ground nut husk 

(Okieimen et al., 1991), river bed sediment (Jain and Ram, 1997),  chemically treated 

rice husk and saw dust (Saravanane et al., 2002) also followed Langmuir and 

Freundlich isotherm model.  

 

Table 7.1 summarizes all the constants and R2 values obtained for the adsorption 

of lead on KCAC, KFAC, MFSAC and AOPA at (30±1) °C temperature for the three 

isotherm models used.  Model parameters obtained at higher temperature are tabulated 

in Appendix D.   
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Table 7.1 Langmuir, Freundlich and Temkin Isotherm models at (30±1) °C for the adsorption of Lead, Pb (II) onto KCAC, KFAC, MFSAC 
and AOPA 

 

 

 

 

 

 

  Linear Regression analysis of Isotherm   
 Langmuir Isotherm Freundlich Isotherm Temkin Isotherm 

 
Activated 
sorbent 
 

Maximum 
Monolayer 
adsorption 

capacity 

 
Langmuir 
Constant 

 
Separation 

Factor 

 
Correlation 
Coefficient 

 
Affinity Factor 

 
Freundlich 
Exponent 

 
Correlation 
Coefficient 

 
Binding 

Constant 

 
Temkin 

Constant 

 
Correlation 
Coefficient 

 qmax KL RL R2 KF 1/n R2 KT B R2 

 
 

(mg/g) (l/mg) - - (mg/g(l/mg)1/n) - - (l/g) - - 

KCAC 71.42 0.985 0.092 0.957 7.015 0.750 0.991 1.19 12.95 0.995 

KFAC 40.00 0.207 0.050 0.956 8.190 0.557 0.977 1.70 9.469 0.967 

MFSAC 
 

25.00 0.108 0.007 0.995 5.259 0.382 0.939 1.07 5.428 0.956 

AOPA 22.22 0.059 0.145 0.888 3.855 0.377 0.845 0.663 4.686 0.820 
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The separation factor, RL of the Langmuir isotherm defined by Weber and 

Chakkravorti (1974) is expressed in Chapter 3 (Equation 3.3). This parameter indicates 

the characteristics of the sorption process. However, the separation factor RL obtained 

from Langmuir equation and 1/n values obtained from the Freundlich model are all 

below the value one, confirming that lead is favorably adsorbed on all the activated 

sorbent prepared (Fytianos et al., 2000).  

 

Table 7.2 lists the comparison of maximum monolayer adsorption capacity, qmax 

(mg/g) of Pb(II) cations on various adsorbents. The adsorption capacity of Pb(II) cations 

onto the prepared sorbent in some cases is relatively high. However, accurate comparison of 

monolayer adsorption capacity sometimes becomes difficult as different workers used 

different concentration, temperature and pH range and it is well known that adsorption 

capacity increases significantly for increasing concentration and pH of the working solution. 

 

Among all the adsorbents prepared, powdered adsorbent showed greater removal 

efficiency than the granular one. The highest removal percentage of 94.45% was obtained 

for KCAC due to its larger surface area followed by KFAC, MFSAC and AOPA. This 

observation is consistent with the results obtained earlier where the relatively high 

adsorption capacity of KCAC, KFAC was due to their relatively high surface areas, pore 

volumes and powdered form as compared to the granular form of MFSAC. Thus for Pb(II) 

cations, activated carbon adsorbent (KCAC, KFAC and MFSAC) is better than activated 

ash (AOPA) to obtain high removal efficiency.  
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Table 7.2  Comparison of maximum monolayer sorption capacity (mg/g) of divalent 
cations of lead, Pb(II) onto different adsorbents 
 

 

 

7.5.2 Batch Adsorption Isotherms for sorption of Copper 

The linear plots of Langmuir, Freundlich and Temkin isotherms for adsorption of Cu(II) 

cations at 30, 50 and 70 °C onto KCAC, KFAC, MFSAC and AOPA are illustrated by 

Figures 7.13 (a)-(d), 7.14 (a)-(d) and 7.15 (a)-(d) respectively. The sorption affinities of Cu 

(II) cations for different adsorbent are compared by using non linear plots of Ce versus qe in 

the following section of 7.5.4. However, the experimental data has been deviated from the 

theoretical model depending on temperature.  

Type of Adsorbent Adsorbent Maximum Monolayer 
Sorption capacity, qm 

(mg/g) 

References 

Agricultural Residues 
KCAC 71.42 This Work 
KFAC 40.00 This Work 

MFSAC 25.00 This Work 
Ash residues AOPA 22.22 This Work 

Agricultural Residues 

Barley Straw 15.2 Larsen and Schierup 
1981 

Coir Fiber 18.9 Conard and Hansen 
2007 

Coir 48.84 Quek et al., 1998 
Hazel nut shell 1.78 Cimino et al., 2000 

Sago Industry Waste 46.6 Quek et al., 1998 

Clay Materials Bentonite 6 Cadena et al., 1990 
China Clay 0.289 Yadava et al., 1991 
Woolastonite 0.217 Yadava et al., 1991 

Peat 
Rastunsuo peat 20.038 Tummavuori and Aho 

1980 

Sphagnum moss peat 40 MeLelland and Rock 
1988 

Ash Residues Activated Rice Husk 
Ash 

12.61 Feng et al., 2004 
Fly Ash 18.0 Ricou et al., 1999 
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 Figure 7.13 Linearized Langmuir Isotherm Model for sorption of copper, Cu 
(II) cations onto (a) KCAC (b) KFAC (c) MFSAC (d) AOPA at different 
temperatures 
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(a) KCAC (b) KFAC 

(c) MFSAC (d) AOPA 

Figure 7.14 Linearized Freundlich Isotherm Model for sorption of copper, Cu(II) 
cations onto (a) KCAC (b) KFAC (c) MFSAC (d) AOPA at different temperatures 
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(a) KCAC (b) KFAC 

(c) MFSAC (d) AOPA 

Figure 7.15   Linearized Temkin Isotherm Model for sorption of copper 
Cu(II) cations onto (a) KCAC (b) KFAC (c) MFSAC (d) AOPA at different 
temperatures 
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In contrast to Pb (II) cations, the equilibrium data for Cu (II) follows the Langmuir 

model with high correlation coefficients of 0.985-0.996 at room temperature for all the 

activated adsorbent under investigation.  This phenomenon is consistent for higher 

temperature as well. However, the values obtained for constants and R2 vary, depending on 

the overall nature of the adsorption systems for all the concentration range. The 

thermodynamic behavior of the adsorption processes will be further discussed in section 

7.6. 

 

Table 7.3 summarizes all the constants and R2 values obtained from the three 

isotherm models for the adsorption of copper on KCAC, KFAC, MFSAC and AOPA at 

room temperature. Appendix E summarizes the results for higher temperatures of 50 and 70 

°C.  Referring to Table 7.3, it is observed that, the R2 values obtained here are better for 

Langmuir and Temkin model compared to the Freundlich model for Cu(II) sorption onto 

KCAC, KFAC, MFSAC and AOPA. A similar trend is also observed at higher 

temperatures. Based on the fundamentals of the Langmuir theory, it can be concluded that 

the binding of Cu (II) cations are mainly chemisorptive in nature that means the binding of 

each Cu (II) cation took place by chemical forces (Sen Gupta et al., 2005). The trend 

obtained from these plots is similar to that found for the adsorption of Pb (II) cations earlier 

where all the RL values are between 0 and 1. This indicates that, the adsorption of Cu (II) 

cations onto the activated adsorbent tested is also favorable under the conditions being 

studied. However, the Freundlich exponent 1/n is below the value one representing a 

favorable process. This suggests that some heterogeneity of the surfaces or pores of the 

activated adsorbents play a vital role in the adsorption of Cu (II) cations. 
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Table 7.3 Langmuir, Freundlich and Temkin Isotherm models at (30±1) °C for the adsorption of Copper, Cu (II) onto KCAC, KFAC, MFSAC and 
AOPA 

 

 

 

 

 

 

 

 

 

 

 

 

      Linear Regression analysis of Isotherm  
 Langmuir Isotherm Freundlich Isotherm  Temkin Isotherm 

 
Activated 
sorbent 
 

Maximum 
Monolayer 
adsorption 

capacity 

 
Langmuir 
Constant 

 
Separation 

Factor 

 
Correlation 
Coefficient 

 
Affinity Factor 

 
Freundlich 
Exponent 

 
Correlation 
Coefficient 

  
Binding 

Constant 

 
Temkin 

Constant 

 
Correlation 
Coefficient 

 qmax KL RL R2 KF 1/n R2  KT B R2 

 
 

(mg/g) (l/mg) - - (mg/g(l/mg)1/n) - -  (l/g) - - 

KCAC 29.412 2.00 0.005 0.985 18.356 0.335 0.922  23.57 5.952 0.920 

KFAC 27.780 1.499 0.007 0.986 15.950 0.312 0.919  18.75 5.564 0.938 

MFSAC 
 

20.830 0.343 0.028 0.994 8.570 0.258 0.866  5.108 3.965 0.883 

AOPA 18.867 0.602 0.016 0.996 11.370 0.121 0.966  137.13 2.150 0.979 
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Table 7.4    Comparison of maximum monolayer sorption capacity (mg/g) of divalent 
cations of copper onto different adsorbents 
 

  

 

The results agreed well with the studies carried out by previous researchers which 

reported that the Langmuir model gave a better fit to explain the experimental data for the 

adsorption of Cu(II) cations using different adsorbents such as banana pith carbon (Low et 

al., 1995), activated coir (Baes et al., 1996), peanut hull carbon (Periasamy and 

Namasivayam 1996) and sugar beet pulp (Pehlivan et al., 2006). Some adsorbents such as 

banana and orange peel (Annandurai et al., 2003), pecan shell carbon (Bansode et al., 2003) 

and tea waste (Cay et al., 2004) followed Freundlich model where as rubber wood saw dust 

(Kalavathi et al., 2005) followed Temkin isotherm. Table 7.4 lists the comparison of the 

maximum monolayer adsorption capacity, qm (mg/g) of Cu(II) cations for various types of 

adsorbents.  

 

Type of Adsorbent Adsorbent Maximum Monolayer 
Sorption capacity, qm 

(mg/g) 

References 

Agricultural Residues 
KCAC 29.41 This Work 
KFAC 27.78 This Work 

MFSAC 20.83 This Work 
Ash residues AOPA 18.87 This Work 

Agricultural Residues 

Cellulose pulp waste 4.98 Ulmanu et al., 2003. 

Sugar beet pulp 20.96 Reddad   et al., 2002 

Aquatic Plant 15.95 Keskinkan et al.2003  

Rice husk 29.00 Wong et al., 2003 

Cotton Ball 11.40 Ozsoy and Kumbur, 2006 

Activated Carbon Commercial Activated 
Carbon 

2.91-5.56 Adil, 2006 

Clay Materials Kaolinite             11.04 Yavuz et al., 2003 
Ash Residues 

 

Fly Ash 1.39 Panday et al., 1985 
Fly Ash +wollastonite 1.38 Apak et al., 1998 
Coal Fly Ash 20.92 Papandreou et al., 2007 
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The activated adsorbent prepared in this work showed relatively large adsorption 

capacity for Cu(II) cations compared to the previous works found in the literature. 

Among the activated adsorbents prepared, KCAC shows the highest adsorption capacity 

for copper at 30 oC followed by KFAC, MFSAC and AOPA. The phenomenon of high 

uptake capacity of KCAC is also consistent for the sorption of Pb(II) cations onto this 

activated carbon. This might be attributed due to its high surface area and pore volume 

compared to the other two adsorbents.  

 

On the other hand, opposing trend is observed for AOPA and MFSAC. Despite 

its high surface area and physical form, AOPA shows less removal efficiency compared 

to MFSAC. This is due to large pore size diameter of AOPA that could not retain 

smaller cations of Cu (II) resulting in smaller removal efficiency (Ahmenda et al., 

2000). Similar trend of adsorption capacity by the prepared adsorbent is also followed 

for the higher temperature ranges.  

 

7.5.3 Batch Adsorption Isotherms for sorption of Manganese 

Figures 7.16(a)-(d), 7.17(a)-(d) and 7.18(a)-(d) show the plots of the linearized 

equations for Langmuir, Freundlich and Temkin isotherms for adsorption of manganese, 

Mn(II) cations at 30, 50 and 70°C onto KCAC, KFAC, MFSAC and AOPA 

respectively. 
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Figure 7.16 Linearized Langmuir Isotherm Model for sorption of manganese, Mn(II) 
cations onto (a) KCAC (b) KFAC (c) MFSAC (d) AOPA at different temperatures 
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Figure 7.17 Linearized Freundlich Isotherm Model for sorption of manganese, Mn 
(II) cations onto (a) KCAC (b) KFAC (c) MFSAC (d) AOPA at different 
temperatures   
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 Figure 7.18 Linearized Temkin Isotherm Model for sorption of manganese, Mn (II)    
cations onto (a) KCAC (b) KFAC (c) MFSAC (d) AOPA at different temperature 
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Table 7.5 summarizes all the constants and R2 values obtained from the three 

isotherm models for adsorption of manganese, Mn(II) onto KCAC, KFAC, MFSAC and 

AOPA at room temperature. Appendix E summarizes the results for higher temperatures 

of 50 and 70 °C. Referring to Table 7.5, very good linearity are observed for Langmuir, 

Freundlich and Temkin model onto KCAC, KFAC, MFSAC and AOPA at room 

temperature. However, at higher temperature of 70 0C the adsorbate-adsorbent system 

deviated for sorption of Mn(II) cations onto AOPA. This might be due to its least 

tendency to form stable surface complexes compared to Pb(II) and Cu(II) cations.  

 

Based on the maximum monolayer adsorption capacity, it can be concluded that 

MFSAC although having a granular texture with less surface area shows a high sorption 

capacity than AOPA and is consistent for Pb(II) and Cu(II) cations as well. This might 

be attributed to the presence of a higher number of surface functional groups onto the 

surface of MFSAC and large pore diameter of AOPA which could not retain the small 

cations of manganese (Patrick, 1987).  

 

The overall trend obtained for the Langmuir separation factor, RL and Freundlich 

exponent 1/n being below the value of one (like Pb (II) and Cu (II) cations) for all the 

temperature ranges studied represent favorable adsorption processes. Similar trend was 

observed for Mn(II) sorption onto raw and acid treated corncob biomass. It showed 

good linearity for the Langmuir and Freundlich model where the exponent 1/n below 

the value of 1 represented normal Langmuir isotherm (Abideen et al., 2011). Table 7.5 

and 7.6 lists the Langmuir maximum monolayer adsorption capacity, qm (mg/g) of Mn 

(II) ions obtained in this study with various types of adsorbents.  
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Table 7.5 Langmuir, Freundlich and Temkin Isotherm models at (30±1) °C for the adsorption of Manganese, Mn (II) onto KCAC, KFAC, MFSAC and 
AOPA 

 

 

 

 

 

 

 

 

 

 

 

 

 

  Linear Regression Analysis of Isotherm   
 Langmuir Isotherm Freundlich Isotherm  Temkin Isotherm 

 
Activated 
sorbent 
 

Maximum 
Monolayer 
adsorption 

capacity 

 
Langmuir 
Constant 

 
Separation 

Factor 

 
Correlation 
Coefficient 

 
Affinity Factor 

 
Freundlich 
Exponent 

 
Correlation 
Coefficient 

  
Binding 

Constant 

 
Temkin 

Constant 

 
Correlation 
Coefficient 

 qmax KL RL R2 KF 1/n R2  KT B R2 

 
 

(mg/g) (l/mg) - - (mg/g(l/mg)1/n) - -  (l/g) - - 

KCAC 31.25 0.2172 0.043 0.992 7.6983 0.445 0.980  1.788 7.328 0.989 

KFAC 27.78 0.263 0.036 0.997 8.365 0.368 0.990  2.627 5.997 0.994 

MFSAC 
 

24.39 0.075 0.118 0.965 4.067 0.419 0.918  1.056 4.801 0.937 

AOPA 19.23 0.046 0.180 0.993 2.604 0.422 0.978  0.392 4.492 0.981 
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Table 7.6   Comparison of maximum monolayer sorption capacity (mg/g) of divalent 
cations of Manganese onto different adsorbents 
 

 

 

 

 

 

 

 

 

 

 

Type of Adsorbent Adsorbent Maximum Monolayer 
Sorption capacity, qm 

(mg/g) 

References 

Agricultural Residues 
KCAC 31.25 This Work 
KFAC 27.77 This Work 

MFSAC 24.39 This Work 
Ash residues AOPA 19.23 This Work 

Agricultural Residues 
Raw Corn Cob 6.54 Abideen et al., 2011. 

Treated Corn Cob 7.87 Abideen et al., 2002 

Activated Carbon 

Activated Carbon 
A(Furfural/Tar from 
Steam pyrolysis of 

apricot stone=70:30) 

10.20 Savova  et al., 2003 
 

Savova  et al., 2003 
 

Activated Carbon 
B(Furfural/Tar from 
Steam pyrolysis of 

apricot 

9.78 Savova  et al., 2003 
 

Activated Carbon 
C(Furfural/Tar from 
Steam pyrolysis of 

apricot 

7.96 Savova  et al., 2003 
 

Carbon D (Tar) 3.89 Savova  et al., 2003 
 

Clay Materials Bentonite 2.81 Datchaneekul 2006 

Miscellaneous 
Cow Bone charcoal 29.56 Moreno et al., 2010 

Electric Arc Furnace 
Slag 

2.30 Beh et al., 2010 
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7.5.4 Selective Adsorption Capacities of the cations 

Figures 7.19, 7.20 and 7.21 show the actual relationship between Ce (mg/l) and qe 

(mg/g) at 30 °C for all the adsorbate under investigation. The experimental data has 

been fitted with the theoretical values obtained from the Langmuir model onto different 

activated adsorbents for all the cations under investigation.  
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Figure 7.19 Relation between experimental Ce and qe with model fitting by 
Langmuir Isotherm for Lead, Pb(II) cations 
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Figure 7.20 Relation between experimental Ce and qe with model fitting by Langmuir 
Isotherm for Copper, Cu(II) cations 

Figure 7.21 Relation between experimental Ce and qe with model fitting by Langmuir 
Isotherm for Manganese, Mn(II) cations 
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From Figures 7.19-7.21, it can be observed that the cations under consideration are 

showing typical non linear trend of sorption which is characterized as L-type or Type I 

isotherm based on Brunner’s classification.  This indicates a favorable sorption process 

under fixed pH, contact time, temperature, adsorbent dosage and selected concentration 

range (50-100 mg/l). However, the slopes obtained for KCAC and KFAC are steeper than 

MFSAC and AOPA showing greater affinities towards the preselected cations. The curve 

obtained for KCAC and KFAC can be categorized as H-type isotherm compared to other 

two sorbent (MFSAC and AOPA) prepared here, which are depicted as extreme version of 

L-type isotherm by some literature (Datchaneekul, 2005). Thus, the KF values obtained from 

Freundlich isotherm for these two activated adsorbents (KCAC and KFAC) are higher than 

MFSAC and AOPA for all the cations.  

 

Overall, Langmuir monolayer sorption capacity observed here is higher for Pb(II) 

cations compared to the other two sorbates. This phenomenon can be explained in terms of 

the HSAB (Pearson, 1968) principle. Based on this, the basal structural unit of carbon can 

act as soft Lewis base which prefers to take soft Lewis acid such as Pb(II) cations. Whereas 

Cu(II) is regarded as a harder cation which prefers surface oxide groups (Adil, 2006). The 

sorption of Pb(II) can take place simultaneously on both harder and softer sites of the 

carbon leading to larger values of qmax (mg/g). Thus in some literature, Pb(II) is categorized 

as marginally soft ions (IUPAC 2002) or borderline cations (Adil, 2006; Ahrland et al., 

1958). However, the Freundlich constant, KF determined here is highest for sorption studies 

of Cu(II) onto the prepared sorbent rather than the other two cations which is consistent 

with it’s position based on the Irving William series. 
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7.6 Thermodynamic Characterization of Batch Adsorption Studies 

The thermodynamic behaviors for the adsorption of lead, copper and manganese on the 

prepared activated adsorbent in this study were analyzed using the thermodynamic 

equations as expressed by Equations 3.22-3.23. Based on Equations 3.20 and 3.21 the 

values of   ∆H° and ∆S° were calculated respectively from the slope and intercept of the 

plot of In KL versus 1/T, where KL (L/mg) was Langmuir isotherm constant obtained at 

three different solution temperatures of 30, 50 and 70 °C.  ∆G° was further determined 

from Equation 3.21 as depicted earlier.  
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Figure 7.22 Plots of ln KL versus 1/T for sorption studies of Lead, Pb(II) cations 
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Figure 7.23 Plots of ln KL versus 1/T for sorption studies of Copper, Cu(II) cations 

Figure 7.24 Plots of ln KL versus 1/T for sorption studies of Manganese, Mn(II) cations 
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As can be observed from these three plots, the slopes of the linear lines are either 

positive or negative depending on the specific adsorbate-adsorbent system. This 

indicates that some of the adsorption process is endothermic in nature while some 

systems are exothermic. The calculated values of ∆H°, ∆S°, ∆G° and ∆E° for sorption 

of Pb(II) cations onto KCAC, KFAC, MFSAC and AOPA are listed in Table 7.7.  

 

Table 7.7 Thermodynamics parameters for adsorption of Pb (II) from synthetic water   
 onto activated adsorbents at different temperatures 
 
 
 

Activated 
Adsorbent 

 

Enthalpy of Entropy of Gibbs Free Energy Correlation 
Reaction Reaction ∆G° Coefficient 

∆H° ∆S° (kJ/mol) R2 
(kJ/mol) (j/mol-K) 303 °K 323 °K 343 °K - 

KCAC -2.802 -0.0285 -5.836 -6.479 -6.972 0.942 
KFAC +10.02 +0.2056 -3.973 -2.951 -3.205 0.742 
MFSAC +6.709 +3.7165 -5.618 -5.416 -5.481 0.964 
AOPA +19.297 +0.0413 -7.129 -5.125 -5.582 0.742 
 

 

The results reveal that the ∆H° values obtained for the adsorption of lead onto 

KCAC is negative where as other adsorption processes for lead onto KFAC, MFSAC 

and AOPA show positive values of ∆H°.  Negative value of ∆H° indicates the 

exothermic nature of the adsorption interactions where as positive value reflects the 

endothermic nature. Tables 7.8 and 7.9 present the values of ∆H°, ∆S° and ∆G° for 

adsorption of Cu(II) and Mn(II) cations onto KCAC, KFAC, MFSAC and AOPA.  
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Table 7.8 Thermodynamics parameters for adsorption of Cu (II) from synthetic water   
onto activated adsorbents at different temperatures 
 
 

 

 

Table 7.9 Thermodynamics parameters for adsorption of Mn (II) from synthetic water   
onto activated adsorbents at different temperatures 
 
 

 

 

It is found that (Table 7.8 and 7.9), the adsorptions of copper ions on all the 

adsorbents are endothermic while adsorption of manganese on AOPA is exothermic in 

nature. Overall, these findings are consistent with the results obtained in the earlier 

section 7.3 describing the effects of solution temperature on the removal percentages of 

the above mentioned adsorbates from synthetic waste water. 

 

In the case of exothermic sorption processes, the adsorption uptake decreases 

with increase in solution temperature. This might be due to the successive desorption of 

adsorbate species in the equilibrium mixture. This is due to the deterioration of weak 

Activated 
Adsorbent 

 

Enthalpy of  Entropy of Gibbs Free Energy Correlation  
Reaction Reaction ∆G° Coefficient 

∆H° ∆S° (kJ/mol) R2 
(kJ/mol) (j/mol-K) 303 °K 323 °K 343 °K - 

KCAC +6.108 +0.0253 +1.591 +1.949 +2.613 0.948 
KFAC +4.281 +0.0173 +1.019 +1.168 +1.728 0.832 
MFSAC +8.738 +0.0202 -2.695 -2.031 -1.911 0.923 
AOPA +4.250 +0.0097 -1.276 -1.241 -0.877 0.883 

Activated 
Adsorbent 

 

Enthalpy of Entropy of Gibbs Free Energy Correlation 
Reaction Reaction ∆G° Coefficient 

∆H° ∆S° (kJ/mol) R2 
(kJ/mol) (j/mol-K) 303 °K 323 °K 343 °K - 

KCAC +6.704 +0.0095 -3.844 -3.585 -3.471 0.990 
KFAC +1.914 -0.0049 -3.373 -3.615 -3.559 0.652 
MFSAC +5.636 -0.0033 -6.558 -6.847 -6.670 0.870 
AOPA -3.135 -0.0357 -7.782 -8.207 -9.237 0.553 
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Van der Waals forces between the active sites on the activated sorbent and the adsorbate 

species. It has also been reported earlier that increase in temperature might decrease the 

uptake as the physical bonding between the adsorbate and the active sites of the 

adsorbent is destabilized (Chandra et al., 2007).  

 

Opposite phenomena is observed for the endothermic processes. In case of 

endothermic reactions, increase in temperature would increase the rate of diffusion of 

the adsorbate species across the external boundary layer as well as inside the pores of 

the adsorbent particle. This might be due to the decrease in the viscosity of the solution 

(Wang and Zhu, 2007). Furthermore, an increase in removal percentage of the sorbents 

at higher temperature might be due to the amplification of pore size distribution. It was 

depicted also that the active surface sites increased proportionally with the increase in 

temperature (Bulut and TEZ ZEKI, 2007).  

 

However, it is essential not to go beyond the optimum temperature limit because 

the increase in temperature causes an agglomeration process and beyond the critical 

temperature, desorption takes place spontaneously leading to a reduced rate of sorption 

with contact time. It was suggested by previous researchers that the increase in removal 

percentage with the increase in temperature is due to the increase in kinetic forces i.e, 

the mobility of the sorbate species inside the sorbent matrix (Senthilkumaar et al., 

2006). 

 

These results demonstrate that the thermodynamic behaviors of an adsorption 

system is dependent on the type of sorbent and sorbate being investigated. It is also 

influenced by the particle size or physical form of the adsorbent, its physical properties 
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and the surface functional groups of the sorbent as well as the characteristics and nature 

of the sorbate.  

From the literature, the adsorption of Pb(II) cations onto Kaolinite, 

montmorillonite, poly hydroxyl zirconium tailored kaolinite, montmorillonite clays and 

bagasse fly ash were reported to exhibit exothermic sorption (Sen Gupta et al., 2005;  

Gupta and Ali, 2004). On the other hand, the adsorption of Pb(II) onto lignin 

(Srivastava et al., 1994) was found to be endothermic in nature. Sorption of Cu(II) 

cations onto rubber wood activated carbon was found to be exothermic where as Mn(II) 

cations exhibited endothermic nature of sorption onto raw and acid treated corn cob and 

exothermic reaction of sorption onto fly ash (Abideen et al., 2011 and Sharma et al., 

2007). 

 

The highest limit in the change of enthalpy for physisorption is usually 80 

kJ/mol where as the chemisorption is between 80- 420 kJ/mol (Gercel et al., 2007). 

Based on the results depicted by Tables 7.7, 7.8 and 7.9; all the ∆H° values obtained in 

this study are less than 80kJ/mol. This implies that all the sorption processes observed 

here follow a physisorption mechanism. These findings have also been reported for the 

adsorption of Pb(II) onto wollastonite and lignin (Yadova et al., 1991, Srivastava et al., 

1994), Cu(II) onto activated  sawdust (Azmal et al., 1998) and Mn(II) onto raw and acid 

treated corncob agro-residues (Abideen et al., 2011). 

 

 Pb(II) cations adsorption onto KCAC shows negative ∆S° values. Rest of the 

sorbent-sorbate system based on lead and copper showed positive ∆S° values.  The 

positive values of ∆S° reflect the affinity of the activated adsorbent for the selected 

sorbates under investigation. This demonstrates increased randomness at the solid-

solution interface with some structural changes on the adsorbents’ surface during the 
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sorption processes. The negative values of ∆S° correspond to a decrease in the degree of 

freedom of the adsorbed species (Bulut and TEZ ZEKI, 2007). Most sorption systems 

obtained from the literature demonstrated positive values of ∆S°, nevertheless, negative 

values of ∆S° are also probable and shown by some adsorption systems. In this study, 

most of the adsorption systems are found to exhibit positive values of ∆S° except for 

adsorption of manganese onto KFAC, MFSAC and AOPA. Negative values of ∆S° 

values were also observed for the sorption of Pb(II) onto wollastonite and china clay 

(Yadava et al., 1991),  phenol onto montmorillonite clay (Maarof, 2004), sorption of 

divalent Cu(II)  onto  phosphoric acid activated  rubber wood sawdust (Kalavathy et al., 

2005) and adsorption of uranium (VI) onto the surface of  commercial activated carbon 

from Merck, Germany (Mellah et. al., 2006). 

 

Negative values of ∆G° obtained for adsorption of Pb(II) and Mn(II) cations 

onto the activated adsorbents indicate spontaneous adsorption. Similar observations 

were reported for adsorption  studies of  lead onto china clay and wollastonite (Yadava 

et al., 1991), copper onto kaolinite and activated slag (Yavuz et al., 2003, Gupta et al., 

1998) and manganese onto kaolinite (Yavuz et al., 2003) and raw and acid treated corn 

cob biomass (Abideen et al., 2011). The adsorption of Cu(II) cations onto KCAC and 

KFAC  show positive ∆G° whereas negative values of ∆G° is exhibited for MFSAC and 

AOPA. The positive values of ∆G° indicate the non-spontaneous nature of adsorption 

processes within the range of temperature being studied. This phenomenon had also 

been observed for adsorption of copper onto sawdust adsorbent (Azmal et al., 1998). In 

this present study, the values of ∆G° obtained are less than 20 kJ/mol. This shows that 

some physisorption steps were involved during the sorption process (Gercel et al., 

2007). 
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Overall, it could be concluded that the thermodynamic characteristics of a 

sorption system vary with the types of the sorbent and sorbate being used as they 

possessed different physical and chemical characteristics which influence the adsorption 

mechanism. There is no consistent trend which could be predicted on the 

thermodynamic behavior of the adsorption processes and the actual factor for this 

phenomenon.  

 

7.7 Batch Kinetic Studies of Adsorbate 

The methodology followed in determining kinetic parameters for sorption systems was 

mostly identical to that applied previously for the regression analysis of isotherms. The 

difference is that the water samples were withdrawn at predetermined interval of time 

and the residual concentrations of the adsorbate denoted as Ce (mg/l) were measured. 

The quantity Ct (mg/l) provides the necessary information about the quantity of 

adsorbate adsorbed Cad (mg/l) or removed by the adsorbent at any time t (minute). 

Based on that, the solid phase concentration or uptake capacity, qt (mg/g) at any time, 

uptake capacity at equilibrium time, qe (mg/g) and removal percentages were calculated 

by using Equation 7.1 and 7.2 respectively. 

                    
m
Xqt                                                                                                  (7.1) 

       and, VCVCCX adt  )( 0                                                              (7.2) 

 

where, C0 (mg/l) is the initial concentration, V (ml) is the volume of liquid taken and m 

(g) is the mass of adsorbent. 

 

The kinetics of adsorption provides the rate of sorbate uptake onto the activated 

sorbent within the equilibrium contact time. The pseudo-first-order, pseudo-second-
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order kinetic models and Elovich equation were implemented to evaluate the rate 

constant of the adsorption process. The experimental data were fitted with the 

aforementioned models and linear regression analyses were carried out and the 

constants were calculated by using Sigma Plot, Version 2010. 

 

7.7.1   Pseudo-First Order Kinetic Studies 

The pseudo-first-order kinetic model proposed by Langergren and Svenska, (1898) has 

been extensively used by different literatures to envisage sorption kinetics and was 

expressed earlier by Equation 3.10. The linear plots of log (qe – qt) against t (minutes) 

gives the slope as the rate of reaction, k1 and intercept of log qe.   Theoretical qe(cal) 

(mg/g) can be calculated from the mathematical model and compared with the 

experimental qe(exp)(mg/g) values.  

 

Figures 7.25 (a)–(d), 7.26(a) –(d) and 7.27(a) –(d)  respectively show the 

linearized plots of the pseudo-first order kinetic model for  sorption of Pb(II), Cu(II) and 

Mn(II) cations onto KCAC, KFAC, MFSAC and AOPA at 30 °C  for various  initial 

concentrations (50-100 mg/l). As can be observed from these graphs, the results 

obtained for all the adsorbate-adsorbent systems are approximately similar, with 

negative slopes and positive intercepts for all the initial concentrations. 
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Figure 7.25 Linearized plots for Pseudo first order kinetics for sorption of Lead, Pb(II) 
cations onto (a) KCAC (b) KFAC (c) MFSAC (d) AOPA 
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Figure 7.26 Linearized plots for Pseudo first order kinetics for sorption of 
copper, Cu(II) cations onto (a) KCAC (b) KFAC (c) MFSAC (d) AOPA 
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Figure 7.27 Linearized plots for Pseudo first order kinetics for sorption of Manganese, 
Mn(II) cations onto (a) KCAC (b) KFAC (c) MFSAC (d) AOPA 
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It is clear from these graphs (Figures 7.25-7.27) that pseudo first order model is 

followed by the system for the initial contact period of time. However, with the lapse of 

time, the experimental data deviates from the theoretical one resulting in scattered point 

near exhaustion. This shows that pseudo first order model fails to predict the sorption 

process for the entire region of contact time. This reveals that the system is following 

physisorption mechanism only partially. This finding supports the presence of active 

functional groups onto the prepared samples depicted earlier in Section 6.1.   

 

The experimental and calculated qe values together with the model constants, 

and correlation coefficient, R2 determined from the pseudo-first-order kinetics for 

sorption of Pb(II), Cu(II) and Mn(II) cations onto KCAC, KFAC, MFSAC and AOPA 

at 30 °C are tabulated in Tables 7.10, 7.11 and 7.12 respectively. The applicability of 

this kinetic model to describe the sorption process is further validated by the normalized 

standard deviation ∆q (%)   values summarized in the same table. 

 

As can be seen from Tables 7.10, 7.11 and 7.12, the rate constant, k1 and initial rate of 

sorption h,  obtained for the pseudo-first-order model do not show a consistent trend 

with increasing concentration range for all the cations studied here as some R2 values 

are relatively small. The first order rate constant, k1, is relatively small which agrees 

well with the sorption kinetics of Pb(II) cations onto biogas slurry (1.75 x10-1) and 

kaolinite clay (5.8x10-3) (Namasivayan and Yamuna1995; Orumwense 1996). The 

sorption kinetics of Cu(II) cations onto coir pith (1.97 x 10-2) (Namasivayam and 

Kadirvelu 1997) and Mn (II) cations onto electric arc furnace slag (2.1x 10-2) followed 

pseudo first order kinetics (Beh et al., 2010).  
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Table 7.10   Pseudo First Order Kinetics Model parameters for adsorption of Pb (II) from 
synthetic water by using activated adsorbent at room temperature (30±1) °C, agitation 
speed 150 rpm and   pH 5.5 
 

 

Sorbent Initial 
Concentration 

Equilibrium 
Concentration 

 

uptake 
capacity 

Theoretical 
uptake 
capacity 

1st  order 
Rate 
Constant 

Initial 
Rate of 
Sorption 

Coefficient SD 
(%) 

C0       Ce 
 

qe, exp qe, cal k1 h R2 ∆q 

(mg/l)             (mg/l) (mg/g) (mg/g) (min)-1  - - 
 
 
 
 

KCAC 

50 2.10 11.975 4.819 0.048 0.231 0.847 19.9 

60 2.45 14.387 6.209 0.037 0.230 0.891 18.9 

70 3.10 16.722 6.023 0.036 0.216 0.965 21.3 

80 3.23 19.191 8.511 0.041 0.349 0.980 18.6 

90 4.22 21.445 7.603 0.035 0.266 0.990 21.5 

100 5.11 23.723 12.274 0.043 0.527 0.904 16.1 

 
 
 
 

KFAC 

50 1.96 12.010 11.092 0.051 0.566 0.982 2.70 

60 2.78 14.305 8.279 0.028 0.232 0.965 14.9 

70 3.89 16.528 11.830 0.048 0.573 0.980 10.0 

80 4.14 18.965 8.260 0.028 0.228 0.982 19.9 

90 5.21 21.198 8.872 0.048 0.429 0.952 20.6 

100 6.77 23.308 10.691 0.035 0.374 0.954 19.1 

 
 
 
 

MFSAC 

50 7.09 10.728 14.289 0.037 0.526 0.956 11.1 

60 9.98 12.505 10.965 0.023 0.252 0.985 4.10 

70 12.98 14.255 13.931 0.025 0.352 0.941 0.76 

80 15.34 16.165 16.107 0.028 0.442 0.960 0.12 

90 20.98 17.143 15.632 0.029 0.467 0.968 2.93 

100 28.56 17.860 14.093 0.032 0.454 0.980 7.03 

 
 

  
 
AOPA 

50 10.12 9.9693 4.425 0.018 0.796 0.983 24.9 

60 18.55 10.363 7.727 0.032 0.247 0.938 20.5 

70 22.77 11.809 8.434 0.025 0.211 0.946 12.8 

80 26.88 13.280 7.852 0.032 0.251 0.954 18.3 

90 30.99 14.753 7.780 0.025 0.195 0.968 21.1 

100 36.68 15.831 12.303 0.041 0.504 0.978 9.97 
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Table 7.11 Pseudo First Order Kinetics Model parameters for adsorption of Cu (II) from 
synthetic water by using activated adsorbent at room temperature (30±1) °C, agitation 
speed 150 rpm and   pH 5.5 

 
 

 
Sorbent Initial 

Concentration 
Equilibrium 
Concentration 

uptake 
capacity 

Theoretic
al uptake 
capacity 

1st  order 
Rate 
Constant 

Initial 
Rate of 
Sorption 

Coefficient SD 
(%) 

C0 Ce 
 

qe, exp qe, cal k1 h R2 ∆q 

(mg/l) (mg/l) (mg/g) (mg/g) (min)-1  - - 
 
 
 
 

KCAC 

50 0.33 12.417 2.786 0.1382 0.385 0.919 24.5 

60 0.56 14.861 5.023 0.0253 0.127 0.950 20.9 

70 1.01 17.248 5.248 0.0322 0.169 0.935 22.0 

80 1.11 19.722 7.413 0.0207 0.153 0.960 24.9 

90 1.22 22.195 10.74 0.0345 0.371 0.941 16.3 

100 2.75 24.311 11.93 0.0299 0.357 0.957 16.1 

 
 
 
 

KFAC 

50 0.59 12.353 8.433 0.0253 

 

0.214 

 

0.981 

 

10.0 

60 0.76 14.810 12.618 0.0300 0.378 

 

0.950 

 

4.68 

70 0.89 17.278 7.717 0.0138 

 

0.106 

 

0.937 

 

17.5 

80 2.00 19.499 8.356 0.0276 0.230 

 

0.962 

 

18.1 

90 3.10 21.724 8.222 0.0207 

 

0.170 

 

0.929 

 

19.7 

100 3.45 24.136 10.666 0.0276 0.295 

 

0.979 

 

17.7 

 
 
 
 

MFSAC 

50 3.99 11.503 5.929 0.0184 0.109 0.886 14.6 

60 6.68 13.331 6.353 0.0184 0.117 0.833 15.8 

70 8.10 15.475 8.185 0.0230 0.188 0.811 14.2 

80 10.99 17.253 11.066 0.0276 0.305 0.877 10.8 

90 16.99 18.253 10.544 0.0230 0.243 0.977 12.7 

100 26.77 18.308 7.278 0.0161 0.117 0.898 18.2 

 
 

  
 
AOPA 

50 1.80 12.003 5.395 0.048 0.259 0.894 20.8 

60 4.89 13.778 6.039 0.030 0.181 0.952 21.2 

70 8.52 15.371 3.741 0.029 0.108 0.964 28.6 

80 16.01 15.999 5.035 0.028 0.141 0.894 25.9 

90 20.78 17.305 4.046 0.023 0.093 0.970 28.9 

100 28.00 17.999 5.082 0.023 0.117 0.939 27.1 
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Table 7.12 Pseudo First Order Kinetics Model parameters for adsorption of Mn (II) from 
synthetic water by using activated adsorbent at room temperature (30±1) °C, agitation 
speed 150 rpm and   pH 5.5 
 

 

Sorbent Initial 
Concentration 

Equilibrium 
Concentration 

uptake 
capacity 

Theoretical 
uptake 

capacity 

1st  order 
Rate 
Constant 

Initial 
Rate of 
Sorption 

Coefficient SD 
(%) 

C0 Ce qe, exp qe, cal k1 h R2 ∆q 
(mg/l)  (mg/g) (mg/g) (min)-1  - - 

 
 
 
 

KCAC 

50 2.88 11.781 2.506 0.0184 0.046 0.960 22.7 

60 3.76 14.061 5.296 0.0210 0.111 0.974 17.9 

70 4.87 16.287 3.917 0.0200 0.078 0.898 21.9 

80 6.90 18.273 4.276 0.0161 0.068 0.893 22.1 

90 9.45 20.375 4.325 0.0138 0.059 0.844 22.7 

100 11.00 22.250 7.638 0.0201 0.154 0.930 18.9 

 
 
 
 

KFAC 

50 2.68 11.831 5.199 0.0345 0.179 0.912 16.9 

60 3.99 14.003 7.379 0.0294 0.217 0.951 14.3 

70 5.89 16.028 8.913 0.0276 0.246 0.980 13.4 

80 7.35 18.162 9.311 0.0230 0.214 0.972 14.7 

90 10.58 19.854 11.59 0.0300 0.348 0.967 12.6 

100 13.77 21.756 13.43 0.0207 0.278 0.948 11.5 

 
 
 
 

MFSAC 

50 10.09 9.978 8.7498 0.0250 0.219 0.857 3.55 

60 10.99 12.252 10.20939 0.0253 0.258 0.909 4.81 

70 17.56 13.110 5.9979 0.0230 0.138 0.778 15.7 

80 21.67 14.583 5.8076 0.0276 0.161 0.869 17.4 

90 25.65 16.087 8.3598 0.0300 0.183 0.960 13.9 

100 30.98 17.255 6.8706 0.0230 0.158 0.880 17.4 

 
 

  
 
AOPA 

50 16.65 8.313 7.6559 0.0392 0.300 0.945 2.99 

60 20.78 9.805 13.964 0.0369 0.506 0.947 16.0 

70 27.80 10.550 11.246 
 

0.0322 0.362 0.979 2.49 

80 33.98 11.510 10.069 0.0392 0.395 0.969 4.73 

90 40.79 12.301 6.6374 0.0276 0.183 0.980 17.4 

100 46.78 13.310 7.2778 0.0345 0.251 0.972 17.1 
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The experimental equilibrium uptakes, qe,exp (mg/g), do not concur with the 

calculated qe,cal (mg/g) values from the pseudo first order model.  This gives a relatively 

large ∆q% ranging from 0.12 to 24.87% for sorption of Pb(II), 3.552- 17.374%  for  Cu(II) 

and 2.493-22.74%   for Mn(II) cations onto the prepared sorbent.  This reflects that the 

experimental data obtained for sorption of the cations under investigation does not 

completely follow the pseudo-first-order equation. 

 

7.7.2   Pseudo-Second Order Kinetic Studies 

The equilibrium data was also fitted with the linear form of pseudo-second-order equation 

proposed by Ho and McKay (1998). It is found to be able to predict the behavior of the 

sorption process for all the range of concentrations studied here. It is represented by 

Equation 3.12. The linear plots of t/qt against t (minutes) gives 1/qe(cal)  as the slope and 

1/k2qe
2   as the intercept, where k2 (g/mg-minutes) is the rate constant of the second-order 

adsorption.  

 

Figures 7.28 (a)-(d), 7.29 (a)-(d) and 7.30 (a)-(d) respectively show the linearized 

plots of the pseudo-second-order kinetic model for the sorption of Pb(II), Cu (II) and 

Mn(II) cations onto KCAC, KFAC, MFSAC and AOPA at 30 °C for various  initial 

concentrations. Overall, the pseudo-second-order kinetic model fits the experimental data 

better than the pseudo-first-order kinetic model as it correlates the experimental data well 

for all initial concentrations of the selected cations under investigation. It is observed that 

the regression lines are almost superimposed by the experimental data.  
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    KCAC KFAC 

MFSAC AOPA 

          (a)      (b) 

         (c)        (d) Figure 7.28 Linearized plots for Pseudo second order kinetics for sorption of 
Lead, Pb(II) cations onto (a) KCAC (b) KFAC (c) MFSAC (d) AOPA 
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            (a)                  (b) 

        KCAC         KFAC 

 MFSAC                  AOPA 

Figure 7.29 Linearized plots for Pseudo second order kinetics for sorption of 
Copper, Cu(II) cations onto (a) KCAC (b) KFAC (c) MFSAC (d) AOPA 
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          (a)           (b) 

KCAC KFAC 

MFSAC AOPA 

Figure 7.30 Linearized plots for Pseudo second order kinetics for sorption of 
Manganese, Mn(II) cations onto (a) KCAC (b) KFAC (c) MFSAC (d) AOPA 
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The experimental and calculated qe values together with the model constants, and 

correlation coefficient, R2 determined from the pseudo-second-order kinetic model for 

sorption of all the cations onto KCAC, KFAC, MFSAC and AOPA at 30 °C are tabulated 

in Tables 7.13, 7.14 and 7.15 respectively. The normalized standard deviation ∆q (%)   

values are determined and summarized in the same tables. 

 

From Tables 7.13, 7.14 and 7.15 it can be seen that all the R2 values obtained from 

the pseudo-second-order model are closer to unity, indicating that the adsorption of the 

cations on all the four activated adsorbents studied fits the model well. Moreover, the 

experimental qe,exp (mg/g) values agreed satisfactorily with the calculated values qe,cal 

(mg/g) which resulted in ∆q values raging from 0.807 to 6.65 %  for Pb(II),  2.723 to 

3.427% for Cu(II) and  0.092-6.534% for Mn(II) cations.  

 

The pseudo-second-order kinetic model is based on the assumption that chemical 

adsorption is the rate controlling step. It can predict the behavior over the whole range of 

contact period (Tseng and Tseng, 2005). This suggests that the overall rate of the 

adsorption process studied here is controlled by chemisorption which proceeds by the 

exchange or sharing of valance electrons between the adsorbate and adsorbent.  
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Table 7.13 Pseudo Second Order Kinetics Model parameters for adsorption of Pb (II) from 
synthetic water by using activated adsorbent at room temperature (30±1) °C, agitation 
speed 150 rpm and pH 5.5 
 

Sorbent Initial 
Concentration 

Equilibrium 
Concentration 
 

uptake 
capacity 

Theoretical 
uptake 
capacity 

2nd  
order 
Rate 
Constant 

Initial 
Rate of 
Sorption 

Coefficient SD 
(%) 

C0 Ce 
 

qe, exp qe, cal k2 h R2 ∆q 

(mg/l) (mg/l) (mg/g) (mg/g) (min)-1  - - 
 
 
 
 

KCAC 

50 2.10 11.975 12.340 0.0180 2.741 0.999 0.92 

60 2.45 14.387 14.925 0.0120 2.673 0.999 1.13 

70 3.10 16.722 17.241 0.0141 4.191 0.999 0.94 

80 3.23 19.191 20.000 0.0104 4.160 0.999 1.27 

90 4.22 21.445 22.222 0.0103 5.086 0.999 1.09 

100 5.11 23.723 25.000 0.0069 4.313 0.999 1.62 

 
 
 
 

KFAC 

50 1.96 12.010 12.987 0.007 1.181 0.996 2.77 

60 2.78 14.305 15.152 0.006 1.377 0.998 1.87 

70 3.89 16.528 17.544 0.007 2.155 0.997 1.94 

80 4.14 18.965 19.608 0.008 3.076 0.999 1.07 

90 5.21 21.198 21.739 0.005 2.362 0.999 0.81 

100 6.77 23.308 24.390 0.007 4.164 0.998 1.47 

 
 
 
 

MFSAC 

50 7.09 10.728 12.048 0.004 0.502 0.996 3.70 

60 9.98 12.505 14.085 0.003 0.545 0.997 3.80 

70 12.98 14.255 16.129 0.002 0.580 0.995 3.96 

80 15.34 16.165 18.519 0.001 0.593 0.980 4.39 

90 20.98 17.143 19.231 0.002 0.847 0.991 3.67 

100 28.56 17.860 19.608 0.002 0.888 0.989 2.95 

 
 

  
 
AOPA 

50 10.12 9.9693 10.989 0.005 0.652 0.994 3.87 

60 18.55 10.363 11.364 0.006 0.814 0.993 3.65 

70 22.77 11.809 13.889 0.002 0.521 0.987 6.65 

80 26.88 13.280 14.286 0.006 1.225 0.997 2.86 

90 30.99 14.753 15.873 0.005 1.259 0.998 2.87 

100 36.68 15.831 16.949 0.006 1.724 0.998 2.67 
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Table 7.14  Pseudo Second Order Kinetics Model parameters for adsorption of Cu (II) from 
synthetic water by using activated adsorbent at room temperature (30±1) °C, agitation 
speed 150 rpm and pH 5.5 
 

Sorbent Initial 
Concentration 

Equilibrium 
Concentration 

uptake 
capacity 

Theoretical 
uptake 
capacity 

2nd order 
Rate 
Constant 

Initial 
Rate of 
Sorption 

Coefficient SD 
(%) 

C0 Ce qe, exp qe, cal k2 h R2 ∆q 
(mg/l) (mg/l) (mg/g) (mg/g) (min)-1  - - 

 
 
 
 

KCAC 

50 0.33 12.417 12.658 0.0221 3.541 0.999 0.59 

60 0.56 14.861 15.385 0.0131 3.101 0.999 1.06 

70 1.01 17.248 17.857 0.0131 4.177 0.999 1.07 

80 1.11 19.722 20.408 0.0075 3.124 0.999 1.05 

90 1.22 22.195 23.256 0.0065 3.515 0.999 1.44 

100 2.75 24.311 25.641 0.0051 3.353 0.999 1.65 

 
 
 
 

KFAC 

50 0.59 12.353 13.158 0.0059 1.030 0.996 1.97 

60 0.76 14.810 15.625 0.0047 1.160 0.996 1.66 

70 0.89 17.278 18.519 0.0054 1.872 0.998 2.17 

80 2.00 19.499 20.000 0.0067 2.661 0.999 0.78 

90 3.10 21.724 22.727 0.0061 3.140 0.999 1.39 

100 3.45 24.136 26.316 0.0046 3.210 0.998 2.72 

 
 
 
 

MFSAC 

50 3.99 11.503 12.048 0.0068 0.987 0.999 1.37 

60 6.68 13.331 14.048 0.0056 1.105 0.998 1.55 

70 8.10 15.475 16.393 0.0047 1.263 0.998 1.71 

80 10.99 17.253 18.182 0.0042 1.388 0.998 1.55 

90 16.99 18.253 18.519 0.0039 1.337 0.996 0.42 

100 26.77 18.308 19.231 0.0050 1.849 0.998 1.46 

 
 

  
 
AOPA 

50 1.80 12.003 12.346 0.023 3.506 0.999 1.01 

60 4.89 13.778 14.286 0.011 2.245 0.998 1.30 

70 8.52 15.371 15.625 0.023 5.713 0.999 0.58 

80 16.01 15.999 16.393 0.013 3.494 0.997 0.87 

90 20.78 17.305 17.544 0.016 4.863 0.999 0.49 

100 28.00 17.999 18.519 0.012 4.115 0.998 1.02 
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Table 7.15 Pseudo Second Order Kinetics Model parameters for adsorption of Mn (II) from 
synthetic water by using activated adsorbent at room temperature (30±1) °C, agitation 
speed 150 rpm and pH 5.5 
 

Sorbent Initial 
Concentration 

Equilibrium 
Concentration 

uptake 
capacity 

Theoretica
l uptake 
capacity 

2nd   
order 
Rate 
Constant 

Initial 
Rate of 
Sorption 

Coefficient SD 
(%) 

C0 Ce qe, exp qe, cal k2 h R2 ∆q 
(mg/l) (mg/l) (mg/g) (mg/g) (min)-1  - - 

 
 
 
 

KCAC 

50 2.876 11.781 11.905 0.0242 3.430 0.999 0.29 

60 3.760 14.061 14.493 0.0113 2.374 0.999 0.85 

70 4.870 16.287 16.667 0.0130 3.611 0.999 0.65 

80 6.898 18.273 18.868 0.0105 3.738 0.999 0.90 

90 9.450 20.375 20.834 0.0112 4.861 0.999 0.63 

100 11.00 22.250 22.727 0.0072 3.719 0.999 0.60 

 
 
 
 

KFAC 

50 2.678 11.831 12.345 0.012 1.828 0.999 1.26 

60 3.987 14.003 14.925 0.007 1.559 0.998 1.90 

70 5.889 16.028 16.949 0.006 1.724 0.998 1.66 

80 7.352 18.162 19.231 0.005 1.849 0.998 1.70 

90 10.58 19.854 21.279 0.004 1.811 0.997 2.07 

100 13.77 21.756 23.256 0.003 1.622 0.997 1.99 

 
 
 
 

MFSAC 

50 10.09 9.978 11.904 0.0021 0.298 0.977 5.36 

60 10.99 12.252 13.698 0.0028 0.525 0.990 3.28 

70 17.56 13.110 13.888 0.0055 1.061 0.998 1.65 

80 21.67 14.583 15.384 0.0067 1.588 0.998 1.52 

90 25.65 16.087 16.949 0.0066 1.781 0.999 1.49 

100 30.98 17.255 17.857 0.0065 2.073 0.999 0.99 

 
 

  
 
AOPA 

50 16.65 8.313 9.804 0.0044 0.423 0.983 6.34 

60 20.78 9.805 12.346 00022 0.335 0.983 0.09 

70 27.80 10.550 12.500 0.0030 0.469 0.993 6.53 

80 33.98 11.510 12.500 0.0070 1.094 0.998 3.04 

90 40.79 12.301 12.987 0.0084 1.417 0.998 1.97 

100 46.78 13.310 14.085 0.0092 1.825 0.999 2.06 
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The results obtained in this study is in agreement with the previous works carried 

out on adsorption of Pb (II) cations on pinus sylvestris (Taty-costodes et al., 2003), 

periwinkle shell activated carbon (Badmus et al., 2007), peat (Ho and McKay 1998) and 

bottom ash (Kaur et al., 1991), Cu(II) onto peat (Gosset et al., 1986) and sago industry 

waste (Johnson et al., 2008) and Mn(II) onto electric arc furnace slag (Beh et al.,2010) and 

raw and acid treated corn cob (Abideen et al., 2011)  where the adsorption processes were 

all best described by the pseudo-second-order kinetic model.  

 

7.7.3   Elovich Equation 

Elovich equation described by Ozacar and Sengil, 2005 is another most frequently used 

model for depicting chemisorption process and is expressed by Equation 3.16. The value of 

(1/b) is indicative of the number of sites available for sorption while (1/b) ln (ab) is the 

adsorption quantity when ln t is equal to zero; i.e., the adsorption quantity when t is 1 h.  

 

Figures 7.31 (a) – (d),  7.32 (a) – (d)  and 7.33 (a) – (d) show the linearized plots of 

the Elovich equation for sorption studies of Pb(II), Cu(II) and Mn(II) cations onto the 

prepared sorbent respectively for various initial concentrations at 30 °C. The parameters 

(1/b) and (1/b) ln (ab) are calculated from the slope and intercept of the linear plots of qt 

versus ln t (hour) from the following graphs. The correlation coefficients and constant 

values determined from these plots are summarized in Tables 7.16, 7.17 and 7.18. 
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  (a)        (b) 

    (c)         (d) 

Figure 7.31 Linearized plots for Elovich Equation for sorption of Lead, Pb(II) cations 
onto (a) KCAC (b) KFAC (c) MFSAC (d) AOPA 
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           (a)              (b) 

            (c)            (d) 

                   KCAC               KFAC 

             MFSAC            AOPA 

Figure 7.32 Linearized plots for Elovich Equation for sorption of Copper, Cu(II) cations 
onto (a) KCAC (b) KFAC (c) MFSAC (d) AOPA 
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Figure 7.33 Linearized plots for Elovich Equation for sorption of Manganese, 
Mn(II) cations onto (a) KCAC (b) KFAC (c) MFSAC (d) AOPA 
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Table 7.16  Elovich Kinetics Model parameters for adsorption of Pb (II) from synthetic   
water by using activated adsorbent at room temperature (30±1) °C, agitation speed 150 rpm 
and pH 5.5 
 

 
 

Sorbent Initial 
Concentration 

Equilibrium 
Concentration 
 

uptake 
capacity 

Theoretical 
uptake 
capacity 

(1/b)lnab 1/b Coefficient SD 
(%) 

C0       Ce 
 

qe, exp qe, cal - - R2 ∆q 

(mg/l)    (mg/l) (mg/g) (mg/g) (mg/g) (mg/g) - - 
 
 
 
 

KCAC 

50 2.10 11.975 12.725 11-03 1.543 0.848 1.88 

60 2.45 14.387 15.475 13.92 1.416 0.926 2.28 

70 3.10 16.722 17.361 15.54 1.658 0.912 1.15 

80 3.23 19.191 19.967 17.71 2.054 0.957 1.22 

90 4.22 21.445 21.918 19.90 1.834 0.972 0.67 

100 5.11 23.723 24.148 21.75 2.183 0.972 2.99 

 
 
 
 

KFAC 

50 1.96 12.010 12.240 10.24 1.821 0.925 0.61 

60 2.78 14.305 14.540 12.13 2.195 0.935 0.52 

70 3.89 16.528 17.539 15.10 2.220 0.976 1.93 

80 4.14 18.965 19.705 16.95 2.508 0.946 1.23 

90 5.21 21.198 21.774 19.01 2.516 0.964 0.86 

100 6.77 23.308 24.068 21.12 2.683 0.966 0.33 

 
 
 
 

MFSAC 

50 7.09 10.728 11.848 8.420 2.473 0.958 3.15 

60 9.98 12.505 13.376 9.409 2.862 0.977 2.10 

70 12.98 14.255 15.043 10.56 3.234 0.969 1.67 

80 15.34 16.165 16.211 11.61 3.319 0.929 0.09 

90 20.98 17.143 18.085 13.21 3.517 0.944 1.66 

100 28.56 17.860 18.456 13.65 3.467 0.915 1.00 

 
 

  
 
AOPA 

50 10.12 9.9693 10.046 8.540 1.371 0.983 0.29 

60 18.55 10.363 10.765 9.197 1.427 0.919 1.47 

70 22.77 11.809 12.081 10.130 1.776 0.888 0.87 

80 26.88 13.280 14.088 11.640 2.229 0.879 2.29 

90 30.99 14.753 15.298 12.840 2.238 0.921 1.39 

100 36.68 15.831 16.602 14.061 2.313 0.908 1.84 
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Table 7.17  Elovich Kinetics Model parameters for adsorption of Cu (II) from synthetic  
water by using activated adsorbent at room temperature (30±1) °C, agitation speed 150 rpm 
and pH 5.5 
 
 

 
 

Sorbent Initial 
Concentration 

Equilibrium 
Concentration 

uptake 
capacity 

Theoretical 
uptake 
capacity 

(1/b)lnab 1/b Coefficient SD 
(%) 

C0 Ce qe, exp qe, cal - - R2 ∆q 
(mg/l) (mg/l) (mg/g) (mg/g) (mg/g) (mg/g) - - 

 
 
 
 

KCAC 

50 0.33 12.417 12.858 11.53 0.958 0.936 1.07 

60 0.56 14.861 14.944 13.55 1.269 0.971 0.17 

70 1.01 17.248 17.647 15.86 1.627 0.930 0.70 

80 1.11 19.722 19.851 17.51 2.131 0.970 0.20 

90 1.22 22.195 23.633 19.74 2.808 0.952 1.95 

100 2.75 24.311 25.836 21.34 3.243 0.953 1.89 

 
 
 
 

KFAC 

50 0.59 12.353 12.764 10.24 1.821 0.925 1.00 

60 0.76 14.810 15.173 12.13 2.195 0.935 0.74 

70 0.89 17.278 18.178 15.10 2.220 0.976 0.09 

80 2.00 19.499 20.427 16.95 2.508 0.946 1.44 

90 3.10 21.724 22.498 19.01 2.516 0.964 1.07 

100 3.45 24.136 25.639 21.92 2.683 0.966 1.88 

 
 
 
 

MFSAC 

50 3.99 11.503 12.279 9.366 1.810 0.962 1.95 

60 6.68 13.331 14.189 10.80 2.106 0.954 1.86 

70 8.10 15.475 16.217 12.58 2.260 0.955 1.38 

80 10.99 17.253 18.138 14.03 2.553 0.948 1.48 

90 16.99 18.253 18.956 15.01 2.452 0.951 1.11 

100 26.77 18.308 19.250 15.56 2.293 0.933 1.49 

 
 
 
 

AOPA 

50 1.80 12.003 12.267 11.44 0.753 0.953 0.78 

60 4.89 13.778 13.886 12.58 1.189 0.837 0.28 

70 8.52 15.371 15.519 14.64 0.801 0.954 0.34 

80 16.01 15.999 15.949 
 

14.91 0.946 0.789 0.11 

90 20.78 17.305 17.313 16.17 1.040 0.930 0.02 

100 28.00 17.999 17.851 16.52 1.212 0.925 0.29 
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Table 7.18 Elovich Kinetics Model parameters for adsorption of Mn (II) from synthetic 
water by using activated adsorbent at room temperature (30±1) °C, agitation speed 150 rpm 
and pH 5.5 

 

 

Sorbent Initial 
Concentration 

Equilibrium 
Concentration 

uptake 
capacity 

Theoretical 
uptake 

capacity 

(1/b)lnab 1/b Coefficient SD 
(%) 

C0 Ce qe, exp qe, cal - - R2 ∆q 
(mg/l)  (mg/g) (mg/g) (mg/g) (mg/g) - - 

 
 
 
 
KCAC 

50 2.876 11.781 12.123 10.86 0.785 0.898 0.81 

60 3.760 14.061 14.377 12.54 1.142 0.954 0.62 

70 4.870 16.287 17.048 14.62 1.509 0.913 1.30 

80 6.898 18.273 19.097 16.30 1.738 0.907 1.25 

90 9.450 20.375 21.057 18.21 1.769 0.887 0.93 

100 11.00 22.250 22.943 19.71 2.009 0.949 0.86 

 
 
 
 
KFAC 

50 2.678 11.831 12.743 10.68 1.878 0.917 2.23 

60 3.987 14.003 14.915 12.35 2.335 0.943 1.88 

70 5.889 16.028 16.631 13.96 2.432 0.975 1.05 

80 7.352 18.162 18.716 15.75 2.700 0.971 0.88 

90 10.58 19.854 20.823 17.35 3.161 0.979 1.41 

100 13.77 21.756 22.142 18.61 3.215 0.958 0.51 

 
 
 
 
MFSAC 

50 10.09 9.978 11.218 7.208 2.492 0.934 0.96 

60 10.99 12.252 13.406 9.233 2.593 0.936 2.61 

70 17.56 13.110 14.404 10.67 2.320 0.931 2.74 

80 21.67 14.583 16.335 12.28 2.520 0.876 3.33 

90 25.65 16.087 17.528 13.73 2.365 0.905 2.48 

100 30.98 17.255 18.335 15.05 2.041 0.934 1.74 

 
 
  
 
AOPA 

50 16.65 8.313 9.146 6.896 2.236 0.910 3.54 

60 20.78 9.805 11.955 7.484 2.778 0.961 7.75 

70 27.80 10.550 11.402 8.371 2.759 0.963 2.86 

80 33.98 11.510 12.237 10.00 2.037 0.958 2.23 

90 40.79 12.301 12.664 10.85 1.651 0.981 1.05 

100 46.78 13.310 13.817 11.96 1.691 0.960 1.34 
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From Tables 7.16, 7.17 and 7.18 it is observed that the R2 values obtained for the 

Elovich equation are almost near to unity , yielding ∆q% values raging from 0.29 to 2.88% 

for Pb(II), 0.016-1.947%  for Cu(II) and 0.623-7.752% for Mn(II) cations The Elovich 

equation gave a better fit as compared to the pseudo-first-order model with small ∆q% 

which further confirms the involvement of chemisorptions in the rate controlling step. It is 

observed that the values of 1/b ln (ab) increase with the increase of initial concentration 

range studied. This trend is expected because as the concentration range increases, a 

relatively large number of adsorbate ions will collide with the active sites of the adsorbents 

to form surface complexes. Eventually more uptakes by the prepared adsorbents will be 

observed. 

 

7.8 Adsorption Mechanism Studies 

The experimental data were further analyzed by using intraparticle diffusion model as the 

above three kinetic models were not sufficient to identify the diffusion mechanism. Intra 

particle diffusion model (Weber and Morris, 1962) was expressed earlier by Equation 3.19.  

 

7.8.1 Intraparticle Diffusion 

Figures 7.34 (a)-(d), 7.35 (a)-(d) and 7.36 (a)-(d) respectively show the intraparticle 

diffusion plots for the adsorption of  Pb(II), Cu(II) and Mn(II) cations onto KCAC, KFAC, 

MFSAC and AOPA at 30 °C for various initial concentrations. The plots contain positive 

intercepts and slope with two distinct region of sorption. 
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Figure 7.34 Linearized plots of intra particle diffusion studies for sorption of Lead, 
Pb(II) cations onto (a) KCAC (b) KFAC (c) MFSAC (d) AOPA 
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             (c)         (d) 

     (a)             (b) 

               KCAC               KFAC 

      AOPA        MFSAC 

Figure 7.35 Linearized plots of intra particle diffusion studies for sorption of 
Copper, Cu(II) cations onto (a) KCAC (b) KFAC (c) MFSAC (d) AOPA 
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Figure 7.36 Linearized plots of intra particle diffusion studies for sorption of 
Manganese, Mn(II) cations onto (a) KCAC (b) KFAC (c) MFSAC (d) AOPA 
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As can be seen from all these plots, the first sharper region is completed within the 

initial 30-60 minutes time reflecting the immediate sorption or external surface sorption.  

This represents the mass transfer of the sorbate cations from the bulk solution to the sorbent 

surface. The second region, almost parallel to X-axis is the gradual sorption stage. The 

involvement of different stages in the entire sorption process indicates that the adsorption 

rate is initially faster and then it becomes slower near to the equilibrium time. 

 

It is observed from all the intraparticle diffusion plots (Figures 7.34 (a)-(d)- 7.36 

(a)-(d)) that, the linear lines do not pass through the origin.  This divergence from the origin 

might be due to the difference in mass transfer rate in the preliminary and concluding 

stages of the sorption process (Mohanty et al., 2005). This implies that intraparticle 

diffusion is not only the rate limiting mechanism in the sorption processes. Similar 

observation has been reported for the sorption of Cu (II) cations onto rubber wood sawdust 

(Kalavathy et al., 2005). 

 

The values of the intraparticle diffusion model constants (kd and C) obtained for all 

the cations together with the R2 values obtained are presented in Tables 7.19, 7.20 and 7.21. 

It is found that the values of the constant C for all the three cations generally increases with 

increasing initial concentrations of the solution. This trend is expected due to the greater 

driving force of sorbate cations (increase in effective numbers of collisions between cations 

and active sites) at higher concentration (Ozer and Dursun, 2007). 
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Table 7.19  Intra-particle Diffusion Model parameters for adsorption of Pb (II) from 
synthetic  water by using activated adsorbent at room temperature (30±1) °C, agitation 
speed 150 rpm and pH 5.5 
 

Sorbent  Initial 
Concentration 

Equilibrium 
Concentration 

 

uptake 
capacity 

Theoretical 
uptake 
capacity 

Reaction 
Rate 

Constant 

Layer 
Effect 

Coefficient SD 
(%) 

C0       Ce 
 

qe, exp    qe, cal Kdif C R2 ∆q 

(mg/l)      (mg/l) (mg/g)    (mg/g) (mg/h0.5)  - - 
 
 
 
 

KCAC 

50 2.10 11.975 12.974 3.232 7.383 0.655 2.52 

60 2.45 14.387 15.663 4.207 8.376 0.796 2.67 

70 3.10 16.722 17.794 3.686 11.41 0.793 1.93 

80 3.23 19.191 20.493 4.580 12.56 0.838 2.05 

90 4.22 21.445 22.492 4.204 15.21 0.899 1.47 

100 5.11 23.723 24.963 5.348 15.70 0.909 1.58 

 
 
 
 

KFAC 

50 1.96 12.010 14.028 5.500 4.502 0.785 5.31 

60 2.78 14.305 15.944 5.553 6.326 0.868 3.62 

70 3.89 16.528 18.641 5.934 8.363 0.818 4.04 

80 4.14 18.965 20.507 5.310 11.31 0.870 2.57 

90 5.21 21.198 22.808 4.393 15.20 0.778 2.40 

100 6.77 23.308 22.238 4.393 14.63 0.899 1.45 

 
 
 
 

MFSAC 

50 7.09 10.728 12.785 5.147 2.491 0.838 5.78 

60 9.98 12.505 14.604 6.053 2.498 0.883 5.06 

70 12.98 14.255 16.530 6.943 2.644 0.903 4.81 

80 15.34 16.165 18.051 7.422 3.171 0.939 3.52 

90 20.98 17.143 19.792 7.648 4.496 0.902 4.64 

100 28.56 17.860 20.208 7.611 4.986 0.891 3.96 

 
 

  
 
AOPA 

50 10.12 9.9693 10.303 2.688 5.647 0.945 1.27 

60 18.55 10.363 10.986 2.727 6.263 0.839 2.27 

70 22.77 11.809 12.434 3.499 6.373 0.863 1.99 

80 26.88 13.280 14.366 4.151 7.177 0.762 3.09 

90 30.99 14.753 15.666 4.278 8.241 0.841 2.34 

100 36.68 15.831 16.934 4.376 9.355 0.812 2.63 
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Table 7.20  Intra-particle Diffusion Model parameters for adsorption of Cu (II) from 
synthetic water by using activated adsorbent at room temperature (30±1) °C, agitation  
speed 150 rpm and pH 5.5 
 

 

Sorbent Initial 
Concentration 

Equilibrium 
Concentration 

uptake 
capacity 

Theoretical 
uptake 

capacity 

Reaction 
Rate 

Constant 

Layer 
Effect 

Coefficient SD 
(%) 

C0 Ce qe, exp qe, cal Kdif C R2 ∆q 
(mg/l) (mg/l) (mg/g) (mg/g) (mg/h0.5g)  - - 

 
 
 
 

KCAC 

50 0.33 12.417 13.209 1.963 9.283 0.794 1.92 

60 0.56 14.861 15.828 2.664 10.50 0.865 1.96 

70 1.01 17.248 18.686 3.323 12.04 0.784 2.51 

80 1.11 19.722 21.264 4.397 12.47 0.835 2.36 

90 1.22 22.195 24.644 5.747 13.15 0.807 3.33 

100 2.75 24.311 27.066 6.703 13.66 0.823 3.42 

 
 
 
 

KFAC 

50 0.59 12.353 13.656 3.970 5.716 0.889 3.18 

60 0.76 14.810 16.276 4.808 6.660 0.907 2.98 

70 0.89 17.278 19.188 4.753 9.682 0.904 3.33 

80 2.00 19.499 21.348 5.154 11.04 0.808 2.86 

90 3.10 21.724 23.554 5.307 12.94 0.864 2.54 

100 3.45 24.136 26.920 5.815 15.29 0.917 3.48 

 
 
 
 

MFSAC 

50 3.99 11.503 12.930 3.360 5.417 0.800 3.58 

60 6.68 13.331 13.717 3.399 6.117 0.828 0.84 

70 8.10 15.475 17.243 4.385 7.438 0.868 3.29 

80 10.99 17.253 19.278 4.938 8.237 0.856 3.39 

90 16.99 18.253 20.076 4.764 9.424 0.867 2.88 

100 26.77 18.308 20.321 4.477 10.31 0.086 3.17 

 
 

  
 
AOPA 

50 1.80 12.003 12.817 2.406 8.650 0.738 0.85 

60 4.89 13.778 14.692 3.538 8.564 0.814 2.35 

70 8.52 15.371 16.015 2.237 12.14 0.817 1.48 

80 16.01 15.999 16.477 2.637 11.91 0.844 1.06 

90 20.78 17.305 17.746 2.446 13.51 0.961 0.90 

100 28.00 17.999 18.656 3.266 13.00 0.898 1.29 
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Table 7.21 Intra-particle Diffusion Model parameters for adsorption of Mn (II) from 
synthetic water by using activated adsorbent at room temperature (30±1) °C, agitation 
speed 150 rpm and pH 5.5 

 
 
 
 
 
 

Sorbent Initial 
Concentration 

Equilibrium 
Concentration 

uptake 
capacity 

Theoretical 
uptake 

capacity 

Reaction 
Rate 

Constant 

Layer 
Effect 

Coefficient SD 
(%) 

C0 Ce qe, exp qe, cal Kdif C R2 ∆q 
(mg/l)  (mg/g) (mg/g) (mg/h0.5g)  - - 

 
 
 
 
KCAC 

50 2.876 11.781 12.483 1.418 9.307 0.671 1.65 

60 3.760 14.061 15.016 2.185 10.13 0.799 1.88 

70 4.870 16.287 17.505 2.614 11.66 0.666 2.07 

80 6.898 18.273 19.849 3.121 12.87 0.669 2.39 

90 9.450 20.375 21.798 3.161 14.73 0.648 1.94 

100 11.00 22.250 23.946 3.728 15.61 0.747 2.11 

 
 
 
 
KFAC 

50 2.678 11.831 13.190 4.041 6.191 0.738 3.32 

60 3.987 14.003 15.593 5.189 6.606 0.810 3.28 

70 5.889 16.028 17.417 5.515 7.865 0.872 2.50 

80 7.352 18.162 19.624 6.166 8.944 0.880 2.32 

90 10.58 19.854 21.815 7.139 9.451 0.868 2.85 

100 13.77 21.756 23.363 7.542 10.30 0.916 2.13 

 
 
 
 
MFSAC 

50 10.09 9.978 12.278 4.868 1.394 0.808 6.40 

60 10.99 12.252 14.579 5.063 3.258 0.838 5.27 

70 17.56 13.110 18.340 4.291 8.748 0.728 11.1 

80 21.67 14.583 17.132 4.494 7.083 0.675 4.85 

90 25.65 16.087 18.376 4.306 8.748 0.728 3.95 

100 30.98 17.255 19.106 3.759 10.701 0.768 2.98 

 
 
  
 
AOPA 

50 16.65 8.313 9.773 4.502 1.975 0.765 6.21 

60 20.78 9.805 11.266 5.899 1.049 0.898 5.27 

70 27.80 10.550 12.084 5.797 2.044 0.882 5.14 

80 33.98 11.510 12.698 4.214 5.400 0.850 3.65 

90 40.79 12.301 13.101 3.507 7.027 0.919 2.30 

100 46.78 13.310 14.249 3.562 8.080 0.884 2.49 
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7.9 Regeneration of spent adsorbent 
 
The feasibility of the prepared adsorbent was further analyzed by using five types of 

regenerating agent. The procedure was explained earlier in Chapter 4 (Section 4.5). The 

percent desorption efficiency was calculated by using Equation 4.16 and the values 

obtained are summarized in the following Table 7.22. 

 

Table 7.22 Percent Desorption of Metallic cations from spent activated adsorbents 

 

Adsorbate Adsorbent Desorption Percentages 
  Distilled 

Water 
CH3COOH HCl HNO3 H2SO4 

 

Pb(II) 

KCAC 6.776 11.332 74.778 81.878 62.545 
KFAC 3.667 9.898 77.676 78.887 67.789 

MFSAC 4.889 7.787 78.998 80.545 72.324 
AOPA 2.334 4.887 26.343 20.889 12.223 

 

Cu(II) 

KCAC 8.787 12.098 66.987 85.889 65.898 
KFAC 5.556 10.676 69.890 82.454 62.987 

MFSAC 6.887 8.889 80.787 85.879 75.435 
AOPA 3.667 6.565 28.768 22.789 14.004 

 

Mn(II) 

KCAC 9.878 13.987 57.987 92.343 67.778 
KFAC 7.009 11.565 60.234 88.567 65.787 

MFSAC 7.676 9.898 75.778 86.897 68.789 
AOPA 4.887 7.334 33.565 24.656 15.223 

 

 

It is observed that the percent desorption is in general higher for Cu(II) and Mn(II) 

cations rather than Pb(II) cations. This might be due to the smaller cationic size of these 

two adsorbates for which they can be desorbed from the surface readily. However, 

satisfactory amount of desorption percentage is exhibited by powdered and granular 

activated carbon rather than the activated ash residues. Similar desorption efficiency had 
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also been observed for Cd (II) and Zn(II) cations from  rice husk ash by using acid eluting 

agent (Srivastava et al., 2008). 

 

The sorption process takes place either by physical or chemical interactions, ion 

exchange or combination of all types of mechanisms. By using distilled water, small 

fractions of cations can be desorbed. Mineral acids are better than organic acids as 

desorbing agents. Basically, organic acids dissociate partially, releasing smaller amounts of 

exchangeable H+ ions. On the contrary inorganic acids dissociate completely to produce 

sufficient number of H+ cations. These take part in desorption mechanisms of metallic 

cations from adsorbent surface. Among the inorganic acids, HNO3 acid acts as better 

eluting agent for activated carbon whereas HCl acid desorbs slightly higher fractions of 

metallic cations from activated ash.  However, the desorption efficiency shown by activated 

ash is not significant. This shows that the sorption process onto activated ash residues is not 

completely reversible. Overall, HNO3 desorption technique was shown to be a promising 

way to regenerate the cation loaded  sorbent; especially in the case of powdered and 

granular activated carbon. Thus for column regeneration and recycling, HNO3 acid solution 

has been used in the following Chapter 8.  

 

7.10 Summary 

In this study, the influences of process parameters for batch equilibrium processes were 

determined. The results revealed that the prepared sorbents are effective for the removal of 

divalent cations of Pb(II), Cu(II) and Mn(II) from waste water. The optimum sorption 

process takes place between pH 4-6 and the uptake increases with the increase of initial 

concentration. Linear regression analysis was carried out to evaluate kinetics and isotherm 
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parameters of the sorption processes. In terms of adsorption capacity and desorption 

efficiency, the prepared activated carbon (KCAC, KFAC and MFSAC) performed better 

than the activated ash sample (AOPA). Therefore, for column dynamics studies; granular 

activated carbon (MFSAC) has been selected for the preparation of fixed bed in subsequent 

section of Chapter 8. 
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 CHAPTER EIGHT 
RESULTS AND DISCUSSION 
Fixed Bed Adsorption Studies 

 

8.1 Introduction 

This chapter discusses the fixed bed adsorption onto activated carbon prepared from 

mangostene fruit shell (MFSAC). Initial/influet concentrations of the adsorbate, fixed bed 

height and rate of influent on breakthrough curves were analyzed. The sorption dynamics 

were studied in terms of Thomas, Yoon- Nelson and Bohart-Adams Models. Regeneration 

and recycling efficiency of the column for each adsorbate are presented in the subsequent 

section. The chapter ends with a brief summary depicting the process parameters for fixed 

bed sorption. 

 

 8.2 Fixed-Bed Adsorption Studies 

Fixed adsorption tests were carried out for adsorption of divalent cations of Pb (II), Cu (II) 

and Mn (II) onto MFSAC due to the suitability of this granular type activated adsorbent to 

be applied in continuous adsorption system. The time to reach breakthrough for different 

adsorbates were analyzed. The experimental results were plotted to obtain breakthrough 

curves which reflect the sorption behaviors of the adsorbate at definite time interval for 

continuous flow adsorption. It can be expressed in terms of the ratio of outlet adsorbate 

concentration to the inlet adsorbate concentration with respect to time (Ct/C0 versus time, t). 

The equilibrium adsorbate uptake in the column or maximum capacity of the column (qeq) 

at 50% breakthrough was calculated by using Equation 3.22 by Treybal approach. The 
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experiments were carried out at room temperature, (30 ±1) °C and the pH of the inlet 

solution was adjusted as 5.5. 

 

8.2.1 Effect of Adsorbate Inlet Concentration 

The effect of inlet concentration of the adsorbate on the column performance was studied 

by varying the inlet concentrations of 50, 70 and 100 mg/l for constant bed height of 4.5 cm 

and feed flow rate of 1 ml/min. The breakthrough curve is illustrated by Figures 8.1, 8.2 

and 8.3 for lead Pb(II), copper Cu(II) and manganese Mn(II), respectively. Then the 

breakthrough time, tb and complete exhaustion time, te for different concentrations were 

determined.  

 

As can be observed from the following three plots (Figures 8.1, 8.2 and 8.3), the 

activated carbon beds were exhausted faster at higher adsorbate inlet concentrations. It is 

observed that, breakthrough point was reached quickly by higher concentration range of 

influent solution. This phenomenon is expected with increasing influent concentration 

because the binding sites were occupied rapidly and the adsorbent bed was saturated within 

a short period of time. When the inlet concentration was decreased, relatively longer 

contact time was required by the sorbent to be exhausted. This gave an extended 

breakthrough curve. The phenomenon exhibited that a higher volume of solution could be 

treated. This is evident due to slower transportation of adsorbate cations for lower 

concentrated solution. This results in overall decrease in diffusion or mass transfer 

coefficient (Tan et al., 2008). 
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Figure 8.1   Breakthrough Curves for adsorption of lead (II) onto MFSAC for different 
initial concentration (Flow rate 1 ml/min, pH 5.5, Temperature 30±1 °C 
 

 

 
 
Figure 8.2   Breakthrough Curves for adsorption of copper (II) onto MFSAC for different  
 initial concentration (Flow rate 1 ml/min, pH 5.5, Temperature 30±1 °C 
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Figure 8.3   Breakthrough Curves for adsorption of manganese (II) onto MFSAC for 
different initial concentration (Flow rate 1 ml/min, pH 5.5, Temperature 30±1 °C) 
 

As the concentration range was increased from 50 mg/l to 100 mg/l, the curve 

changed its shape from flatter concave to steep concave; the larger the influent 

concentration is, the steeper is the shape of the initial portion of the curve. The shape and 

gradient of the breakthrough curves showed different trends from one another for different 

metals. Nevertheless, it showed an S-shape curve for all the metals with a nearly flat line 

for the preliminary stage of the breakthrough curve. Similar trend was observed for the 

biosorption of Cr (VI) by thermally activated weed Salvinia cucullata (Baral et al., 2009), 

biosorption of Acid Blue 15 using fresh water Azolla filiculodies (Padmesh et al., 2006), for 

removal of lead (II) ions using activated tea waste (Mondal, 2009) and immobilized Pinus 

sylvestris sawdust (Taty-Costodes et al., 2005) .  
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8.2.2. Effect of Activated Carbon Bed Height 

Figures 8.4, 8.5 and 8.6 show the breakthrough curve obtained for the adsorption of  Pb 

(II), Cu (II) and Mn (II) on MFSAC for two different bed heights of  3 and 4.5 cm (3.56 

and 4.86g of MFSAC) at constant adsorbate feed flow rate of 1 ml/min and adsorbate inlet 

concentration of 100 mg/l.  

  

It was observed from the figures that, a constant pattern of breakthrough curves was 

obtained for all the three metals over the range of bed depth studied. However, at higher 

bed height, the curves tended to be less steep. Tables 8.1, 8.2 and 8.3 show the comparison 

of column parameters for the three metals. Maximum equilibrium capacity of the column 

was increasing with increasing bed height.  

 

 As can be seen from the plots (Figures 8.4, 8.5 and 8.6), both break through and 

exhaustion time were found to increase with increasing bed height. The plots show that the 

shape and gradient of the breakthrough curves were slightly different with the variation of 

bed depth. This is expected because for higher bed height, there was more activated carbon 

present in the column. Thus there were more active sites for capturing metallic cations 

resulting greater uptake capacity. The increase in bed height will increase the mass transfer 

zone. The mass transfer zone travels from the entrance side of the fixed bed and proceed 

towards the outlet side. Therefore for same inlet concentration, an increase in bed height 

would cause a larger distance for the mass transfer zone to arrive at the exit of the column. 

Consequently it would result with an extended breakthrough time. For higher bed depth, the 

increase of adsorbent mass would provide a larger service area leading to an increase in the 

volume of waste water to be treated (Ahmad and Hameed, 2010 b; Tan et al., 2008). 
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Figure 8.4    Breakthrough Curves for adsorption of lead (II) onto MFSAC for different  
 Bed height (Concentration 100 mg/l, Flow rate 1 ml/min, pH 5.5, Temperature 30±1 °C 
 

 

Figure 8.5     Breakthrough Curves for adsorption of copper (II) onto MFSAC for different  
Bed height (Concentration 100 mg/l, Flow rate 1 ml/min, pH 5.5, Temperature 30±1 °C 
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Figure 8.6   Breakthrough Curves for adsorption of manganese (II) onto MFSAC for 
different Bed height (Concentration 100 mg/l, Flow rate 1 ml/min, pH 5.5, Temperature 
30±1 °C 
 

Similar trend was reported for adsorption of Cr (VI) onto immobilized cyano 

bacterial biosorbents (Kiran and Kaushik, 2008), Pb(II) cations by treated granular 

activated carbon and Cr (VI) on neem sawdust (Vinodhini and Das,  2010). 

 

8.2.3 Effect of Influent Flow Rate 

The effect of influent  flow rate on the adsorption of Pb (II), Cu (II) and Mn (II) cations on 

MFSAC was investigate by varying the flow rate (1 and 3 ml/min) by keeping constant bed 

height of 4.5 cm and inlet adsorbate concentration of 100 mg/l. The breakthrough curves 

are illustrated by Figures 8.7, 8.8 and 8.9. It was observed that at higher flow rate, the front 

of the mass transfer zone quickly reached the exit portion of the column indicating that the 

column was saturated early (Vinodhini and Das, 2010). Lower flow rate has resulted in 

longer contact time as well as shallow adsorption zone. At higher flow rate a steeper curve 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 200 400 600 800 1000

Ct/C0 Time (Minute)

4.5 cm 3 cm



 

 
299 

 

with relatively early breakthrough was observed and the exhaustion time resulted in less 

removal percentage and uptake for all the metals. 

 

 

Figure 8.7     Breakthrough Curves for adsorption of lead (II) onto MFSAC for different  
Flow Rate (Concentration 100 mg/l, pH 5.5, Temperature 30±1 °C 
 

 

Figure 8.8    Breakthrough Curves for adsorption of copper (II) onto MFSAC for different  
Flow Rate (Concentration 100 mg/l, pH 5.5, Temperature 30±1 °C 
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Figure 8.9 Breakthrough Curves for adsorption of manganese (II) onto MFSAC for 
different Flow Rate (Concentration 100 mg/l, pH 5.5, Temperature 30±1 °C 
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quickly. This is due to its largest cationic size of 1.19 °A which has occupied most of the 

surface of the sorbent quickly. This phenomenon is consistent with batch sorption studies 

also where adsorption of Pb(II) cations onto MFSAC exhibited smallest equilibrium time 

(Chapter Seven). Ionic radius of the cations under investigation changes in the order of 
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Pb>Mn>Cu. Cu(II) cations loaded column was exhausted earlier than Mn(II) cations 

having ionic radius 0.79 °A. This is expected due to its high reactivity based on Irving 

William series and smallest cationic size (0.71° A). Thus it can penetrate easily inside the 

pores of the adsorbent. Similar observation has been reported for phosphate treated rice 

husk adsorbent column (Mohan and Sreelakshmi, 2008). This can be explained in terms of 

the affinity factor of different cations toward the prepared adsorbent. Among the three 

cations, lead has the largest ionic radius with the highest electronegativity. It is probably 

due to this reason; lead occupied the adsorbent surface quickly.  Copper is more reactive 

than manganese as it can readily form stable complexes. This is why although copper (0.73 

°A) and manganese (0.79 °A) have almost similar ionic radius, copper adsorbed quickly 

resulting in an earlier saturation of the column compared to manganese. However, lead and 

copper showed almost similar uptake capacity as both of them are the highest two members 

of Irving-Williams series having similar electronegativities of  2.3 and 1.9 respectively 

depending on bed height and flow rate. Following Tables 8.1, 8.2 and 8.3 listed the 

exhaustion time and bed capacity for Pb (II), Cu (II) and Mn (II) respectively at different 

condition. 

 

Tables 8.1 Column Adsorption data for Pb (II) onto MFSAC 

Inlet 
Concentration 

Bed 
Height 

Solution 
Flow 
Rate 

Breakthrough 
Time, 

tb 

Complete 
Exhaustion 

Time, 
te 

Empty Bed 
Contact 
Time, 
EBCT 

Bed 
Capacity, 

t0.5 
qeq 

(mg/l) (cm) (ml/min) (min) (min) (min) (mg/g) 
50 4.5 1 360 870 71.54 5.5230 
70 4.5 1 240 810 71.54 5.5486 
100 4.5 1 180 630 71.54 6.7028 
100 3.0 1 100 540 47.69 4.7217 
100 4.5 3 70 420 23.86 2.1285 
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Tables 8.2 Column Adsorption data for Cu (II) onto MFSAC 

Inlet 
Concentration 

Bed 
Height 

Solution 
Flow 
Rate 

Breakthrough 
Time, 

tb 

Complete 
Exhaustion 

Time, 
te 

Empty 
Bed 

Contact 
Time, 
EBCT 

Bed 
Capacity, 

t0.5 
qeq 

(mg/l) (cm) (ml/min) (min) (min) (min) (mg/g) 
50 4.5 1 280 870 71.54 4.7241 
70 4.5 1 220 750 71.54 5.7350 
100 4.5 1 200 660 71.54 6.0219 
100 3.0 1 120 570 47.69 5.0261 
100 4.5 3 60 630 23.86 5.6316 

 

 

Tables 8.3 Column Adsorption data for Mn (II) onto MFSAC 

Inlet 
Concentration 

Bed 
Height 

Solution 
Flow 
Rate 

Breakthrough 
Time, 

tb 

Complete 
Exhaustion 

Time, 
te 

Empty 
Bed 

Contact 
Time, 
EBCT 

Bed 
Capacity, 

t0.5 
qeq 

(mg/l) (cm) (ml/min) (min) (min) (min) (mg/g) 
50 4.5 1 490 900 71.54 6.0757 
70 4.5 1 340 780 71.54 6.1162 
100 4.5 1 250 700 71.54 7.2573 
100 3.0 1 130 550 47.69 4.1111 
100 4.5 3 70 670 23.86 6.8562 

 

 

At higher inlet concentration, higher equilibrium uptake was observed for column 

sorption system. This phenomenon is analogous with the batch sorption process depicted 

earlier in Chapter 7. However, the experimental results obtained for adsorption of Pb (II), 

Cu (II) and Mn (II) cations on MFSAC showed that the highest adsorption capacity was 

obtained using a solution of 100mg/l as the inlet concentration using 1 ml/l flow rate. It is 

depicted by previous literature that, the reduction of bed height would cause axial 
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dispersion to affect the overall mass transfer process. This causes reduction in diffusion of 

the adsorbate (Taty-Costodes et al., 2005).  This indicates that, the solute did not get 

enough time to diffuse into the whole of the adsorbent mass by using lower bed height and 

higher flow rate of adsorbate solution. In this study the empty bed contact time (EBCT) or 

standard contact time is calculated by using Equation 8.1 (Bharathi et al., 2011). 

 

EBCT= Bed Volume/Flow rate                                                                       (8.1) 

 

However, at higher flow rate and lower bed height; lower empty bed contact time 

(EBCT) was obtained. It was observed that, the lower the EBCT values, the lower is the 

diffusion process resulting in a lower adsorption capacity. Similar trend was followed for 

the sorption of cadmium onto coir pith (Bharathi et al., 2011). 

 

It can be concluded that, the developed column packed with MFSAC would 

demonstrate better performance by using lower flow rate (1ml/min) of the inlet solution. 

From Tables 8.1, 8.2 and 8.3 it is observed that, relatively longer breakthrough time, tb 

(minutes) and exhaustion time, te (minutes) was required for lower flow rate of inlet 

solution. By using higher flow rate of inlet solution (3 ml/min), the equilibrium sorption 

capacity of MFSAC was lower for the same bed height (4.5 cm). This was due to 

inadequate contact time between the solute and the sorbent in the column and less diffusion 

of the solute into the pores of the adsorbent. At the end, the solute had to leave the column 

before equilibrium was reached. This phenomenon is expected and previously observed for 

various fixed bed sorption systems (Malkoc et al., 2006, Al-Qodah and Lafi, 2003; Taty-

Costodes el al., 2005; Padmesh et al., 2006,). 
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Overall, the adsorption capacity of MFSAC for the cations under investigation for  

fixed-bed experiments were found to be lesser than the values evaluated earlier from the 

batch experiments (Chapter Seven) for the same initial concentration. The difference 

between the adsorption capacity obtained from batch and fixed-bed system could also be 

attributed to the static mode of sorption in the adsorption column. Moreover, the effective 

surface areas of the activated sorbent (MFSAC) was lesser compared to those available in 

the stirred batch vessels (Al-Qodah and Lafi, 2003). This reflects that the performance of 

the prepared activated sorbent could be improved by applying higher bed height and lower 

flow rate of adsorbate solution for a fixed adsorbate inlet concentration.  

 

8.3 Column Dynamics Study  

As the adsorbate solution loaded with cations enters and moves through the column, the 

adsorption zone starts moving towards the end of the column and the effluent concentration 

starts rising with time. This point is referred as break point and the time taken for the inlet 

concentration to reach a specific breakthrough concentration is called the breakthrough 

time. However, the point at which the outlet concentration reaches 99% of its inlet 

concentration is termed as column exhaustion time, te (minutes).  

 

The sorption performance of the cations through the column was analyzed by 

Thomas, Yoon Nelson and Bohart- Adams models at concentration ratio, Ct/C0 >0.1 until 

10% breakthrough i.e Ct/C0 >0.90 for manganese and for concentration ratio, Ct/C0 >0.05 

until 10% breakthrough Ct/C0 >0.90 for lead and copper by considering the drinking water 

standards and operating limit of the mass transfer zone (Naja and Volesky, 2006, Mohan 
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and Sreelakshmi, 2008). The column capacity qeq (mg/g) was calculated at 50 % 

breakthrough capacity of the column as depicted earlier by Equation 3.22. 

 

8.3.1. Application of Thomas model 

The experimental data obtained from column studies were fitted with the Thomas model. 

The rate constant (kth) and maximum sorption capacity, q0 (mg/g) were evaluated from the 

linear plots of ln(C0/Ct-1) against time, t(min). The figures are shown in Appendix F. The 

estimated values of kth and q0 (mg/g) are listed in Tables 8.4, 8.5 and 8.6 for lead, copper 

and manganese respectively.  

  

 

Table 8.4 Thomas model parameters for lead (II) at different conditions using linear 
regression analysis 

Initial 
Concentration 

(mg/l) 

Bed Height 
(cm) 

Flow Rate 
(ml/min) 

kth(ml/min-
mg) x 10-4 

qo (mg/g) R2 

50 4.5 1 3.80 5523.06 0.986 
70 4.5 1 3.00 5617.28 0.980 
100 4.5 1 2.60 6702.88 0.976 
100 3.0 1 3.10 4721.82 0.922 
100 4.5 3 4.70 6435.51 0.864 

 

 

Table 8.5 Thomas model parameters for copper (II) at different conditions using linear 
regression analysis 

Initial 
Concentration 

(mg/l) 

Bed Height 
(cm) 

Flow Rate 
(ml/min) 

kth(ml/min-
mg) x 10-4 

qo (mg/g) R2 

50 4.5 1 3.20 4725.43 0.980 
70 4.5 1 2.43 5735.05 0.970 
100 4.5 1 2.40 6021.94 0.926 
100 3.0 1 2.70 5219.31 0.914 
100 4.5 3 4.30 5634.51 0.911 
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Table 8.6 Thomas model parameters for manganese (II) at different conditions using linear 
regression analysis 

Initial 
Concentration 

(mg/l) 

Bed Height 
(cm) 

Flow Rate 
(ml/min) 

kth(ml/min-
mg) x 10-4 

qo (mg/g) R2 

50 4.5 1 5.20 6085.78 0.983 
70 4.5 1 2.71 6162.33 0.975 
100 4.5 1 1.70 7257.32 0.931 
100 3.0 1 1.50 5574.90 0.890 
100 4.5 3 2.80 6856.26 0.956 

 

Referring to Tables 8.4-8.6, it can be observed that the column dynamics studied 

here followed Thomas model with high correlation coefficient, R2. However, the data 

deviated slightly from linear regression analysis in the case of Pb(II) cations’ sorption by 

using  the highest process parameters (Concentration 100 mg/l, bed height 4.5 cm and flow 

rate 3 ml/min). Similar trend was followed for Mn(II) sorption by using concentration of 

100 mg/l and bed height 3 cm and flow rate 1 ml/min.  

 

From the Tables (8.4-8.6) it was noticed that the values of sorption capacity, q0 

(mg/g) increased with increase in initial concentration. This trend is consistent with batch 

sorption studies depicted earlier in this study (Chapter Seven) also. The values of q0 (mg/g) 

decreased with the increase in inlet flow rate. On the contrary, q0 (mg/g) values increased 

with increase in bed height. This phenomenon is expected and the reason behind this is 

explained in Section 8.2.4. Overall the regression coefficient, R2 determined from Thomas 

model implied absence of axial dispersion where the rate limiting step was not 

predominated by external and internal diffusion (Ahmad et al., 2010b). Similar trend had 

also been observed by Baral et al., (2009) for sorption studies of Cr(VI) onto Salvinia 

cucullata. 
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8.3.2. Application of the Yoon-Nelson model 

The experimental data were fitted with Yoon-Nelson model to investigate the breakthrough 

Characteristics of Pb (II), Cu (II) and Mn (II) ions onto MFSAC. The values of kYN and τ 

were calculated from the linear plots of ln Ct/(Co - Ct) versus t (min) at different flow rates, 

bed heights and initial cation concentration. The figures are shown in Appendix F. The 

values of kYN and τ for 50 % breakthrough time, t 0.5 (min) are listed in Tables 8.7, 8.8 and 

8.9 for lead, copper and manganese respectively.  

 

Table 8.7 Yoon- Nelson model parameters for lead (II) at different conditions using linear 
regression analysis 

Initial 
Concentration 

(mg/l) 

Bed Height 
(cm) 

Flow Rate 
(ml/min) 

kYN (l/min) ζ (min) R2 

50 4.5 1 0.020 536.84 0.986 
70 4.5 1 0.021 382.38 0.980 
100 4.5 1 0.029 280.82 0.976 
100 3.0 1 0.031 168.09 0.922 
100 4.5 3 0.026 103.44 0.815 

 

 

Table 8.8 Yoon- Nelson model parameters for copper (II) at different conditions using 
linear regression analysis 

Initial 
Concentration 

(mg/l) 

Bed Height 
(cm) 

Flow Rate 
(ml/min) 

kYN (l/min) ζ (min)       R2 

50 4.5 1 0.016 459.18 0.980 
70 4.5 1 0.017 398.17 0.970 
100 4.5 1 0.024 292.66 0.926 
100 3.0 1 0.023 268.83 0.970 
100 4.5 3 0.043 91.233 0.864 
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Table 8.9 Yoon- Nelson model parameters for manganese (II) at different conditions using 
linear regression analysis 

Initial 
Concentration 

(mg/l) 

Bed Height 
(cm) 

Flow Rate 
(ml/min) 

kYN (l/min) ζ (min) R2 

50 4.5 1 0.026 591.53 0.983 
70 4.5 1 0.019 427.84 0.975 
100 4.5 1 0.017 352.71 0.931 
100 3.0 1 0.015 199.80 0.890 
100 4.5 3 0.028 111.07 0.956 

 

 

Overall the experimental data fitted well with Yoon Nelson model with few 

exceptions including Pb(II) and Cu(II) sorption when the process variables were in 

maximum range (Concentration 100 mg/l, bed height 4.5 cm and flow rate 3 ml/min). 

Analogous tendency was observed for Mn(II) sorption by using concentration of 100 mg/l 

and bed height 3 cm and flow rate 1 ml/min.  

 

The rate constant, kYN increased with increase in initial concentration for column 

dynamics of Pb(II) and Cu(II) cations whereas the values decreased for Mn(II) cations with 

increase in initial concentration. With increase in flow rate and bed height, the values of 

kYN decreased for Pb(II) cations but increased for Cu(II) and Mn(II) cations. In this study 

the time required for 50% exhaustion of column, ζ (min) decreased with increase in initial 

concentration and flow rate. It also decreased with decrease in bed height. This trend of 50 

% column exhaustion time, ζ (min)  is evident and explained earlier describing the 

experimental results in Section 8.3.4 (Tables 8.1-8.3). From the Tables (8.7-8.9) it can be 

seen that the experimental breakthrough times for 50 % breakthrough capacity of the 

column were very close to those predicted by the Yoon-Nelson model. 
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8.3.3 Application of the Bohart-Adoms model 

The breakthrough characeteristics were further analyzed by using Bohart-Adams model. ln 

(Ct/C0) values were plotted against time, t(min) at different flow rates, bed heights and 

initial cation concentrations and model constants such as maximum adsorption capacity 

(No) and the mass transfer coefficient (kAB) were determined. The linear plots are given in 

Appendix F. The mass transfer coefficient (kAB) and saturation concentration (No) values 

were calculated from the slope and intercept of the curve respectively and are shown in 

Tables 8.10, 8.11 and 8.12 for lead, copper and manganese respectively. 

 

 

Table 8.10 Adams- Bohart parameters for lead (II) at different conditions using linear 
regression analysis 

Initial 
Concentration 

(mg/l) 

Bed Height 
(cm) 

Flow Rate 
(ml/min) 

kAB (L/mg-
min) x 10-4 

N0 
(mg/l) 

R2 

50 4.5 1 2.20 434.899 0.949 
70 4.5 1 1.71 473.567 0.914 
100 4.5 1 1.60 478.041 0.891 
100 3.0 1 1.50 426.182 0.709 
100 4.5 3 2.10 629.265 0.622 

 

 

Table 8.11 Adams- Bohart parameters for copper (II) at different conditions using linear 
regression analysis 

Initial 
Concentration 

(mg/l) 

Bed Height 
(cm) 

Flow Rate 
(ml/min) 

kAB (L/mg-
min) x 10-4 

N0 
(mg/l) 

R2 

50 4.5 1 1.80 396.503 0.902 
70 4.5 1 1.29 501.725 0.925 
100 4.5 1 1.20 559.461 0.737 
100 3.0 1 1.10 575.240 0.656 
100 4.5 3 1.70 616.339 0.644 
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Table 8.12 Adams- Bohart parameters for manganese (II) at different conditions using 
linear regression analysis 

Initial 
Concentration 

(mg/l) 

Bed Height 
(cm) 

Flow Rate 
(ml/min) 

kAB (L/mg-
min) x 10-4 

N0 
(mg/l) 

R2 

50 4.5 1 2.40 488.814 0.903 
70 4.5 1 1.14 529.338 0.855 
100 4.5 1 0.70 700.086 0.782 
100 3.0 1 0.60 698.190 0.789 
100 4.5 3 1.10 762.401 0.862 

  

 

Adams-Bohart model is a comprehensive model for evaluating continuous flow 

sorption system in a column. However, its validity is restricted up to a certain extent. The 

poor correlation coefficient, R2 reflects the lack of applicability of this model. Referring to 

the Tables 8.10-8.12, it can be observed that mass transfer coefficient increased with 

increase in bed height and flow rate but decreased with increase in initial concentration. 

This implies that the reaction kinetics was strongly influenced by external mass transfer 

(Ahmad et al., 2010b). However, the sorption capacity N0 increased with increasing initial 

concentration, flow rate and bed height for lead and manganese (Ahmad et al., 2010b, 

Pakshiranjan and Swaminathan, 2006) but for copper increasing bed height reduced the 

sorption capacity slightly. Similar trend was observed for sorption of Cr (VI) onto 

thermally activated weed where by increasing the bed height from 2 to 4 cm, N0 decreased 

significantly. 

 

8.4. Regeneration of the Activated carbon 

It is essential to reuse the cation loaded sorbent for economical feasibility of the process. 

The sorbent can be reused by carrying out consecutive adsorption-desorption cycles. The 
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regeneration efficiency of MFSAC was observed for four cycles. 1M HNO3 acid solution 

was used as an eluting agent as it showed greater removal efficiency described earlier in 

Chaper Seven (Section 7.9). The eluting agent was passed inside the column at a flow rate 

of 3 ml/min for 16 hours. It was observed that, after 570 minutes, 600 minutes and 690 

minutes, the elution capacity of lead, copper and manganese decreased significantly. 

Desorption efficiency (%) was calculated using Equation 4.14. The experimental data 

obtained for breakthrough time, exhaustion time and breakthrough uptake capacities (mg/g) 

for all the four cycles are tabulated in Table 8.13.  

 

Referring to Table 8.13, it was observed that exhaustion time and column capacity 

at 50% breakthrough  is decreased with each cycle. This is attributed to the undesirable 

effect of acid eluting agent on the surface functional groups or binding sites. At the same 

time, inadequate time for desorption allows the metal to be attached onto the surface of 

activated carbon. The sorption performance of the column was reduced. The column 

capacity has been found to decrease drastically after the fifth cycle for all the cations This 

reflects that the properties of the prepared activated carbon was detoriated due to acid 

treatment. Similar trend of desorption was observed in the regeneration of lead (II) by using 

coconut shell based granular activated carbon (Goel et al., 2005). It was observed that 

regeneration effeciency (%) was found to be 40% after fifth cycle (Goel et al., 2005). 

 

 

 

 



 

 
312 

 

 

 

Table 8.13 Regeneration of Column 

            

Metal Cycle No Breakthrough Time 
(Minute) 

Breakthrough 
Uptake (mg/g) 

Bed 
Exhaustion time 

Regeneration 
Efficiency (%) 

 1 180 6.7028 630 original 
Lead (II) 2 130 5.3243 450 79.43 

 3 100 3.5658 180 53.19 
 4 70 2.2987 120 34.29 
 1 200             6.0219 660 original 

Copper (II) 2 160 4.5434 480 75.44 
 3 120 3.8767 260 64.38 
 4 90 2.0988 160 34.85 
 1 250 7.2573 700          original 

Manganese (II) 2 200 6.2076 630 85.53 
 3 160 5.4543 450 75.15 
 4 180 4.8765 280 67.19 
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8.5 Summary 

Physio-chemically activated mangostene fruit shell based activated carbon (MFSAC) 

was found to be a very effective sorbent for the purification of Pb (II), Cu (II) and Mn 

(II) contaminated synthetic aqueous solutions. The effects of different sorption 

parameters such as flow rate, influent concentration and quantity of sorbent on 

breakthrough curve characteristics of Pb (II), Cu (II) and Mn (II) cations were studied. 

The removal efficiency of all three cations was found to increase with an increase in 

sorbent amount (bed height) but decreases with an increase in both inlet concentration 

and flow rate of the adsorbate. The experimental data obtained here was fitted with 

Adams-Bohart, Thomas and Yoon-Nelson models. The shape and characteristics of the 

breakthrough curves were determined. Significant features of the different models such 

as rate constant (Adams-Bohart model), adsorption capacity (Thomas model) and time 

for 50% breakthrough (Yoon-Nelson model) were determined by linear regression 

analysis. Yoon Nelson and Thomas models were best to describe the experimental data.  

 

Desorption and regeneration of the cation loaded adsorbent was carried out to 

observe the suitability of the adsorbent. Based on desorption and regeneration studies, it 

was concluded that the prepared adsorbent can be repeatedly use up to three cycles, 

after which the adsorption performance declined significantly for lead and copper. It 

revealed that ion exchange mechanism i.e., chemisorption dominated the sorption 

process in case of column mode studies. Therefore, eluting agent of 1M HNO3 acid was 

chosen for regeneration purposes. The column exhaustion time for Mn(II) cations were 

greater than the other two cations under investigation. 
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CHAPTER NINE 
CONCLUSIONS AND RECOMMENDATIONS 

 

9.1   Conclusion 

Based on the overall experimental observation discussed in Chapter 5, 6 7 and 8, the 

conclusions of the present research can be listed below: 

 

1. The selected agricultural residues (Kenaf Core (KC), Kenaf Fiber (KF), Mangostene 

fruit peel (MFS) and oil palm ash (OPA)) are promising starting materials for the 

preparation of activated adsorbents by using Group I alkali metal hydroxide 

(KOH/NaOH)  as a chemical activating agent. 

 

2. The experimental design based on central composite design (CCD) clearly revealed 

that CO2 activation temperature – x1, time- x2 and KOH impregnation ratio (IR) – x3 

were important factors influencing the adsorption performance of the powdered 

activated carbons (PAC) prepared from kenaf core (KC) and kenaf fiber (KF) for the 

adsorption of soft and border line divalent cations of Pb(II), Cu(II) and Mn(II). The 

effects of CO2 activation temperature played the most significant role for producing 

activated carbon. However, temperature, time and impregnation ratio also showed 

noteworthy effects on the yields of all the powdered activated carbons prepared. 

Regression models were effectively developed to describe the correlation between the 

activated carbon preparation variables to the responses of removal percentage and yield. 

These models are appropriate and adequate in predicting the responses.  

 

3. Activated ash samples were prepared from natural oil palm ash (OPA) by refluxing 

the sample with NaOH at different temperatures - x1, ratios - x2 and hydration time – x3 
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based on the experimental design matrix. Regression models were also developed for 

activated ash (AOPA) in order to correlate the preparation variables with removal 

percentage of metallic cations under investigation. 

 

4. The characterization results showed that all the powdered activated adsorbent 

prepared in this study had a relatively high BET surface area compared to granular 

activated carbon (MFSAC). The average pore diameters obtained for all the adsorbents 

are larger than 2.2 °A and this reflects their mesoporous nature. The SEM analyses of 

KCAC and KFAC proved that significant number of pores was developed during the 

activation process. However, a smaller number of pores was visible onto the surface of 

granular activated carbon (MFSAC) and activated palm ash (AOPA). Chemical 

composition analysis of the prepared activated carbons derived from different 

precursors was found to have different ultimate and proximate contents. On the 

contrary, significant amount of metallic oxide content was found over the surface of 

AOPA. FTIR analyses revealed the presence of different functional groups such as 

hydroxyl, carboxylate, carbonyl, alkyl and silicon oxide groups on the surfaces of the 

activated carbon and activated ash samples. The removal and regeneration efficiency of 

the prepared activated carbons were better than activated palm ash. The performances of 

the prepared activated adsorbents are better compared to commercial activated carbons. 

 

5. An increase in initial cations concentrations (Pb(II), Cu(II) and Mn(II)) and contact 

time increased the adsorption uptakes of the activated adsorbent. However, the percent 

removal decreased with increasing initial concentrations. The removal efficiency of the 

cations onto the activated adsorbents is less below pH 4.  Between pH 4-6, maximum 

adsorption is observed. This is attributed to the lessening of H+ ions concentration in 
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solution, degree of ionization of the adsorbate species and change of the charge on the 

adsorbent surfaces with the change in solution pH. 

6. Adsorption of all the cations onto the prepared activated adsorbent followed Type I 

isotherm for all the temperatures. The trend of adsorption capacity of the activated 

carbon followed the order of KCAC>KFAC>MFSAC for the selected cations. The 

order thus obtained is due to the extended surface area of the powdered activated carbon 

compared to the granular one. Although AOPA has a greater surface area compared to 

MFSAC, it still showed a slightly smaller removal percentages for all the cations. 

Overall, the adsorption performance of the activated carbons prepared is better than 

AOPA in terms of removal and regeneration efficiency. 

 

7. Adsorption of metallic cations onto the surface of KCAC, KFAC, MFSAC and 

AOPA is best represented by the pseudo-second-order and Elovich kinetic models. All 

the adsorption processes studied were mainly governed by external mass transport 

where particle diffusion is the rate limiting step. 

 

8. Different adsorbent-adsorbate systems were found to show different thermodynamic 

behaviors. Most of the systems under investigation show endothermic nature of sorption 

except for Pb (II) cations onto KCAC and Mn(II) cations onto the surface of AOPA.  

 

9. Adsorption of Pb (II), Cu (II) and Mn (II) cations onto MFSAC is found to perform 

better with lower adsorbate inlet concentration, lower feed flow rate and higher 

activated carbon bed height for fixed-bed column. Overall, the adsorption capacity of 

MFSAC for Pb (II), Cu(II) and Mn(II) obtained from the fixed-bed experiments are 

found to be lower than the values obtained from the batch experiments for the same 

initial concentration used. 
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10. The breakthrough curve was analyzed by different models. The experimental data 

are well represented by Yoon- Nelson and Thomas model. 

 

11. Desorption by using HNO3 acid is shown to be the best possible technique for 

regenerating the spent activated carbon (KCAC, KFAC and MFSAC). HCl performs 

better as eluting agent in the case of activated ash samples (AOPA) loaded with metallic 

cations. 

 

9.2   Recommendations 

Some recommendations for future research are summarized below: 

 

1. It is suggested to further evaluate the adsorption performance of the adsorbents 

prepared in this study for removing Pb (II), Cu (II) and Mn (II) cations from waste 

effluents emanating from different industrial process. This will provide insight 

concerning the adsorption mechanism and performance of the adsorbent which may be 

interfered by other components present in the effluents. 

 

2. Competitive sorption of Pb (II), Cu (II) and Mn (II) cations in binary and ternary 

system should be observed for both batch and fixed bed studies. The effect of dissolved 

organic compounds onto the removal percentages of the selected cations should also be 

monitored. 

 

3. The alkali and alkali-earth metals’ cations of Na+, Ca++ and Mg++ are commonly 

present in water. The effect of these hard cations on the removal efficiency of the 
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targeted metallic contaminants of Pb (II), Cu (II) and Mn (II) cations should be 

evaluated. 

4. Palm ash should be used for fixed bed study to analyze the breakthrough curve for 

single and multi solute system. 

 

5. It is recommended to modify the activated adsorbent prepared in this study with 

appropriate surfactants or oxidizing agents to enhance their adsorption performance 

since the adsorption ability of the activated carbons are found to be influenced by their 

surface charges and active functional groups. 

 

6. Prepared activated carbon can be utilized to prepare ferric hydroxide loaded activated 

carbon composite to remove As (III) and As (IV) anions from waste water. 

   

7. In this research, packed-bed reactor was used to prepare the activated carbons. It is 

recommended that fluidized-bed reactor could be used to carry out the carbonization 

and activation processes to ensure a more consistent temperature gradient, decrease in 

the pressure drop and increase in the reaction efficiency between the activating agents 

and the samples in order to produce activated carbons with higher yield and porosity. 

 

8. Activated carbons with different physical and chemical characteristics are needed for 

different applications. It is suggested to further develop the activation methods for 

preparing activated carbons for the adsorption of other pollutants such as pesticides, 

dyes and phenolic compounds. The activation methods could be developed by changing 

the activating agents, activation path and operating conditions. 
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APPENDIX A 
Calibration Curve for Lead Pb(II), Copper Cu(II) and Manganese Mn(II) 

 

 

                            Figure A-1 Calibration Curve for sorption of Lead, Pb(II)   

 

 

 

Figure A-2 Calibration Curve for sorption of Copper, Cu(II)   
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      Figure A-3 Calibration Curve for sorption of Manganese, Mn(II)   
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APPENDIX B 

Major Equipments used to prepare activated adsorbents, analyze aqueous sample 
and surface characterization system 

 

(a) Vertical Reactor closed with Thermocouple (b) Vertical Furnace (c) Gas Flow 
indicator (d) Oven (e) Temperature and time controlling unit (f) Exhaust pipe 

Plate B-1 Experimental set up for Activated carbon (PAC and GAC) preparation  

 

 

Plate B-2 Experimental set up for Activated ash (AOPA) preparation  

 

(e) 

(b) 

(c) 
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(f) 
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Appendix C 

Diagnostic Tests for preparation of activated adsorbents 
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Figure C-1 (a) Outlier t plots (b) The studentized residuals and predicted response 
plots for removal % of Pb (II) onto Kenaf Core based Activated Carbon (KCAC) 

Figure C-2 (a) Outlier t plots (b) The studentized residuals and predicted response 
plots for removal % of Cu (II) onto Kenaf Core based Activated Carbon (KCAC) 



 

 
348 

 

 

  
 

 

 

 

 

 

 

 

 

 

   Predicted 

St
ud

en
tiz

ed
 R

es
id

ua
ls 

Residuals vs. Predicted 

-3.00 

-1.50 

0.00 

1.50 

3.00 

13.71 18.70 23.70 28.69 33.68

  Run Number 

O
ut

lie
r 

T

Outlier T 

-3.50 

-1.75 

0.00 

1.75 

3.50 

1 4 7 10 13 16 19

Predicted

St
ud

en
tiz

ed
 R

es
id

ua
ls 

     Residuals vs. Predicted 

-3.00 

-1.50 

0.00 

1.50 

  3.00 

44.80 59.75 74.71 89.66 99.99
Run Number 

O
ut

lie
r 

T 

Outlier T 

-3.50 

-1.75 

0.00 

1.75 

3.50 

1 4 7 10 13 16 19

Figure C-3 (a) Outlier t plots (b) The studentized residuals and predicted response 
plots for removal % of Mn(II) onto Kenaf Core based Activated Carbon (KCAC) 

Figure C-4 (a) Outlier t plots (b) The studentized residuals and predicted response 
plots for production yield % of Kenaf Core Based Activated Carbon (KCAC) 
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Figure C-5 (a) Outlier t plots (b) The studentized residuals and predicted response 
plots for removal % of Pb (II) onto Kenaf Fiber based Activated Carbon (KFAC) 

Figure C-6 (a) Outlier t plots (b) The studentized residuals and predicted response 
plots for removal % of Cu (II) onto Kenaf Fiber based Activated Carbon (KFAC) 
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Figure C-7 (a) Outlier t plots (b) The studentized residuals and predicted response plots 
for removal % of Mn(II) onto Kenaf Fiber based Activated Carbon (KFAC) 

Figure C-8 (a) Outlier t plots (b) The studentized residuals and predicted response plots 
for production yield % of Kenaf Fiber Based Activated Carbon (KFAC) 
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Figure C-10 (a) Outlier t plots (b) The studentized residuals and predicted response plots 
for removal % of Cu(II) onto Activated oil palm ash (AOPA) 

Figure C-9 (a) Outlier t plots (b) The studentized residuals and predicted response 
plots for removal % of Pb (II) onto activated oil palm ash (AOPA) 
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Figure C-11 (a) Outlier t plots (b) The studentized residuals and predicted response 
plots for removal % of Mn(II) onto activated oil palm ash (AOPA) 
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APPENDIX D 

Optimization Ramp for preparation of powdered activated carbon from 
lignocellulosic precursors of Kenaf core and Kenaf fiber (KCAC and KFAC) 

 

Figure D-1 Optimization Ramp for preparation of Kenaf core based activated carbon 
(KCAC) for lead, Pb (II) 

 

 

Figure D-2 Optimization Ramp for preparation of Kenaf core based activated carbon 
(KCAC) for copper, Cu (II) 
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Figure D-3 Optimization Ramp for preparation of Kenaf core based activated carbon 
(KCAC) for manganese, Mn (II) 

 

 

Figure D-4 Optimization Ramp for preparation of Kenaf Fiber based activated carbon 
(KFAC) for lead, Pb (II) 
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Figure D-5 Optimization Ramp for preparation of Kenaf Fiber based activated carbon 
(KFAC) for copper, Cu (II) 

 

 

Figure D-6 Optimization Ramp for preparation of Kenaf Fiber based activated carbon 
(KFAC) for manganese, Mn (II) 
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APPENDIX E 

Equilibrium Isotherm Modeling (Langmuir, Freundlich and Temkin Isotherm) at 50 °C and 70 °C temperature 

Table E-1 Langmuir, Freundlich and Temkin Isotherm at 50 °C Temperature for adsorption of Lead, Pb (II) onto KCAC, KFAC, MFSAC and AOPA 

 
 

 

 

 

 

 

 

 

 

 

 

 

  Linear Regression analysis of Isotherm   
 Langmuir Isotherm Freundlich Isotherm Temkin Isotherm 

 
Activated 
sorbent 
 

Maximum 
Monolayer 
adsorption 

capacity 

 
Langmuir 
Constant 

 
Separation 

Factor 

 
Correlation 
Coefficient 

 
Affinity Factor 

 
Freundlich 
Exponent 

 
Correlation 
Coefficient 

 
Binding 

Constant 

 
Temkin 

Constant 

 
Correlation 
Coefficient 

 qmax KL RL R2 KF 1/n R2 KT B R2 

 
 

(mg/g) (l/mg) - - (mg/g(l/mg)1/n) - - (l/g) - - 

KCAC 55.55 0.089 0.101 0.942 5.668 0.672 0.995 0.929 11.180 0.973 

KFAC 37.04 0.333 0.030 0.899 10.49 0.483 0.947 3.070 8.232 0.909 

MFSAC 
 

27.03 0.133 0.006 0.937 6.876 0.332 0.925 2.014 5.014 0.916 

AOPA 23.25 0.148 0.063 0.917 3.854 0.377 0.845 0.663 4.686 0.820 
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Table E-2 Langmuir, Freundlich and Temkin Isotherm at 70 °C Temperature for adsorption of Lead, Pb (II) onto KCAC, KFAC, MFSAC and AOPA 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  Linear Regression analysis of Isotherm   
 Langmuir Isotherm Freundlich Isotherm Temkin Isotherm 

 
Activated 
sorbent 
 

Maximum 
Monolayer 
adsorption 

capacity 

 
Langmuir 
Constant 

 
Separation 

Factor 

 
Correlation 
Coefficient 

 
Affinity Factor 

 
Freundlich 
Exponent 

 
Correlation 
Coefficient 

 
Binding 

Constant 

 
Temkin 

Constant 

 
Correlation 
Coefficient 

 qmax KL RL R2 KF 1/n R2 KT B R2 

 
 

(mg/g) (l/mg) - - (mg/g(l/mg)1/n) - - (l/g) - - 

KCAC 52.63 0.086 0.193 0.972 5.285 0.666 0.986 0.986 11.110 0.994 

KFAC 38.46 0.325 0.030 0.839 10.51 0.509 0.929 2.950 8.631 0.874 

MFSAC 
 

27.78 0.146 0.005 0.883 7.456 0.321 0.907 2.555 4.921 0.858 

AOPA 27.02 0.141 0.066 0.964 6.290 0.387 0.957 1.287 6.098 0.947 
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Table E-3 Langmuir, Freundlich and Temkin Isotherm at 50 °C Temperature for adsorption of Copper, Cu (II) onto KCAC, KFAC, MFSAC and 
AOPA 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

      Linear Regression analysis of Isotherm  
 Langmuir Isotherm Freundlich Isotherm  Temkin Isotherm 

 
Activated 
sorbent 
 

Maximum 
Monolayer 
adsorption 

capacity 

 
Langmuir 
Constant 

 
Separation 

Factor 

 
Correlation 
Coefficient 

 
Affinity Factor 

 
Freundlich 
Exponent 

 
Correlation 
Coefficient 

  
Binding 

Constant 

 
Temkin 

Constant 

 
Correlation 
Coefficient 

 qmax KL RL R2 KF 1/n R2  KT B R2 

 
 

(mg/g) (l/mg) - - (mg/g(l/mg)1/n) - -  (l/g) - - 

KCAC 32.25 2.066 0.005 0.985 20.53 0.401 0.972  18.29 7.170 0.977 

KFAC 29.42 1.542 0.006 0.985 16.78 0.340 0.910  16.67 6.112 0.937 

MFSAC 
 

21.74 0.467 0.021 0.997 10.37 0.214 0.996  16.65 3.370 0.994 

AOPA 19.60 0.629 0.016 0.988 11.64 0.140 0.956     206.8 2.125 0.926 
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Table E-4 Langmuir, Freundlich and Temkin Isotherm at 70 °C Temperature for adsorption of Copper, Cu (II) onto KCAC, KFAC, MFSAC and 
AOPA 

 

 

 

 

 

 

 

 

 

 

 

 

      Linear Regression analysis of Isotherm  
 Langmuir Isotherm Freundlich Isotherm  Temkin Isotherm 

 
Activated 
sorbent 
 

Maximum 
Monolayer 
adsorption 

capacity 

 
Langmuir 
Constant 

 
Separation 

Factor 

 
Correlation 
Coefficient 

 
Affinity Factor 

 
Freundlich 
Exponent 

 
Correlation 
Coefficient 

  
Binding 

Constant 

 
Temkin 

Constant 

 
Correlation 
Coefficient 

 qmax KL RL R2 KF 1/n R2  KT B R2 

 
 

(mg/g) (l/mg) - - (mg/g(l/mg)1/n) - -  (l/g) - - 

KCAC 33.34 2.500 0.004 0.977 23.27 0.426 0.970  20.73 7.523 0.967 

KFAC 30.30 1.837 0.005 0.911 18.44 0.464 0.899  10.28 8.121 0.864 

MFSAC 
 

22.21 0.512 0.019 0.984 10.59 0.122 0.917  28.30 3.084 0.914 

AOPA 20.00 0.075 0.118 0.981 18.08 0.138 0.912  7.596 1.622 0.988 
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Table E-5 Langmuir, Freundlich and Temkin Isotherm at 50 °C Temperature for adsorption of Manganese, Mn (II) onto KCAC, KFAC, MFSAC and 
AOPA 

 

 

 

 

 

 

 

 

 

 

 

  Linear Regression Analysis of Isotherm  
 Langmuir Isotherm Freundlich Isotherm Temkin Isotherm 

 
Activated 
sorbent 
 

Maximum 
Monolayer 
adsorption 

capacity 

 
Langmuir 
Constant 

 
Separation 

Factor 

 
Correlation 
Coefficient 

 
Affinity Factor 

 
Freundlich 
Exponent 

 
Correlation 
Coefficient 

 
Binding 

Constant 

 
Temkin 

Constant 

 
Correlation 
Coefficient 

 qmax KL RL R2 KF 1/n R2 KT B R2 

 
 

(mg/g) (l/mg) - - (mg/g(l/mg)1/n) - - (l/g) - - 

KCAC 32.26 0.263 0.037 0.951 8.819 0.426 0.974 0.919 7.088 0.937 

KFAC 31.25 0.260 0.037 0.957 8.508 0.426 0.941 2.308 7.071 0.926 

MFSAC 
 

27.02 0.077 0.097 0.949 4.145 0.453 0.937 0.635 6.393 0.935 

AOPA 18.18 0.047 0.175 0.968 2.472 0.422 0.929 0.472 3.930 0.873 



 

 
361 

 

 

 

Table E-6 Langmuir, Freundlich and Temkin Isotherm at 70 °C Temperature for adsorption of Manganese, Mn (II) onto KCAC, KFAC, MFSAC and 
AOPA 

 

 

 

 

 

 

 

 

 

 

 

 

  Linear Regression Analysis of Isotherm  
 Langmuir Isotherm Freundlich Isotherm Temkin Isotherm 

 
Activated 
sorbent 
 

Maximum 
Monolayer 
adsorption 

capacity 

 
Langmuir 
Constant 

 
Separation 

Factor 

 
Correlation 
Coefficient 

 
Affinity Factor 

 
Freundlich 
Exponent 

 
Correlation 
Coefficient 

 
Binding 

Constant 

 
Temkin 

Constant 

 
Correlation 
Coefficient 

 qmax KL RL R2 KF 1/n R2 KT B R2 

 
 

(mg/g) (l/mg) - - (mg/g(l/mg)1/n) - - (l/g) - - 

KCAC 37.03 0.296 0.033 0.942 9.708 0.503 0.973 2.504 8.596 0.950 

KFAC 32.26 0.287 0.034 0.994 8.864 0.450 0.964 2.293 7.661 0.984 

MFSAC 
 

28.57 0.096 0.094 0.962 4.898 0.445 0.951 1.675 4.328 0.972 

AOPA 17.54 0.039 0.203 0.896 2.083 0.441 0.831 0.274 4.464 0.859 
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APPENDIX F 

Breakthrough Curve modeling for column dynamics studies for mangostene fruit shell 
based activated carbon (MFSAC) 
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Figure F-1 (a) Linear Regression Analysis for breakthrough curve modeling 
by Thomas model for Lead, Pb (II) onto MFSAC at different influent/inlet 
concentration  

Figure F-1 (b) Linear Regression Analysis for breakthrough curve 
modeling by Thomas model for Lead, Pb (II) onto MFSAC at different 
bed height 
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Figure F-1 (c) Linear Regression Analysis for breakthrough curve 
modeling by Thomas model for Lead, Pb (II) onto MFSAC at different 
flow rate 
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Figure F-2 (a) Linear Regression Analysis for breakthrough curve 
modeling by Yoon- Nelson model for Lead, Pb (II) onto MFSAC at 
different influent/inlet concentration 

Figure F-2 (b) Linear Regression Analysis for breakthrough curve modeling 
by Yoon- Nelson model for Lead, Pb (II) onto MFSAC at different bed 
height 
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Figure F-2 (c) Linear Regression Analysis for breakthrough curve 
modeling by Yoon- Nelson model for Lead, Pb (II) onto MFSAC at 
different flow rate 
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Figure F-3 (a) Linear Regression Analysis for breakthrough curve 
modeling by Bohart Adams model for Lead, Pb (II) onto MFSAC at 
different influent/inlet concentration 

Figure F-3 (b) Linear Regression Analysis for breakthrough curve 
modeling by Bohart Adams model for Lead, Pb (II) onto MFSAC at 
different bed height 
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Figure F-3 (c) Linear Regression Analysis for breakthrough curve 
modeling by Bohart Adams model for Lead, Pb (II) onto MFSAC at 
different flow rate 
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Figure F-4 (a) Linear Regression Analysis for breakthrough curve 
modeling by Thomas model for Copper, Cu (II) onto MFSAC at different 
influent/inlet concentration  

 

Figure F-4 (b) Linear Regression Analysis for breakthrough curve 
modeling by Thomas model for Copper, Cu (II) onto MFSAC at different 
bed height 
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Figure F-4 (c) Linear Regression Analysis for breakthrough curve 
modeling by Thomas model for Copper, Cu (II) onto MFSAC at different 
flow rate 
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Figure F-5 (a) Linear Regression Analysis for breakthrough curve 
modeling by Yoon Nelson model for Copper, Cu (II) onto MFSAC at 
different influent/inlet concentration  

Figure F-5 (b) Linear Regression Analysis for breakthrough curve 
modeling by Yoon Nelson model for Copper, Cu (II) onto MFSAC at 
different bed height 
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Figure F-5 (c) Linear Regression Analysis for breakthrough curve 
modeling by Yoon Nelson model for Copper, Cu (II) onto MFSAC at 
different flow rate 
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Figure F-6 (a) Linear Regression Analysis for breakthrough curve 
modeling by Bohart Adams model for Copper, Cu (II) onto MFSAC 
at different concentration 
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Figure F-6 (b) Linear Regression Analysis for breakthrough curve 
modeling by Bohart Adams model for Copper, Cu (II) onto MFSAC at 
different bed height 

Figure F-6 (c) Linear Regression Analysis for breakthrough curve 
modeling by Bohart Adams model for Copper, Cu (II) onto MFSAC at 
different flow rate 
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Figure F-7 (a) Linear Regression Analysis for breakthrough curve 
modeling by Thomas model for Manganese, Mn (II) onto MFSAC at 
different concentration 

Figure F-7 (b) Linear Regression Analysis for breakthrough curve 
modeling by Thomas model for Manganese, Mn (II) onto MFSAC at 
different bed height 
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Figure F-7 (c) Linear Regression Analysis for breakthrough curve 
modeling by Thomas model for Manganese, Mn (II) onto MFSAC at 
different flow rate 
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Figure F-8 (a) Linear Regression Analysis for breakthrough curve modeling 
by Yoon Nelson model for Manganese, Mn (II) onto MFSAC at different 
concentration 

Figure F-8 (b) Linear Regression Analysis for breakthrough curve 
modeling by Yoon Nelson model for Manganese, Mn (II) onto 
MFSAC at different bed height 
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Figure F-8 (c) Linear Regression Analysis for breakthrough curve 
modeling by Yoon Nelson model for Manganese, Mn (II) onto MFSAC 
at different flow rate 
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Figure F-9 (a) Linear Regression Analysis for breakthrough curve 
modeling by Bohart Adams model for Manganese, Mn (II) onto 
MFSAC at different concentration 

Figure F-9 (b) Linear Regression Analysis for breakthrough 
curve modeling by Bohart Adams model for Manganese, Mn (II) 
onto MFSAC at different bed height 
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Figure F-9 (c) Linear Regression Analysis for breakthrough curve 
modeling by Bohart Adams model for Manganese, Mn (II) onto 
MFSAC at different flow rate 
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